高中数学函数教学方法研究(汇总12篇)

时间:2024-11-16 作者:曼珠

范文范本可以丰富我们的写作素材,通过阅读不同领域和题材的范文,我们可以积累更多的知识和观点。我们特意为大家搜集了一些经典的范文范本,它们是经过精心挑选和整理的,希望能够对大家的写作提供一些帮助。

高中数学函数教学方法研究(汇总12篇)篇一

高中数学的教学,教师应该在熟悉高中数学具体教学内容的同时,认真探讨学习环境对象,合理地引导学生采用科学合理的方式方法进行高效的学习,有效地提高学生的学习效率,同时也要注重和学生之间的交流互动。在授课过程中要扮演好自己组织与引导的角色,不要只单单从形式上是交流活动,而实际一点也不利于学生对数学的有效学习。这需要一方面教师在日常授课过程中与学生多互动、多交流,而且要注意有效地向学生提出一些调动他们积极性的问题,引导学生正确地学习,同时也要与教学知识点进行有机的结合,完成教学任务。另一方面,还需要教师扮演好倾听者的角色,倾听学生的真实想法,确实了解学生对知识点的掌握情况,也让学生感受到教师的关注和尊重,营造出一种和谐的课堂气氛,培养学生的学习兴趣,达到学而不厌、学而高效的目的。具体地说,提高学生的学习效率,关键还在于学生和教师之间的交流互动是不是从根本上做到了,让学生真正地融入课堂教学中,而这种融入包含情感融入和行为融入,只有高中数学教学课堂做到了这些,学生高效学习效果一定会很显著。

鼓励和评价能增强学生的学习动力,有助于学生的身心健康,同时也是教学工作开展必不可少的环节。任何事都有两面性,评价也不例外。因为,不同的教师在评价的时候有不同的语言表达,教师对学生评价的好坏会直接影响着学生对数学的学习兴趣,甚至会破坏学生学习的最终效果。老师评价一个学生的时间和场合都要合适,在一个学生在课堂上的表现很好的时候,应该及时给予其好的评价和认可,学生从心理上就能够得到很好的满足,学生也就会更努力地去学习。高中阶段学生的内心情感正处在一个慢慢成熟的时期,所有孩子都希望被老师认可和鼓励,实践也说明了具备激励性、合理性的评价能很好地调动学生的学习积极性。

适当的练习对于高中教学的每一门课程都具有非常重要的实际意义,对于数学学习更是作用明显,有效地练习能加深学生对知识的印象,巩固学生对知识的理解,也是教师检测学生对知识理解程度的有力工具。但不能让老师以为练习越多越好,就给学生布置大量的练习。这样是不对的,练习应该有,但必须是适量的,而且要重在坚持,这样才能达到巩固基础的效果,才能让练习对学生产生作用。一方面教师应该从教材以外的资料上找一些典型的习题,另一方面高中数学课本上习题选择都非常的好,教师也应该加强练习,让学生在练习中总结思考最有效的学习方法。总之,高中数学的学习方法是否有效,直接影响着学生的学习效率。为了更好地提高学生的学习效率、培养学生的学习兴趣、取得骄人的学习成绩,也为了更好地开展数学的教学内容、达到数学的教学目的、发展高效的教育事业,就必须采用真正适合学生的有效学习方法。

高中数学函数教学方法研究(汇总12篇)篇二

对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。

右图给出对于不同大小a所表示的函数图形:

可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

(1)对数函数的定义域为大于0的实数集合。

(2)对数函数的值域为全部实数集合。

(3)函数总是通过(1,0)这点。

(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。

(5)显然对数函数无界。

指数函数。

如图所示为a的不同大小影响函数图形的情况。

可以看到:

(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。

(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于y轴与x轴的正半轴的单调递减函数的位置,趋向分别接近于y轴的正半轴与x轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于x轴,永不相交。

(7)函数总是通过(0,1)这点。

(8)显然指数函数无界。

高中数学函数教学方法研究(汇总12篇)篇三

如图所示为a的不同大小影响函数图形的情况。

可以看到:

(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。

(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于y轴与x轴的正半轴的单调递减函数的位置,趋向分别接近于y轴的正半轴与x轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于x轴,永不相交。

(7)函数总是通过(0,1)这点。

(8)显然指数函数无界。

高中数学函数教学方法研究(汇总12篇)篇四

数学这门学科具有独特的学科性质,数学是抽象思维和逻辑思维的结合,本身就比较抽象晦涩难以理解,加之学生的学习能力和思维能力各有差异,所以对数学知识的理解和学习能力各有不同。高中数学任何新知识的讲解都离不开原有数学知识积累的帮助。传统的“大满贯”式的教学方法是教师一味地对学生进行知识传授,重视提高学生的学习成绩,而忽视对学生实际能力的培养,忽视加强数学知识之间、数学知识和生活实践之间的联系,导致课堂教学枯燥乏味,使得一些学生丧失了数学学习积极性和兴趣。高中数学教师的职责不仅仅局限于让学生了解到应该掌握的数学知识,更要让学生真正理解知识、明白知识,领悟数学思想和思维,掌握提高解决问题的实际技能。要真正达到这一教学目的,教师必须从根本上改变传统的数学教学思想,合理运用问题导学法,开展有效的教学活动,设置学生力所能及的学习任务,积极引导学生主动参加到教学实践中,提高学生的学习兴趣和主动性,让学生在解决问题的过程中锻炼和提高自己的思维能力和创新能力,充分开发学生潜能,提高教学质量。

高中生虽然有一定数学知识的积累,但是因为生活经验的限制对数学的理解水平有限。如果问题的设置超出高中生所能理解的范畴,学生听不懂老师提出的问题自然也不能回答老师提出的问题,问题设置与教学目的严重偏离,影响课堂教学的正常进行,阻碍教学质量的提高和教学任务的完成。所以在高中课堂教学中运用问题导学法时,必须以本班级学生的数学学习实际情况为出发点,根据每学期的教学目标和教学任务设置具有代表性的数学问题,使导学问题、教学内容、教学目标三者相辅相成有机结合,有效增强实际教学效果,共同为促进学生发展作出贡献。例如,在学习排列组合的时候,老师在上课前可以利用一个问题导入本节课的课程:“同学们,我们上节课学习了把元素按照指定的方式进行排序叫排列,那么有同学知道我们从一堆东西中取出一定数量的东西,不考虑其顺序问题的话,这个叫什么呢?”既符合本节课所要讲的内容,又能使学生产生好奇心,同时对于一些已经预习的学生来说,这个问题的答案是显而易见的,所以回答起来不会有困难。

素质教育是现代教育改革的核心,是新课改推行的本质要求,对于提高学生的综合能力具有重要意义,实行问题导学法正是实现这一核心的具体措施。每个学生思维能力各有不同,对数学的学习能力各有差异,因此老师在运用问题导学法时要注重因人而异,根据每个同学的具体情况进行有针对性的教育和引导,充分挖掘每个学生的潜在优势进行重点培养,让学生从内心深处喜爱数学,乐意学习数学。例如,在提问一些较基础的问题的时候,可以找那些平时学习一般的学生回答,他们回答正确之后自然能够产生学习兴趣,而对于一些需要运用发散思维和解题技巧的问题,则可以让平时数学成绩较好的学生回答,这样能使他们充分发挥自己的聪明才智,也不会让他们觉得问题没有挑战性,过于单调。

广大教师要在实践教学中不断积累和改进,让学生全身心投入到教学过程中,培养学生的思维能力和逻辑能力,为学生今后的发展奠定坚实的基础。

高中数学函数教学方法研究(汇总12篇)篇五

习题讲解的前提是教师要布置具有代表性的题目,能对本节课学的知识起到全面检测的作用,因此,对于习题的讲解就是要针对这些具有代表性的习题让学生对本节课的知识熟记于心,并且在这过程中培养学生的数学思维、正确的解题思路和解题方法。在讲解的过程中要培养学生对数学的学习兴趣,并且对于学生容易出错的题目重点讲解,让学生理解自己为什么会做错,是马虎问题还是解题思路和解题方法的问题,并在以后尽可能地避免。而且对于习题讲解要细致认真,不能为了教学进度而忽略了习题讲解,导致学生旧知识没有牢记,又学习新的知识,在学习的过程中就会缺乏效率。

1.习题讲解要及时细致。在高中数学教学过程中,由于教学目标的设计和教学进度的限制,每节课留给教师习题讲解的时间很少,而且每节新课的内容非常多,这就造成了教师对习题也就是核对答案,几句话带过,或者是把几节课的内容放在一起讲解,可是这就会导致学生做习题不认真,或者在做习题中遇见的问题不能及时解决,把这个问题又带到了新课的学习上,影响学生对已经学过的知识的理解,也影响新课的学习。因此,对于这种问题需要进行改进,教师要端正思想,科学地设计教学进度,不能认为讲解习题是浪费时间的表现,而是通过讲解习题而温故知新,也就是在讲解的过程中,让学生发现自己在做题过程中遇见的问题。教师在讲解之后,能让学生找到自己做错题的原因,及时纠正,争取下次不会再犯。而且对于习题的讲解也不能把几节课的综合做一节课来进行讲解,这样时间长了之后,学生就会对当时做错题的思路忘记,不知道自己做错题的原因,下次做题还会再犯。这个过程就需要教师合理进行设计,既不能耽误新课的学习,又不能拖延习题的讲解。我觉得合理的方法是把习题发给学生后,先让学生思考,思考为什么会做错,能不能再通过自己的努力做对,教师再进行讲解,这样就会有针对性,对普遍出错的地方进行讲解,更能提高效率,而且还不会占用太多的时间。

2.习题讲解不能以批评为主。在讲解习题的过程中,教师势必要提到每道题目的正确率,有多少人做错这道题,如果做错的学生过多,教师难免会对学生完成的正确率情况进行评价,这样会打击学生对于学习数学的兴趣,久而久之,错误率会越来越高,尤其是对整套习题中正确率最低的学生,教师就会对他们进行批评,认为批评之后下次就会做对,可是并没有找出出错的原因,做习题的对与错也不是批不批评就能改变的,教师当初在布置习题的目的就是要查出学生对于知识不理解的地方进行巩固,这种一味的批评就与当时的初衷相悖。因此,教师在讲解过程中,对于错误率高的学生应更加关注,找出原因,然后解决,为每一位学生负责。具体方法就是对于出错率高的习题进行重点讲解,让所有学生都能在这一过程中理解出错原因,对于难度不大却出错的习题找出学生出错的原因,是自身对教师讲的课程不理解,还是心理原因,不能对学生进行批评,高中生在心理程度上已经和大人基本相同,而且正处于叛逆时期,对于自尊和面子看得非常重要,教师不能通过批评来让学生长记性,下次不犯错,而是用自己的耐心和人格魅力影响学生,保证学生在青春期的正常发展。

3.在习题讲解中培养学生的解题思路和解题方法。教师布置习题的目的是能够培养学生的数学思维和正确的解题思路和解题方法。因此,教师在讲解过程中要注重对方法思路的讲解,不但讲解这道题要怎么做,而且要告诉学生这道题为什么要这么做,那道题为什么要那么做。针对不同类型的习题采取什么样的解题方法。例如,在学习三角函数的时候,不只要让学生学会积化和差、和差化积,而是要让学生根据题目的要求,什么时候化成正弦函数,什么时候化成余弦函数,而不是一味地死记硬背公式而不会应用,让学生能够在看见题目的时候就能知道这道题该从什么角度考虑,用什么方法解答,对症下药,让学生学会举一反三,对知识理解和运用都能得心应手。对于同一道题目的不同解题方法要通过讲解习题来教授给学生,直接法、间接法、数学建模法、转化法等等不同的解题方法。建立多种多样的数学思维,正向思维、逆向思维、转化思维等等,这种解题的思路和方法,不是像知识点可以一一背诵的,而是通过在做题中的应用而逐渐能够掌握。总之,在高中数学习题的讲解过程中,教师要紧握时代发展的脉搏,多种教学方法并用,并且在讲解过程中突出学生的主体,注重学生的理解程度,让学生能够真正地理解习题的精髓,学习解题思路和解题方法,提高学习成绩。

高中数学函数教学方法研究(汇总12篇)篇六

在高中数学教学中,数学思想的培养在倡导新课程教育的大环境下显得尤为重要,这不仅关系到教学效率的提高,对增强学生的文化素养也大有裨益。经过多年的教育教学总结了几点高中数学函数教学的有效对策:

一、在概念中渗透。

高中学生要掌握数学知识,就必须经历一个阶段,即学生“吸收”数学知识的过程,特别是在形成概念的阶段,数学教师应给予学生更多的解释和正确的引导。如,以偶函数与自变量的关系来说,在一定定义域中的自变量互为相反时,经相应函数关系式的对应后,即能够在某解析公式中得到相应的证明,进而在这个基础之上概括出包括偶、奇函数的部分函数定义,从这个例子中能够使从具体到抽象的函数充分体现出来。

二、在教学中强化。

在实际的高中数学教学时,教师可在学生初步认识数学时就加入一定的实例,从而使学生理解的数学概念得到强化。比如,在对数函数教学中加入图形案例,就能够使学生更为清楚、直观地对函数发生以及后续变化过程进行了解。

三、方程教学的应用。

要使高中生对数学思想方法进行充分掌握,函数与方程是必不可少的,同时在实际运用中,函数与方程经常需要互相转化,因此对其加以合理利用,就能够实现复杂问题的简单化,并互相作用。

四、函数图象的应用。

函数图象能够将函数性质直观地反映出来,并能够通过研究图像与图形,有效解决函数问题,是数形结合应用的.重要组成部分。另外在函数图象问题的解决过程中,必须具备函数意识与分析意识,才能找到最为合理的解决方式。

五、函数分类的应用。

在高中函数教学中,分类不同函数是具体应用之一。可通过例题在教学中对解题思想进行展示,从而使学生分类不同函数的能力得到训练与培养。大多数数学思想的解决方法只有在实际的数学题中通过实际解析,才能实现深化理解,进而使应用的灵活性与准确性得到提升。

在高中数学函数教学过程中,教师应根据实际情况,将高中函数中的知识点理清,从高中函数的形式与概念入手,引导学生深刻认识函数的本质,随后拓展学生的眼界,找出与函数关联的若干知识点,让学生掌握利用函数思想对其他问题进行解决的方法,同时在这个阶段中,强化学生理解函数的程度,真正实现高中函数相关知识点的全面掌握。

参考文献:

高中数学函数教学方法研究(汇总12篇)篇七

(陕西省汉台中学)。

摘要:众所周知,在我国的高中教育中,数学教学占据了重要的地位。高中数学有其教学的复杂性,因此,只有在教学中运用正确的教学方法才能取得事半功倍的效果。高中数学教学中函数的单调性问题让许多学生感到头疼,学生无法对这一知识点进行掌握和理解。但是,函数的单调性问题又在生活和生产中有着很多用途。因此,在高中数学教学中,老师应该根据学生学习的特性,采取合适的方法进行函数单调性的教学。

高中数学函数教学方法研究(汇总12篇)篇八

1.使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性.。

3.通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育.。

教学重点与难点。

教学过程设计。

一、引入新课。

(用投影幻灯给出两组函数的图象.)。

第一组:

第二组:

生:第一组函数,函数值y随x的增大而增大;第二组函数,函数值y随x的增大而减小.。

(点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意.)。

二、对概念的分析。

高中数学函数教学方法研究(汇总12篇)篇九

其次,从函数角度来讲.函数的单调性是学生学习函数概念后学习的第一个函数性质,也是第一个用数学符号语言来刻画的概念.函数的单调性与函数的奇偶性、周期性一样,都是研究自变量变化时,函数值的变化规律;学生对于这些概念的认识,都经历了直观感受、文字描述和严格定义三个阶段,即都从图象观察,以函数解析式为依据,经历用符号语言刻画图形语言,用定量分析解释定性结果的过程.因此,函数单调性的学习为进一步学习函数的其它性质提供了方法依据.

最后,从学科角度来讲.函数的单调性是学习不等式、极限、导数等其它数学知识的重要基础,是解决数学问题的常用工具,也是培养学生逻辑推理能力和渗透数形结合思想的重要素材.

2.教学的重点和难点。

对于函数的单调性,学生的认知困难主要在两个方面:。

首先,要求用准确的数学符号语言去刻画图象的上升与下降,把对单调性直观感性的认识上升到理性的高度,这种由形到数的翻译,从直观到抽象的转变对高一的学生来说比较困难.

其次,单调性的证明是学生在函数学习中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的.

根据以上的分析和教学大纲对单调性的教学要求,本节课的教学重点是函数单调性的概念,判断、证明函数的单调性;难点是引导学生归纳并抽象出函数单调性的定义以及根据定义证明函数的单调性.

二、教学目标的确定。

根据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,我从三个方面确定了以下教学目标:

三、教学方法的选择。

1.教学方法。

本节课是函数单调性的起始课,根据教学内容、教学目标和学生的认知水平,主要采取教师启发讲授,学生探究学习的教学方法.教学过程中,根据教材提供的线索,安排适当的教学情境,让学生展示相应的数学思维过程,使学生有机会经历数学概念抽象的各个阶段,引导学生独立自主地开展思维活动,深入探究,从而创造性地解决问题,最终形成概念,获得方法,培养能力.

2.教学手段。

四、教学过程的设计。

为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为四个阶段:创设情境,引入课题;归纳探索,形成概念;掌握证法,适当延展;归纳小结,提高认识.具体过程如下:

(一)创设情境,引入课题。

在课前,我给学生布置了两个任务:

(1)由于某种原因,北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.

课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜大型国际体育赛事.

(2)通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.

课上我引导学生观察8月8日的气温变化曲线图,引导学生体会在某些时段温度升高,某些时段温度降低.

(二)归纳探索,形成概念。

在本阶段的教学中,为使学生充分感受数学概念的发生与发展过程和数形结合的数学思想,经历观察、归纳、抽象的探究过程,加深对函数单调性的本质的认识,我设计了三个环节,引导学生分别完成对单调性定义的三次认识.

1.借助图象,直观感知。

本环节的教学主要是从学生的已有认知出发,即从学生熟悉的`常见函数的图象出发,直观感知函数的单调性,完成对函数单调性定义的第一次认识.

在本环节的教学中,我主要设计了两个问题:

问题1:分别作出函数的图象,并且观察自变量变化时,函数值有什么变化规律?

在学生画图的基础上,引导学生观察图象,获得信息:第一个图象从左向右逐渐上升,随x的增大而增大;第二个图象从左向右逐渐下降,随x的增大而减小.然后让学生明确,对于自变量变化时,函数值具有这两种变化规律的函数,我们分别称为增函数和减函数.

对于概念教学,若学生能用自己的语言来表述概念的相关属性,则能更好的理解和掌握概念,因此我设计了问题2.

问题2:能否根据自己的理解说说什么是增函数、减函数?

教学中,我引导学生用自己的语言描述增函数的定义:

2.探究规律,理性认识。

问题1:右图是函数的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?

对于问题1,学生的困难是难以确定分界点的确切位置.通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究,使学生体会到用数量大小关系严格表述函数单调性的必要性,从而将函数的单调性研究从研究函数图象过渡到研究函数的解析式.

问题2:如何从解析式的角度说明在上为增函数?

在前边的铺垫下,问题2是形成单调性概念的关键.在教学中,我组织学生先分组探究,然后全班交流,相互补充,并及时对学生的发言进行反馈,评价,对普遍出现的问题组织学生讨论,在辨析中达成共识.

对于问题2,学生错误的回答主要有两种:

(1)在给定区间内取两个数,例如1和2,因为,所以在上为增函数.。

(2)仿(1),取很多组验证均满足,所以在上为增函数.。

对于这两种错误,我鼓励学生分别用图形语言和文字语言进行辨析.引导学生明确问题的根源是两个自变量不可能被穷举.在充分讨论的基础上,引导学生从给定的区间内任意取两个自变量,然后求差比较函数值的大小,从而得到正确的回答:。

任意取,有,即,所以在为增函数.。

这种回答既揭示了单调性的本质,也让学生领悟到两点:(1)两自变量的取值具有任意性;(2)求差比较它们函数值的大小.事实上,这种回答也给出了证明单调性的方法,为后续用定义证明其他函数的单调性做好铺垫,降低难度.至此,学生对函数单调性有了理性的认识.

3.抽象思维,形成概念。

本环节在前面研究的基础上,引导学生归纳、抽象出函数单调性的定义,使学生经历从特殊到一般,从具体到抽象的认知过程,完成对概念的第三次认识.

教学中,我引导学生用严格的数学符号语言归纳、抽象增函数的定义,并让学生类比得到减函数的定义.然后我指导学生认真阅读教材中有关单调性的概念,对定义中关键的地方进行强调.

(三)掌握证法,适当延展。

本阶段的教学主要是通过对例题和练习的思考交流、分析讲解以及反思小结,使学生初步掌握根据单调性定义证明函数单调性的方法,同时引导学生探究定义的等价形式,对证明方法做适当延展.

(四)归纳小结,提高认识。

1.学习小结。

在知识层面上,引导学生回顾函数单调性定义的探究过程,使学生对单调性概念的发生与发展过程有清晰的认识,体会到数学概念形成的主要三个阶段:直观感受、文字描述和严格定义.

在方法层面上,首先引导学生回顾判断,证明函数单调性的方法和步骤;然后引导学生回顾知识探究过程中用到的思想方法和思维方法,如数形结合,等价转化,类比等,重点强调用符号语言来刻画图形语言,用定量分析来解释定性结果;同时对学习过程作必要的反思,为后续的学习做好铺垫.

2.布置作业。

在布置书面作业的同时,为了尊重学生的个体差异,满足学生多样化的学习需要,我设计了探究作业供学有余力的同学课后完成.

(1)证明:函数在上是增函数的充要条件是对任意的,且有.。

目的是加深学生对定义的理解,而且这种方法进一步发展同样也可以得到导数法.。

(2)研究函数的单调性,并结合描点法画出函数的草图.。

各位专家、评委,本节课我在概念教学上进行了一些尝试.在教学过程中,我努力创设一个探索数学的学习环境,通过设计一系列问题,使学生在探究问题的过程中,亲身经历数学概念的发生与发展过程,从而逐步把握概念的实质内涵,深入理解概念。

高中数学函数教学方法研究(汇总12篇)篇十

通过函数的单调性教学,我从以下方面对自己的教学作一个完整的反思,以便更好的发现不足之处,及时调整,让学生更好学习。

从学生来说,这部分需要学生有严谨的论证思维,和锻炼相应的论述能力,鉴于以前没有接触过类似的知识形式,学生上课很有激情,但课堂回答问题的整体状态不佳。从作业上看,总体是很满意的,但也出现了全班的通病,那就是在证明函数单调性上出现了问题,这需要在以后的习题训练课中进行相关的加强和强调。

再从课本上来说的话,课本降低了对定义域、值域的要求,尤其是人为的过于技巧性的,过于繁难的运算。函数概念的教学可以从学生在义务教育阶段已掌握的具体函数和函数的描述性定义入手,引导学生联系自己的生活经历和实际问题(课本p17三个实际问题),尝试列举各种各样的函数,构建函数的一般概念.掌握函数的三种表示方法:列表法、图象法和解析法。

教材中更注重通过图形求函数的定义域、值域如第28页第3题等。削弱了映射的概念,第26页映射的概念是在学习函数概念之后给出的,重点是通过例7的讲解让学生理解映射的概念。而是加强了函数的表示法的教学:函数的表示方法(列表法、图象法、解析法)在老教材中是与函数的概念在一起,而新教材却将它单独设为一节的内容,强调了它的重要性与实用性。即让学生从现实世界认识函数,又明确了函数表示的多种形式,更为后面函数性质的直观认识,打下了基础,在教学中教师应对这个变化给与加强。

函数的单调性的教学加强了对数形结合等数学思想方法学习的要求,让学生尽量从图形上直观的认识函数的性质,然后再从理论上进行研究,这种发现问题、提出问题、研究问题的探究方式,也是新课程提出的新的教学理念的一个体现。为了给学生补充相关的知识,与考试大纲进行衔接,必须增加函数的最大值、最小值的概念。这是老教材中所没有的,对于函数的最大、最小值老教材只是通过图形直观认识,而新教材结合函数的单调性给出最大、最小值的概念,学生接受非常自然。利用函数的单调性求最值也成为研究函数性质的一个必要的问题。最后,对于复合函数的单调性:对于复合函数,课本只有在选修教材中才出现,但是函数的学习中却有很多复合函数的问题,对于复合函数的单调性,编者的意图是不作要求的,但是在学习幂、指、对函数及三角函数时,都出现了复合函数的单调性问题,在教学中,我们是在学习了指数函数后,结合指数函数与一次函数、二次函数的复合形式进行的讲解,而且是从函数单调性的定义入手,不涉及过于复杂的、技巧性较高的问题,这样的教学对于高一学生来说,接受的还是比较好的。

将本文的word文档下载到电脑,方便收藏和打印。

高中数学函数教学方法研究(汇总12篇)篇十一

本节内容是北师大版数学必修1第二章第3节函数的单调性,两课时内容,本节是第一课时。函数的单调性是函数的重要性质,学生在初中阶段,通过一次函数、二次函数、反比例函数的学习已经对函数的增减性有了一个初步的感性认识。

高中阶段,进一步用符号语言刻画图形语言,用定量分析解释定性结果,有利于培养学生的理性思维。从知识的结构上看,函数的单调性既是函数概念的延续和拓展,又为后续研究指数函数、对数函数、三角函数的单调性等内容的学习作准备,也为利用导数研究单调性的相关知识奠定了基础。

在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用。函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用。

二、学情分析。

在初中阶段通过对一次函数、二次函数、反比例函数的学习已经对函数的增减性有了初步的感性认识,同时经过初中的学习学生已具备了一定的观察、发现、分析、抽象、概括能力,为函数单调性的学习做好了准备,但是把具体的、直观形象的函数单调性的特征用数学符号语言进行定量刻画对高一的学生来说比较困难,同时单调性的证明又是学生在函数学习中首次接触到的代数论证内容,刚上高一的学生在代数方面的推理论证能力是比较薄弱的。

三、教学目标。

1、知识与技能:

(2)初步掌握利用函数图象和定义判断、证明函数单调性的'方法步骤。

2、过程与方法:

3、情感、态度与价值观:

通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程,体会数形结合的思想。

四、教学重点、难点。

难点:函数单调性概念(数学符号语言)的认知,应用定义证明单调性的代数推理论证。

五、教学、学法分析。

通过对一次函数、二次函数、反比例函数的学习已经对函数的增减性有了初步的感性认识,因此探究时先以基本初等函数为载体,针对它们的图像,依据循序渐进原则,设计几个问题,通过引导学生多思,多说多练,学生回答的同时教师利用多媒体展示,使认识得到深化。在整个教学过程中主要采取教师启发讲授,学生探究学习的教学方法。

六、教学过程。

(一)创设问题情境引入课题。

给出德国著名心理学家艾宾浩斯描绘的著名的“艾宾浩斯遗忘曲线”。

学生回答,教师补充。“艾宾浩斯遗忘曲线”从左向右看图像是下降的,对此如何从数学的观点进行解释呢?这种以函数图像的上升或下降为标准对函数进行研究,这就是我们这一节课要学习的“函数的单调性”。

设计意图:利用“艾宾浩斯遗忘曲线”引入新课,可以激发学生的学习数学的兴趣,引发学生探求数学知识的欲望。

展示目标:

教师向学生展示本节课的学习目标及教学重点和教学难点。

设计意图:让学生明确本节课要学习的内容。

(二)新知探究。

问题1、做出下列函数的图象。

设计意图:检查学生掌握基本初等函数图像的情况。(分组完成不同的任务,及时发现存在问题,教师进行点评。)。

问题2、观察函数图象哪部分是上升的,哪部分是下降的?(从左到右)。

(1)函数:在整个定义域内上升。

(2)函数:在整个定义域内上升。

(3)函数:在______上升,在上下降。

(4)函数:在______上升,在上下降。

对于引导学生进行分类描述,为后面说明函数的单调性是在定义域内某个区间而言的,是函数的局部性质埋下伏笔。

问题3、怎样用自变量,函数值来描述这种上升和下降?

上升:某个区间上随自变量x的增大,也越来越大。

下降:随自变量的增大,越来越小。

问题4、你能根据自己的理解说说什么是增加的、减少的吗?

如果函数在某个区间上随自变量的增大,y也越来越大,我们说函数在该区间上为增加的;如果函数在某个区间上随自变量的增大,y越来越小,我们说函数在该区间上为减少的。

设计意图:

(1)合理设置层次,为揭示函数单调性做好铺垫。

(2)函数单调性实质上揭示了在定义域的某个子集(或某一区间)上,函数值随自变量的变化而变化,描述函数图像在这个子集(或这一区间)的升降趋势,有利于多角度、深层次揭示这一概念的本质特征,帮助学生体会运用动态观点判断函数的单调性,培养学生形象思维。

学生回答,教师根据实际回答情况引导学生得到函数单调性的数学表达式。

(1)在给定区间内取两个数,例如1和2。

(2)仿(1),取多组数值验证均满足,所以在为增加的。

(3)任取,因为,即,所以在上为增加的。

对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量。

设计意图:对二次函数的单调性认识由感性上升到理性认识的高度,逐步提升学生的思维高度,为学习函数的单调性做好铺垫,突破难点,同时培养学生的数学表达能力。

这是本节课的难点,为了分解难度老师启发引导学生,得出增函数严格的定义,然后学生类比得出减函数的定义。

一般地,设函数的定义域为a,区间ia:______如果对于区间i内的任意两个变量,当时都有______,那么就说在这个区间上是增加的。

课后作业。

1、必做题:习题2—3a组第2题:(2),(3)、第4,5题。

2、选作题:习题2—3b组第2题。

设计意图:不同的人在数学上可以获得不同的发展,每个学生都能够获得这些数学,有专长的,可以进一步发展、因此设计了不同程度要求的题目。

高中数学函数教学方法研究(汇总12篇)篇十二

函数是高中数学的重要内容。高中数学对于函数的定义比较抽象,不易理解。高中数学相比初中数学来说更偏重于理解,所以,理解函数的定义是学好函数这一重要部分的基础。理解函数的定义关键在于理解对应关系。

学情分析。

初中数学对于函数的定义比较好理解,而在高中数学里函数的定义是从集合的角度来描述的。函数的三要素是定义域、对应关系、值域。函数本质是一种对应关系。直接讲定义时学生时难于理解的,尤其是对抽象的函数符号的理解。

教法分析。

现在的教学理念是以学生的学为中心的,要将学生的学寓于教学活动中去,让学生去体验,去感悟。本节课以学生熟知的消消乐游戏开始,由问题引出对应的概念,进而引导学生们去联想生活中的对应关系,比如健康码、一个萝卜一个坑儿等。这些生活中的现象之中就蕴含着函数的概念,从而自然引入函数的概念。

教学重难点。

学习结果评价。

能自己描述一个函数的例子。能判断是否为函数。

教学过程。

一、游戏导入。

学生体验消消乐游戏后,思考:两个图形怎么样才能消失。

二、想一想生活中的对应关系。

健康码、一个萝卜一个坑儿。

三、

再看一个例子。

旅行前了解当地的天气。

问题1:该气温变化图中有哪些变量?

问题2:变量之间是什么关系?

问题3:能否用集合语言来阐述它们之间的关系?

问题4:再了解函数的概念之后,你能否再举一些函数的例子?

问题5:我也来举一些例子,你们看看是不是函数关系?

四、课堂小结。

理解函数的概念关键在于理解其中的对应关系。

相关范文推荐

    销售部门销售计划方案的重要性(模板20篇)

    部门之间的合作和沟通是组织成功的关键,可以促进信息流动和资源共享。这些优秀部门在领导能力、团队协作、工作流程等方面都有着出色的表现。万物复苏,大地春暖花开,新的

    教学秘书工作总结发言范文(15篇)

    教学工作总结是一种重要的教育管理工具,可以帮助学校领导了解教师的教学情况和工作表现。小编为大家整理了一些优秀的教学工作总结范文,供大家参考和学习,希望能对大家有

    20-50岁演员的喝酒搞笑语录经典句子范文(21篇)

    经典蕴含着丰富的思想和感悟,及时总结可以使其更加深入人心。经典演讲致辞告诉人们坚持理想和价值观的重要性,激发他们前进的动力。1.往事若能下酒,回忆便是一场宿醉。

    提升教师德能勤绩的工作总结技巧(专业18篇)

    教师工作总结是反思自己的教学过程和成果,从而不断提高自己的教学能力和水平。以下是小编为大家整理的一些典型的教师工作总结范文,希望对大家的写作有所帮助。

    教育工作者的个人工作总结字(专业16篇)

    月工作总结不仅是对自己的一个交代,也是与上级和同事们分享工作心得和成果的机会。以下是一些关于月工作总结的精选范文,希望对大家的写作能够提供一些参考和帮助。

    行政助理的年度工作总结范文(17篇)

    月工作总结不仅是对自己工作的一次回顾,也是对自己职业生涯的规划和定位。以下是一些精选的月工作总结范文,希望能够给大家提供一些灵感和借鉴。在这一年时间里,我在xx

    幼儿园小班期末工作总结(精选17篇)

    通过总结,我们可以更好地适应幼儿园工作的需要和要求。让我们一起来看看一些优秀的幼儿园工作总结范文,以便能更好地完成自己的总结任务。又到学期末,回顾半年来的工作,

    甲方项目经理年度工作总结(优秀19篇)

    月工作总结是我们对自己工作的一种自我评价,也是对工作成果的一种总结和归纳。我们在网络上收集到了一些精彩的月工作总结案例,一起来欣赏和学习吧。自进入公司以来,我一

    最佳旅游季节推荐(优秀18篇)

    范文范本可以激发我们的创作激情,让我们更有动力去写作。以下是小编为大家推荐的范文范本,希望大家能从中学习和吸取经验。巴西9、10、11月为春季,12、1、2月为

    室内设计年度总结报告(通用16篇)

    年度总结是对过去一年的学习和工作经历进行回顾和总结的重要文件。如果你正在写年度总结,不妨参考一下以下的范文,或许会对你有所帮助。20xx年x月份到20xx年x月