教学计划的编写应该具备可行性和可操作性,避免为了追求完美而忽略了实际操作的难度和可行性。以下是小编为大家整理的教学计划范文,仅供参考,请大家参考借鉴。
鸡兔同笼教学设计理念(精选21篇)篇一
人教版课程标准实验教科书四年级下册第103105页内容。
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、尝试用不同的方法解决“鸡兔同笼”问题。
3、在解决问题的过程中培养学生逻辑推理能力。
尝试用假设法解决“鸡兔同笼”这类问题。
1、出示原题:
师:同学们,我们国家有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作。《孙子算经》就是其中一部,大约产生于一千五百年前,书中记载着这样一道有名的数学趣题,让我们一起去看看吧!
(电脑出示)今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
2、理解题意:
师:大家同意吗?
(电脑出示)笼子里有若干只鸡和兔,从上面数有35个头,从下面数有94只脚,鸡和兔各有多少只?(全班齐读)。
3、揭示课题:
师:这就是著名的‘鸡兔同笼’问题,也是这节课我们要研究的问题。
2、分析并理解题意:
(1)从上面数,有8个头就是说鸡和兔的头一共有8个。(也就是说鸡和兔一共有8只。)。
(2)从下面数,有26只脚就是说鸡脚和兔脚总数一共是26只脚。
(3)问题是什么?(鸡和兔各有多少只?)。
3、猜一猜:随学生猜想板书并验证。
4、介绍列表法:
师:刚才我们是随意猜的,其实我们还可以有顺序的猜。“(电脑出示空的表格)。
小结:这种按顺序列表的方法我们称之为列表法。这样我们也就用列表法解决了这个问题。
5、介绍假设法:
当数字较大时,列表法就太麻烦了,能不能有其他更简单的方法呢?请同学们仔细观察表格,从表格中你能发现什么?小组之间交流一下。
(1、)假设全是鸡:在鸡兔总只数不变的情况下,每增加一只兔减少一只鸡,脚的只数就会增加2只。同学们,想想看我们应该增加几只兔,脚的只数会变成26只脚。同学们这个过程你们能用算式表示出来吗?请同学们试着用算式表示看看。
小结:刚才通过列表法我们想到了两种算术方法。回头看看这两种方法的第一步,一个是假设全是鸡,一个假设全是兔。我们把这两种方法起个名字?板书(假设法)。
6、介绍孙子算经(抬脚法)。
课本做一做“龟鹤问题”。
这节课你学到了什么?
鸡兔同笼教学设计理念(精选21篇)篇二
1、在解决鸡兔同笼的活动中,通过列表枚举解决鸡兔的`数量问题。
2、在解决鸡兔同笼的活动中,通过列表尝试和不断调整的过程从中体会解决问题的一般策略——列表,让学生学会从不同角度分析,掌握解题的策略与方法。
3、运用学到的解题策略——列表解决生活中的实际问题。
4、培养学生分析问题的能力,渗透假设的数学思想。
让学生经历列表、尝试和不断调整的过程,体会解决问题的一般策略—列表。
运用学到的解题策略解决生活中的实际问题。
一、情境引入,激发兴趣。
今天老师给同学们带来一本书《孙子算经》,其中有这样一道题目。
今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
谁来读一读,你见过这类题吗?
今天我们就来研究这类问题(板书鸡兔同笼)。
二、探索问题。
从图中你能知道哪些数学信息:(有鸡、有兔、20个头、54只腿,鸡有2条腿、兔有4条腿)。
现在同学们就来猜一猜鸡、兔各有多少只?
把你猜想的结果跟你的同桌同学交流交流。
学生交流后:请学生汇报猜想的情况。
教师随机板书。
看到这么多种猜测,你知道哪种答案是正确的吗?你又想说什么。
生:可以按照一定的顺序把他们排列起来看就很清楚。
师:对,按照一定的顺序把他们排列在表格里那会看得更清楚。
那么列表先做什么。
生:
(1)画表。
(2)填写第一行。
师:请你们把猜测的结果按一定的顺序填在表格中,并验证,哪种猜测正确。
出示学习要求。
1、先独立尝试猜测。
2、把尝试的数据在表格中表达出来。
3、在小组内交流自己的想法。
生:尝试列表。
展示学生的表格请学生说一说是怎样做的。
师:一共尝试了几次。
生:13次,尝试出了这道题的答案。
师:我发现刚才同学们在写腿的只数时特别快,观察这张表格,你发现了什么。
生:在头数相同的情况下,增加一只鸡,减少一只兔,腿就少2只。
师:给这种列表法起个名字。
生:起名字。
师:在数学上也有一个名字逐一列表。
师:观察这张表格,你有什么发现。
生:一一列出,肯定能找出答案,但有些麻烦。
师:那还有什么列表方法。
展示学生第二种列表方法出示表格。
生:说这种列表的方法。
师:观察这个表格,你又发现了什么。
生:这种列表,先几个几个的数,再逐渐调整。
师:先几个几个数,再往回调,在数学上也有个名字跳跃式列表。
展示学生第三种列表方法出示表格。
生:说这种列表的方法。
师:观察这个表格,你又发现了什么。
生:这种列表,先假设鸡兔各占一半,再调整。
师:这种列表有直接特点,我们称这种列表方法为取中列表。
想一想,为什么用列表法解决这个问题。
生:简单,能准确计算结果。
师:你更喜欢哪种列表方法,你们在不知不觉中找到解决问题策略,是什么。
生:列表。
师:首先根据信息尝试猜测,再计算验证,最后合理调整。
师:还可以用什么方法计算。
生:计算。
师:想知道古人是怎样解决这道题吗。
课件出示资料。
师:看了这个资料你想说什么。
三、实践运用,巩固深化。
四、总结。
通过这堂课的学习你学会了什么?
鸡兔同笼教学设计理念(精选21篇)篇三
“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。对于六年级的学生来说,解决“鸡兔同笼”问题“假设法”有利于培养学生的逻辑推理能力。
知识与技能目标:
通过猜想列表法和假设尝试法使全体学生初步感知两种方法从数到形的转化过程,尝试用不同的方法解决“鸡兔同笼”问题,体会代数方法的一般性,培养学生的逻辑推理能力。
过程与方法目标:
经历“鸡兔同笼”问题的探究与解答过程,使全体学生体会分析问题、解决问题的方法。
情感态度价值观目标:
让学生感受数学与日常生活之间的密切联系,培养学生分析解决问题的方法。
活动1:活动名称:初步感知猜想列表。
活动意图:通过学生的大胆猜测,不断验证,使全体学生初步建立头和腿的联系。由于猜想的局限性,让学生通过列表法有序进行列举,培养学生严谨的思维能力。
活动组织过程:(10分钟)。
1、出示例题:鸡兔同笼,有6个头,共16条腿,几只鸡,几只兔?
2、读题,审题,学生先猜测。
3、怎么确定同学们的猜测是否正确?
4、用列表法进行验证。
5、像这样把数字一一列举的方法叫做“列举法”。
6、那如果对大的数据来说,猜测或列表法会有什么问题?
7、这节课我们来研究新的方法。
问题:会有重复或有遗漏。
活动2:活动名称:假设法尝试。
活动意图:让学生在猜测列表的基础上,运用假设法使全体学生初步理解什么是假设。在列表法变化规律的基础上,以独立思考,小组合作,交流汇报的形式,用课件动画的模式进行辅助学生,让学生了解算理,培养学生的逻辑思维能力和推理能力。
活动组织过程:(20分钟)。
1、出示例题:鸡兔同笼,有8个头,共26条腿,几只鸡,几只兔?
2、假设全是鸡一共有多少条腿,比实际多还是少了多少条腿,多或少了谁的腿呢?
3、把上面的过程用算式表示出来。
4、计算出结果,怎们检验结果是否正确。
5、假设全是兔,又该如何解决呢?
6、小组交流,汇报结果,自我检查结果是否正确。
7、说一说学习方法。
问题:假设中多或少的部分学生会有疑惑。
活动3:灵活运用。(10分钟)。
活动意图:通过鸡兔同笼问题与实际生活相结合,让学生进一步感受到我国古代数学的魅力。与生活实际相联系,进一步巩固本节课所学习的鸡兔同笼问题在实际生活中的正确理解与运用,使学生的逻辑思维能力和推理能力得到进一步的提升。
活动组织过程:。
1、出示例题:自行车和三轮车共10辆,总共有26个轮子。自行车和三轮车各有几辆?
2、读题,审题,独立尝试。
3、小组交流。
4、全班交流汇报。
问题:本题的难点对数形结合思想的联系不够。
:谈谈你的收获与不足?
小组合作学习中教师如何调控才能进一步提高合作学习的效率,如时间的把握、学生合作过程的控制、合作学习的效果等;要想大面积提高课堂教学效益,必须在课堂中注重培优辅困,特别是学困生的辅导如何在课堂教学中落实,使他们通过教师的引导取得明显的学习效果,真正落实新课标提出的“不同的人在数学上得到不同的发展”目标;有意义的练习及作业的设计要考虑有利于知识点的落实,要能激发学生的兴趣,还要考虑练习内容的层次性,手段的灵活性,逐步培养学生的创新能力和动手能力。
鸡兔同笼教学设计理念(精选21篇)篇四
教学目标:
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、在解决“鸡兔同笼”的活动中,尝试通过列表枚举、假设、画图等方法解决鸡兔同笼问题。锻炼学生的思维能力,体验假设、化繁为简等数学思想方法。
3、在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。
教学过程:
一、课前交流:游戏说说你是怎样算出来的。
二、解读问题。
师:看张老师给大家带来了什么问题呢?(媒体出示课题:鸡兔同笼)师:“鸡兔同笼”是什么意思啊?生:就是把鸡和兔关在一个笼子里。
生1:鸡和兔共有8个头,26条腿。师:除此之外还有什么信息啊?
生2:还有1只鸡有2条腿,1只兔有4条腿。三.解决问题。
(一)列表法1.猜测列举。
生:鸡和兔的只数加起来应该是8才行。
师:说的对。那您先猜一个。鸡多少只?兔多少只?生:1只鸡,7只兔。生2:4只鸡,4只兔。生3:2只鸡,6只兔。
师:要知道猜的对不对,需要怎么样?生:验证。师:怎样验证?
生:根据猜测的鸡和兔的只数算算腿的条数,看是不是等于26。
师:说的太好了!您听明白了吗?
小结:根据鸡和兔的总只数,列举出一些可能,然后根据题目的条件进行适当地调整,总能找到一种情况符合题目要求。我们把这种方法叫做列表法。列表的方法可以解决鸡兔同笼问题,并且一目了然,但当总只数成千上万的时候,就显得太麻烦了,所以列表法不适合数据大的鸡兔同笼问题。
(二)假设法。
1、师:今天,老师教给你们一种解决鸡兔同笼的新方法,你们想学吗?生:想。
2、播放微课。
师:刚才的视频中,老师教给大家了两种方法,一种是画图法,就是用圆圈表示头数,少了加上,多了去掉。当数字较大时,这种方法也是不可用的。另一种方法是把所有的鸡看成兔,也可以把所有的兔看成鸡,这种方法叫作假设法,假设法才是解决鸡兔同笼最基本的方法,也是我们今天学习的重点。请看大屏幕我们一起来回顾一下。
师:我们发现如果假设全是鸡,先算出的是兔的只数。如果假设全是兔,先算出的是鸡的只数。为了大家能够记得更牢,老师把这个过程编了一个顺口溜,“鸡兔同笼并不难,设鸡算出兔,设兔算出鸡,设鸡设兔全由你,正确计算你第一”
过度:那现在我们用学到的假设法来解决一下《孙子算经》中的问题吧。学生解答并集体讲评。
3、想知道古人是怎样解决鸡兔同笼问题的吗?打开书认真阅读105页的小资料。
三、延伸、应用1.课件出示“做一做1”
鸡兔同笼问题传到日本时就变成了“龟鹤问题”,你认为“龟鹤问题”与“鸡兔同笼”有什么相似之处?课件出示(龟相当于兔,鹤相当于鸡)展示学生作业,并抽生说说思路。
四、课后总结:
同学们,我们今天解决了一个什么问题?用到了什么方法?其实解决鸡兔同笼问题,我们还有别的方法,如方程法。下面老师要送给同学们一句话:“没有大胆的猜想,就做不出伟大的发现。——牛顿”希望同学们都能做个爱思考,善于发现的孩子。
五、板书设计:
鸡兔同笼教学设计理念(精选21篇)篇五
教学目标:让学生了解我国的数学问题是源远流长,古代数学问题与现在数学的联系,有能力利用画简笔画的方法解决简单的鸡兔同笼问题,从而让学生从兴趣中掌握知识,热爱我国数学历史。
教学方法:利用画简笔画的方法,解决鸡兔同笼问题教学用具:电脑软件,投影,存钱罐,5分与2分硬币教学过程:
导入:师:今天李老师第一次给大家上课,你们欢迎吗?
你们用什么方式表示对李老师的欢迎呢?掌声。
今天李老师给大家带来两个小礼物,想知道是什么吗?
大家想不想知道李老师带来的第二个礼物是什么呢?(拿出兔子的图片)。
一只兔子一个头,两只眼睛四条腿,还是加上动作,2只兔子呢?(加以评价)。
画数学画,就是用你们喜欢的图形来表示你们所画的东西,如:李老师喜欢圆,那我就用圆形来表示它们的头,我喜欢竖线,我就用竖线来表示它们的腿,画两竖的就是„,画四竖的就是„。下面就用你们最喜欢的图形分别表示动物的头和脚,画出两种动物各有多少?开始。(让学生到黑板上去画,打格,把学生的作品在幻灯片上比较,好的给予高度评价)现在观察:老师先画的都是什么?(鸡)。
动手画画试试,脚多了应该怎么办呢?(展示学生作品)。
我们看看到底是不是?(出示图片,几鸡几兔,订正黑板)。
这时候,数量增加了,我数了数有6个头,18只脚了,问问你有几只鸡几只兔?(提示巩固强化,如果有“多一个头,多四只脚就是兔”的想法,给予评价)。
这时,小兔子有个想法,你们想知道吗?(课件,配音“你是不是学累了啊,想不想和我做一个猜硬币的游戏啊?)。
叙述,一共有多少枚硬币?让学生摇一摇,然后放在实物投影上验证几枚,有2分和5分两种,共2角。你有办法知道到底有几个2分的,几个5分的?(学生动手,展示)。
你们玩得高兴吗?可是小兔子却发愁了,神州6号宇宙飞船成功发射了,看看小兔子说什么?(放配音)。
你们能帮助他们吗?
老师这里有几个要求,比比谁做的快。
1、先从学具盒里拿出7个小圆球。
2、再拿出18条小竖棒。
今天我们研究的问题就是我国古代著名的数学问题—鸡兔同笼(板书课题)它出自我国古代译本著名著作叫孙子算经,实际上鸡兔同笼问题在算经中的解法,更为巧妙!你们想知道吗?课下可以到图书馆,或是在网上查一查。
鸡兔同笼教学设计理念(精选21篇)篇六
教学目标:
1、通过游戏让学生初步感知腿与个数(头)的关系,从而实现课堂教学的有机生成。
2、由浅入深带领学生了解鸡兔同笼问题的本质。在学生解决问题中,重点理解列表法在解决问题中的实效性。
3、解决问题中通过师生互动,感受解决数学问题方法的多样性。培养学生合作、质疑、探究的学习品质。
教学方法:引导学生在迁移类推、尝试探究中解决问题。学习方法:通过想、说、尝试、讨论等形式参与课堂教学。教学过程:
一、游戏探路,理解头与腿的关系。
1、同学们一定知道这首儿歌。让我们来一起听听、唱唱。【ppt:儿歌《青蛙歌》】【ppt】:儿歌《青蛙歌》一只青蛙一张嘴,两只眼睛四条腿,扑通一声跳下水。
两只青蛙两张嘴,四只眼睛八条腿,扑通、扑通跳下水。
„„。
设计目的:通过儿歌,唤起孩子们儿时的记忆,引起学习兴趣。
2、同学们唱得真不错。下面我们先来填填空:一只青蛙,()张嘴,()眼睛,()条腿。
3、同学们真是厉害,可是,咱们反过来说,不知你们行不行?敢不敢来比一比。回答的好的有奖哟。
【ppt】:
1、8条腿,()只青蛙,()张嘴.2、10只眼睛,()只青蛙,()条腿。
3、16条腿,()只眼睛,()只青蛙。
„„。
设计目的:通过游戏,使同学们了解头与脚的关系,同时通过比赛的设计,进一步的激发学生的兴趣和斗志。
4、这青蛙真是有趣,不知谁发现了这里面有什么数学知识吗?
设计目的:回答不求答案的唯一性,同学们可以说,每增加一只青蛙,就会增加一个脑袋,两只眼睛,四条腿;也可说脑袋数=只数×1,眼睛数=只数×2,腿数=只数×4得到等。其目的只是训练学生观察能力和发散思维。
5、你们真厉害,看来青蛙难不住你们了,可其它动物就不一定了,想看看是哪些动物吗?投影出示:
1、2只兔子,()个头,()条腿。
2、4只鸡,()个头,()条腿。
3、20条腿,()只兔,()个头。
设计目的:通过逐步加深的引导,使学生初步形成如何去猜测正确的答案的方法。也使学生的探索兴趣不减少,以利于下一步的学习。
三、深化探究,总结规律。
1、同学们,真不简单。老师还有更难的问题,你们想不想接受挑战。
投影出示:7个头,18条腿,有()只鸡,()只兔。(请把你的探究过程,写在本子上,以便于下一步的交流。
2、学生自主交流探究,教师引导学生用多种方法解答。
3、学生汇报,可以画图,可以列表,可以用算术方法,也可以用方程,教师相机指导,我们解决问题的方法越多越好,还是会一种就满足了。(生说)我们再学一种解决问题的方法。
设计目的:给学生充分思考时间,让学生体会成功的乐趣,更让学生认为是自己想出来的,而不是老师讲出来的,这样学生才能真正的体会到成功的喜悦,也才能真正成为学习的主人。分别让学生展示:画图法、列表法、算术法、列方程等方法。
并让讲解算术法和列方程的同学详细的讲解一下,他们的思考过程,并请同学们对不理解的地方进行提问。
设计目的:让一部分学生充分体验成功的乐趣,同时让学生引导学生,他们会更大胆,回答者使用的是孩子们自己的语言,比专业的数学语言更容易理解。当然作为老师要及时的加以引导。
4、出示例题:鸡兔同笼,有20个头,54条腿,鸡、兔各有多少只?
5、学生读题后,至少两种方法解答。
6、师巡视,相机指导。做完后展示典型错误,让同学们来说一说错在哪儿,为什么错了,这种面对面的交流能让同学们进一步加深理解。
四、知识拓展,灵活运用。
1、同学们表现的真不错,希望同学们在解决问题时灵活运用我们掌握的方法。比如解决刚才的问题,如果题目没有要求,就选择最擅长的方法,这样就提高了解题的效率。如果题目有要求,就必须按要求做。用列表法除了能解决鸡兔同笼问题,还能解决生活中的什么问题?(生说)下面我们用自己的方法,尝试解决这样的题。
投影出示:
(投影出示:)大小卡车往城市运29吨蔬菜,大卡车每辆每次运5吨,小卡车每辆每次运3吨,大小卡车各用几辆能一次运完?(这道题答案不唯一,如果学生没想到,要引导。)。
2、做完这两道题,同学们有什么感受。(生谈)。
四、全课小结,升华情感。
2、同学们,这节课我们和知识对话,和古人对话,探讨了鸡兔同笼问题,你有什么收获。
3、希望同学们做生活的有心人,也能发现生活中的数学问题,像祖先一样为人类数学的发展留下辉煌的一笔。
五、作业设计(分层作业)。
1、鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?
设计目的:第一题,为基础题的变形,一般学生稍动脑筋就能解决;第二题,是为学有余力的同学准备的,让他们能把知识进一步加深,理解的更深入。
鸡兔同笼教学设计理念(精选21篇)篇七
教学目标:
1、对日常生活中的现象进行观察和思考,引导学生从中发现特殊规律,使学生掌握用列表的方法来解决“鸡兔同笼”的问题。
2、从不同的角度分析问题,掌握解题的策略与方法,从而感受到数学思想的运用和解决实际问题的联系。
3、培养学生分析问题的能力,渗透假设的数学思想,在解题中数形结合,提高学生对数据的再认识,再分析,将列表的过程更优化。
教学重点:从不同的角度分析,掌握解题的策略与方法。
教学流程:
1、谈话:“同学们,自我介绍一下,我姓周,你们可以称呼我?今天需要我们共同配合,在这里上一节数学课,为了表达谢意,我为你们带来了一些礼物,快来猜一猜,有多少?(5…)太少了?(50…)多了,(40…)少了(45…)差不多了,(46…)恭喜你,答对了,下课就由你发给同学们。
2、喜欢数学吗?数学不但可以开阔我们的视野,增长我们的知识,还可以锻炼我们的思维。在我国古代就有许多有趣的数学名题,你们了解吗?今天,。老师就向你们推荐一种有趣的问题------鸡兔同笼。
1出示问题:“鸡兔同笼,有5个头,14条腿,鸡兔各有几只?”
(1)你从中获取什么信息?……。
(2)请你们猜一猜将鸡、兔可能是几只?(……)。
(3)把你猜的过程给大家说一说。
(4)板书学生的过程。
鸡123。
兔432。
腿181614。
(4)评价:从尝试简单的开始,一个一个的试,最终找到了正确的答案,方法多么简单啊?如果我们再横竖加上几条线,就成了美观的表格。看来,列表来解决这类问题还确实简单,如果现在将鸡兔的数量增加,还能解决吗?(重点引入列表)。
2、出示:“鸡兔同笼,有20个头,54条腿,鸡兔各几只?”
(1)自己先想一想如何利用列表来解决?
(2)小组内交流一下自己的想法。
(3)独立完成列表。
(4)汇报想法和过程。
小组1:逐一列表------假设鸡有1只,兔子有19只,那么就有78条腿,(腿多了,说明什么?兔子多了,怎么办?)鸡有2只,兔子有18只,那么就有76条腿,一只一只地试,学生把试的结果列成表格。
通过表格引导学生观察:发现了什么?(每多一只鸡,少一只兔子,相应减少2条腿,)。
小组2:跳跃式列表------假设鸡有1只,兔子有19只,那么就有78条腿,要比54条腿多的多,因此,兔子的只数也可能多了很多,但是鸡的只数可以不用一只一只依次递增,而是从猜一只到猜5只(或者其它几只),当腿的条数在50到60之间,(提出问题:兔子可能是几只?到底是谁估计的更加接近呢?)。
引导发现:这样就减少举例的次数。并通过数据的调整来优化解题策略。
小组3:取中列表------假设鸡兔各有10只。
小组4:方程。
小组5;奥书班中学习过算术方法(让孩子清楚表达出自己的想法)。
1、观察三种列表的方法,比较异同?
2、谈一谈;你们有什么感受?
1、课后练习1、2、3(比较不同-----答案是否唯一)。
2、通过今天的学习,有什么收获?
鸡兔同笼教学设计理念(精选21篇)篇八
1、对日常生活中的现象进行观察和思考,引导学生从中发现特殊规律,使学生掌握用列表的方法来解决“鸡兔同笼”的问题。
2、从不同的角度分析问题,掌握解题的策略与方法,从而感受到数学思想的运用和解决实际问题的联系。
3、培养学生分析问题的能力,渗透假设的数学思想,在解题中数形结合,提高学生对数据的再认识,再分析,将列表的过程更优化。
从不同的角度分析,掌握解题的策略与方法。
1、谈话:“同学们,自我介绍一下,我姓周,你们可以称呼我?今天需要我们共同配合,在这里上一节数学课,为了表达谢意,我为你们带来了一些礼物,快来猜一猜,有多少?(5只)太少了?(50只)多了,(40只)少了(45只)差不多了,(46只)恭喜你,答对了,下课就由你发给同学们。
2、喜欢数学吗?数学不但可以开阔我们的`视野,增长我们的知识,还可以锻炼我们的思维。在我国古代就有许多有趣的数学名题,你们了解吗?今天,。老师就向你们推荐一种有趣的问题,鸡兔同笼。
1出示问题:“鸡兔同笼,有5个头,14条腿,鸡兔各有几只?”
(1)你从中获取什么信息?
(2)请你们猜一猜将鸡、兔可能是几只?
(3)把你猜的过程给大家说一说。
(4)板书学生的过程。
鸡123。
兔432。
腿181614。
(4)评价:从尝试简单的开始,一个一个的试,最终找到了正确的答案,方法多么简单啊?如果我们再横竖加上几条线,就成了美观的表格。看来,列表来解决这类问题还确实简单,如果现在将鸡兔的数量增加,还能解决吗?(重点引入列表)。
2、出示:“鸡兔同笼,有20个头,54条腿,鸡兔各几只?”
(1)自己先想一想如何利用列表来解决?
(2)小组内交流一下自己的想法。
(3)独立完成列表。
(4)汇报想法和过程。
小组1:逐一列表,假设鸡有1只,兔子有19只,那么就有78条腿,(腿多了,说明什么?兔子多了,怎么办?)鸡有2只,兔子有18只,那么就有76条腿,一只一只地试,学生把试的结果列成表格。
通过表格引导学生观察:发现了什么?(每多一只鸡,少一只兔子,相应减少2条腿。)。
小组2:跳跃式列表,假设鸡有1只,兔子有19只,那么就有78条腿,要比54条腿多的多,因此,兔子的只数也可能多了很多,但是鸡的只数可以不用一只一只依次递增,而是从猜一只到猜5只(或者其它几只),当腿的条数在50到60之间,(提出问题:兔子可能是几只?到底是谁估计的更加接近呢?)。
引导发现:这样就减少举例的次数。并通过数据的调整来优化解题策略。
小组3:取中列表,假设鸡兔各有10只。
小组4:方程。
小组5;奥书班中学习过算术方法(让孩子清楚表达出自己的想法)。
1、观察三种列表的方法,比较异同?
2、谈一谈;你们有什么感受?
1、课后练习1、2、3(比较不同,答案是否唯一)。
2、通过今天的学习,有什么收获?
鸡兔同笼教学设计理念(精选21篇)篇九
(一)知识与技能。
了解“鸡兔同笼”问题的结构特点,渗透化繁为简的思想,掌握用列表法、假设法,初步形成解决此类问题的一般性策略。
(二)过程与方法。
经历猜测的过程,尝试用列表、假设的方法解决“鸡兔同笼”问题,引导学生有序思考,使学生体会解题策略的多样性。
(三)情感态度和价值观。
在解决问题的过程中,培养学生的迁移思维能力,感受古代数学问题的趣味性。
二、教学重难点。
教学重点:渗透化繁为简的思想,体会用假设法的逻辑性和一般性。
教学难点:理解用假设法解决“鸡兔同笼”问题的算理。
三、教学准备课件、实物投影。
四、教学过程。
(一)情境导入。
教师:同学们,大约一千五百多年前,我国古代数学名著《孙子算经》中记载了一道数学趣题——“鸡兔同笼”问题。
教师:这道题是以文言文的方式表述的,雉就是野鸡,哪位同学看懂它的意思了?
教师:从题中获取信息,你知道了什么,要求什么问题?
(二)探究新知。
1.尝试解决,交流想法。
既然“鸡兔同笼”问题能流传至今,就应该有它独特的思考方式和解题方法。
问题:同学们想一想,算一算鸡和兔各有多少只?2.感受化繁为简的必要性。
大家在刚才猜了好几组数据,经过验证都不正确,为什么猜不对呢?
数据大了不好猜,我们应该怎么办?我们把数字改小些,先从简单的问题入手。(课件出示例1)“笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?”
教师:从题中你们能获取哪些信息?和生活常识联系在一起,你还能说出哪些信息?
预设:学生1:鸡和兔共8只,鸡和兔共有26只脚。学生2:鸡有2只脚,兔有4只脚。
【设计意图】渗透化繁为简的思想,引导学生理解题意,找出隐藏条件,帮学生初步理解“鸡兔同笼”问题的结构特点。3.猜想验证。
教师:有了这些信息,我们先来猜猜,笼子可能会有几只鸡?几只兔?猜测需要抓住哪个条件?学生:鸡和兔一共有8只。
教师:是不是抓住这个条件就一定能马上猜准确呢?好,老师这里有一张表格,请大家来填一填,看看谁能又快又准确地找出答案来,开始。
学生汇报。
小结:这个方法挺好,能帮我们解决鸡兔同笼的问题,我们把这种方法叫做列表法。(板书:列表法)。
预设:学生1:列表法能很清晰地解决这个问题。
学生2:因为数字比较简单,所以列表法还可以用,但是数字变大时,列表法就会比较麻烦,会浪费很多时间。教师:说得非常好,那我们就来尝试研究一下更简洁的方法吧。同学们再来观察自己刚才列的表格,看看这些数量之间是否存在着一些数学规律,请将你的想法跟同组的同学相互交流一下。学生小组交流汇报。
预设:学生1:鸡的数量每减少1只,兔的数量就增加1只,脚的数量也跟着增加2只。
学生2:兔的数量每减少1只,鸡的数量就增加1只,脚的数量反而减少2只。
【设计意图】列表法虽然烦琐,但这是一种重要的解决问题的策略和方法,是学习假设法的基础,因此也是本课的重要教学内容之一。让学生以填表的方式初步体验鸡兔同笼情况下随着鸡或兔只数的调整,脚的总数量的变化规律,为下面的学习做好铺垫。4.数形结合理解假设法。
教师:同学们的想法非常好,我们一起继续来看这张表格,通过分析表格来将同学们的想法表述得更加清晰。(1)假设全是鸡。
教师:我们先看表格中左起的第一列,8和0是什么意思?
学生:不是,我们是把一只4只脚的兔当成一只2只脚的鸡来算的。
教师:这样算会有什么结果呢?学生:每少算一只兔就会少算2只脚。
学生:每只鸡比兔少2只脚,少了10只脚说明笼子里有5只兔。教师:你们能列出算式吗?学生尝试列算式。教师以画图法进行演示:
8×2=16(只)。(如果把兔全当成鸡,一共就有8×2=16只脚。)。
26-16=10(只)。(把兔看成鸡来算,4只脚的兔当成2只脚的鸡算,每只兔就少算了2只脚,10只脚是少算的兔的脚数。)4-2=2(只)。(假设全是鸡,就是把4只脚的兔当成2只脚的鸡。所以4-2表示一只兔当成一只鸡,就要少算2只脚。)10÷2=5(只)兔。(那把多少只兔当成鸡算,就会少10只脚呢?就看10里面有几个2,也就是把几只兔当成了鸡来算,所以10÷2=5就是兔的只数。)。
8-5=3(只)鸡。(用鸡兔的总只数减去兔的只数就是鸡的只数,8-5=3只鸡。)(2)假设全是兔。
教师:我们再回到表格中,看看右起第一列中的0和8是什么意思?
学生:就是有0只鸡和8只兔,也就是假设笼子里全是兔。教师:笼子里是不是全是兔呢?这个时候是把什么当什么算的?学生:把里面的鸡当成兔来计算的。
教师:那把一只2只脚的鸡当成一只4只脚的兔来算,会有什么结果呢?学生:就会多算2只脚。
教师:请同学们像老师那样画一画,算一算。学生汇报:
8×4=32(只)。(如果把鸡全看成兔,一共就有8×4=32只脚。)。
32-26=6(只)。(把鸡当成兔来算,2只脚的鸡当成4只脚的兔算,每只鸡就多了2只脚,6只脚是多算了鸡的脚数。)4-2=2(只)。(假设全是兔,就是把2只脚的鸡当成4只脚的兔。所以4-2表示一只鸡当成一只兔,多算了2只脚。)6÷2=3(只)鸡。(那要把多少只鸡当成兔来算,就会多算6只脚呢?就看6里面有几个2,也就是把几只鸡当成了兔来算,所以6÷2=3就是现在鸡的只数了。)。
8-3=5(只)兔。(用鸡兔的总只数减去鸡的只数就是兔的只数,8-3=5只兔。)(3)提出假设法概念。
刚才我们通过假设都是鸡或都是兔来解决例1的,所以把这种方法叫做假设法。这是解决“鸡兔同笼”问题的一种基本方法,也是算术方法中较为普遍的一般方法。
(板书:假设法)【设计意图】此环节是本课的重点,也是本课的难点,假设法的算理对于大部分学生来说,都是比较难以理解和掌握的。采用画图法,数形结合地引导学生根据图较为完整、准确地说明算理,学会思考,学会解释,可以让学生更加直观地感受假设法的优越性。
(三)知识运用学生独立完成古代趣题。
【设计意图】运用已学的技能去解决古代“鸡兔同笼”问题,创设课堂教学文化氛围,提高学生探究数学的热情。
(四)全课小结。
这节课我们一起用列表法和假设法研究了古代著名的“鸡兔同笼”问题。你学会了吗?
鸡兔同笼教学设计理念(精选21篇)篇十
各位老师:
大家好!
我说课的内容是六年级上册数学广角《鸡兔同笼》问题。
首先我进行一下教材分析和学情分析。
“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。教材的编排有以下特点:1、教材首先通过富有情趣的古代课堂,生动地呈现了在《孙子算经》中记载的“鸡兔同笼”问题,并通过小精灵的提问激发学生解答我国古代著名数学问题的兴趣。2、注重体现解决“鸡兔同笼”问题的不同思路和方法。3、让学生进一步体会到这类问题在日常生活中的应用。
认知分析:对于六年级的学生他们已初步接触多种解题策略,会一些基本的解决数学问题的方法。
能力分析:学生已初步具备一定的归纳、猜想能力,但在数学的应用意识与应用能力方面需进一步培养。
情感分析:我班共33人,多数学生对数学学习有一定的兴趣能够积极参与研究,但在合作交流意识方面,发展不够均衡,有待加强;少数学生的学习主动性不够强,需通过营造一定的学习氛围,来加以带动。
基于对教材的理解和分析,结合学生的知识经验和生活经验,遵循课程标准精神,我确定了以下三维目标与重点难点。
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、尝试用不同的方法解决“鸡兔同笼”问题,并使学生体会代数方法的一般性。
在解决问题的过程中培养学生的逻辑推理能力。
1、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
2、让学生体会到数学问题在日常生活中的应用,进而让学生体会数学的价值。
教学重点:以鸡兔同笼问题为载体,培养学生多角度思考数学问题的思维方式。
教学难点:理解数学知识与实际生活问题的联系,掌握利用数学方法解决实际问题的策略。
针对六年级的学生年龄特点和心理特征,以及他们现在的知识水平。采用启发式,小组合作等教学方法,让尽可能多的学生主动参与到学习过程中。根据优中差生采取分层教学。课堂上教师要成为学生的学习伙伴,与学生一起体验成功的喜悦,创造一个轻松,高效的学习氛围。
为了更好地展示数学的魅力,结合一定的多媒体辅助手段,充分调动学生的感官,增加形象感与趣味性,腾出足够的时空和自由度使学生成为课堂的主人。
由实例引入,在借助学习例1同时,向学生渗透化繁为简的思想,使学生通过猜测、列表、假设或方程等方法来解决问题,在师生互动中让每个学生都动口、动手、动脑。并专门为学困生创设他们展示的空间和时间。培养每个学生学习的主动性和积极性。
多媒体课件及每小组一份按顺序填写的表格图。
本课我共设计了情境导入、探索新知、巩固新知、课堂小结、家庭作业五个环节。下面我就具体说一说每个环节。
首先用课件出示第112页的情境图,我引导:“看,图上的个个学生紧锁眉头,还有一个学生急得头上都流汗了,他们正在为一个什么问题冥思苦想呢?我们能不能帮帮他们?”这时学生就会发现,情境图旁边的原题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(目的是引导学生发现问题并激发学生解决问题的欲望)。
接下来我让学生说说题的意思,再课件出示这道题的今意:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚。鸡和兔各有几只?(目的是确保学生正确理解题意,保持对该问题的好奇心。)。
这就是我们今天要研究的问题“鸡兔同笼”问题。这样就揭示了课题并(板书课题)这样就很自然地进入了第二个环节。
探索新知是本节课教学的重点环节,也是理解的难点,教学中我为了体现化繁为简的思想,我提出:“为了便于研究,我们可以先从简单的问题入手,我们把题中的35个头和94只脚改成8个头和26只脚。这样就变成了例1。
(课件出示例1)笼子里有若干只鸡兔。从上面数,有8个头,从下面数,有26只脚,鸡和兔各有几只?先引导学生理解分析题意:请同学们默默地读这道题,思考一下:从上面数,有8个头是什么意思?(指谁的头?)从下面数,有26只脚是什么意思?问题是什么?这里还隐藏了什么条件?(目的是引导学生说出鸡两只脚,兔四只脚。)。
鸡和兔各有几只呢?我们不妨猜想看看。(我随着学生的猜想板书)。
刚才我们是随意猜的,其实我们还可以有顺序的猜。
我课件出示113页的表格,并指出:老师给每个小组也发了一张同样的表格,我让学生先进行分工,再共同完成表格,并指名学生汇报。
我总结:这其实就是按顺序列表的方法。这样我们也就用列表法解决了这个问题。请同学们仔细观察比较表格,从表格中你能发现什么?把你的发现和同桌同学说一说。(学生同桌交流)再指名汇报。
学生的发现我预设了4种情况:
1、鸡在减少,兔在增加,脚也在增加。
2、每减少一只鸡,增加一只兔,脚的总只数增加两只。
3、每减少一只兔,增加一只鸡,脚的总只数减少两只。
4、鸡和兔的总只数没有变。
学生在讨论期间,我在组间巡视并加以适当引导。如果有的学生茫然无绪,我启发学生:“假设笼子里都是鸡或者都是兔,脚数会发生什么变化呢?”从而引导学生解决问题。(这样以小组为单位,每个学生都经历知识的形成过程,老师也加入了孩子们探讨的过程。并对学习有困难的学生加以点拨。)。
先让用算术方法计算的学生汇报。我要求学生清楚的表达思考过程和解决方法。先让小组长说,再让中等生说。根据我班的实际情况,我预设到会有几个学困生还是弄不明白。所以我采用画图的方法特定帮助这部分学生理解。
(我边作图边讲解)。
我先画出8个小圆圈就代表8只小动物,假设全是鸡,每只鸡有两只脚,这样就先画16只脚,指一名学困生列出算式:8×2=16(只)而题目中说共有26只脚,还少多少只脚,再指一名学困生列出算式:26-16=10(只)这说明有一些兔子被算成了鸡,而每只兔子算成了鸡就少了两只脚,列出算式:4-2=2(只),10里面有几个2,列式:10÷2=5,于是我们就给其中的五只鸡都添上两只脚变成兔,这样就有26只脚了。5只鸡变成了5只兔,这里的5就是兔的只数。这里我预设到学生解答时很有可能把鸡和兔的只数答反了,所以我着重强调这里的5是兔的只数。
假设8只小动物都是兔,怎么办呢?(我要求学生合作完成)。
(我的设计意图是对于学困生需要老师适时地站出来引领学生进行探索,通过一些有效的数学模型,来帮助学生建立一个解决问题的台阶,使他们掌握方法,体验成功。为了保护学生的自尊心,他们感觉不出自己是学困生,因为课堂上也有他们的精彩表现,只是和优等生的难度不同,他们只是老师心目中的学困生,而不是学生眼中的学困生。)。
我指出:这两种方法都是假设的,一种假设的全是鸡,一种假设的全是兔。像这样的方法,我们可以称它“假设法”。
接下来我让用方程做的同学说出思考过程和解题方法。再让学生(三)说算理。
(设计意图是因为学生在五年级时已经对于列方程解决问题有一定的基础,根据本班学生情况和已有的知识经验,这个方法数量关系明确学生容易理解。所以我就让学生自己去尝试。)。
用多种方法解答“鸡兔同笼”问题。
我引导学生比较这些不同的方法,你比较喜欢哪种方法?能说说你的理由吗?
(我的设计意图是通过学生比较不同的方法,让学生对策略作出选择,在交流中,让学生感受到不同方法的思维特点,感受到方程法的'一般性。)(同时这个环节的设计目的是让每个学生建构自己的知识体系)。
用自己喜欢的方法解决《孙子算经》中鸡兔同笼的原题.(目的是一方面《孙子算经》中的鸡兔同笼问题,另一方面让学生在解决该问题的过程中进一步巩固前面所学的解题方法。)。
出示公园划船的图片和题:“做一做”中的第2题。
学生用自己喜欢的方法列式解答。并汇报思考过程。
(设计意图是学生在解决实际问题的过程中对假设法和方程法有了初步体验,更有利于学生今后独立运用策略解决实际问题的能力。
练习二十六:1、2、3、5题。
课外阅读:阅读课本114页内容,了解古人是怎样解决“鸡兔同笼”问题的。
一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁?
(设计此题的目的是一方面让学生利用本节课所学知识解决生活中的数学问题,另一方面对学生进行品德教育。)。
六、板书设计分析:除课题外,其他板书都是随学生的汇报而写的。(设计目的是让学生体验自己的回答和尝试竟能成为老师板书的内容,激发学生勇于发言的信心。)。
数学不仅仅要让学生学会计算、解决实际问题等,还要通过这些知识的学习让学生的思维得到锻炼。鸡兔同笼问题就是这样一种问题,在生活中,鸡兔同笼的现象是很少碰到,没见过有人把鸡和兔放在一个笼子里,即使放在一个笼子里又有谁会去数他们的脚呢?直接数头不就行了?那么是不是说“鸡兔同笼”是一个完全没有价值的数学问题呢?显然不是,鸡兔同笼问题,是让我们通过鸡兔腿数的变化,在这种变化中寻找不变的规律,并采用有效的手段来理解数学问题的过程。以下是我上完课的几点体会:
生动有趣的数学问题情境,能让学生愉快的探索数学,享受数学带来的乐趣。课堂教学中教师要创设学生喜闻乐见的教学情境,使学生始终处于一种良好的愉悦的氛围中,从而调动学生学习数学的兴趣,发展学生的思维能力。还要注重对学生进行引导,让学生通过观察、操作、讨论、思考发现并掌握知识,时刻把学生推到学习的主体地位,在一个恰当的主题中学习数学,发展能力。基于这一点,本节课的内容安排在“数学与生活”当中,用在生活中经常遇到的一些问题,来引入(幻灯出示:)。
类似于这样的问题,我们的祖先早在1500多年前就已经开始研究了,再课件出示《孙子算经》及鸡兔同笼问题,但同时又聪明地把数改小了:今有鸡兔同笼,上有八头,下有二十二足,问鸡兔各几何?一石激起千层浪,鸡兔怎能同笼?学生的探究欲望马上调动起来,这时,又让学生了解“经典”,感受“经典”。
根据《新课程标准》在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。本节课中,我主要通过创设现实情境,让学生投入到解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,从而体会到假设的数学思想的应用与解决数学问题的关系。学生能够积极地思考,积极地合作,积极地探讨,充分地发挥了小组的作用,兵教兵,通过学习使学生认识到数形结合的重要性,提高学生分析问题和解决问题的能力。大部分学生学会了,这是很让我感到激动的,因为毕竟鸡兔同笼问题比较难。
由于学生原有认知背景的不同,他们对解答本课时的题目存在较大的差异,所以,在同一问题中,学生的认知水平也有不同。在教学的过程中,不能提出统一的要求,要允许不同的学生采用不同的解题方法。本节课,师生共同经历了六种不同的方法:逐一列表法、取中列表法、假设法、列方程、画图法及古人的砍足法,最后比较哪种算法比较好。这样教学既培养了学生探究能力和小组合作能力,又体现了算法多样化与优化,也让不同的学生在同一节课中都有不同程度地提高。
总的来说,本节课从学的角度呈现学习内容,合理安排教学过程,提供操作材料,拨动学生心弦,把学习的主动权交给学生,让学生在合作学习的活动中主动完成知识的建构过程。因此,在整堂课中,学生学得兴趣盎然,在问题得到解决的同时体验到了成功的喜悦,感受到数学知识的价值和数学学习的乐趣。但在教学时间的控制上还略显紧张,一些环节的处理还应该在从主次的角度更好地进行设计。
但教学中也存在着很多问题,反思如下:
2、学生汇报时,要多培养学生质疑能力,听不明白的及时向小老师提问,及时解决不懂的问题。
3、要注重培优辅困,特别是学困生的辅导如何在课堂教学中落实,使他们通过教师的引导取得明显的学习效果,真正落实新课标提出的“不同的人在数学上得到不同的发展”目标。
鸡兔同笼教学设计理念(精选21篇)篇十一
本节课从学的角度安排教学过程、呈现学习内容、提供操作材料,把学习的主动权交给学生,让学生在合作学习的活动中主动完成认知结构的建构过程。因此,使学生的主体意识和探究精神得到培养,创新潜能得到开发。让学生获得亲自参与探究学习的积极体验。
按照我对教材的理解,并遵照《新课程标准》中:在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流的精神。首先以观察鸡兔的图片入手,让同学们发现动物身上隐藏着许多的数学问题,然后开门见山的引出本节课要研究的主题“鸡兔同笼”问题;然后以一个数据比较小的鸡兔同笼问题,来引导学生,经历列表法,探讨假设法和方程法等多种解题策略和方法,并加以多媒体课件的展示,帮助学生比较直观形象的理解解题方法,从而更好的突出本节课的重点;接着引出《孙子算经》中的一个数据比较大的鸡兔同笼问题,先让学生用自己刚刚学到的方法进行解决,然后再激发学生“了解古人的解题方法”欲望,让学生自主的去阅读书中的一段阅读资料,了解古人的解题方法,并试着解释。老师再利用多媒体课件帮助学生理解古人这种独到的解题方法--------抬腿法。从而让学生受到古文化的熏陶,感受道古人的了不起。最后就是利用法学到的方法解决生活中类似的“鸡兔同笼”问题,让学生真正感受到数学与生活密不可分,数学知识来源与生活,同样也运用于生活。
“鸡兔同笼”在以前是属于奥赛典型题,如今编入新课程教材第十一册中。对学生尤其是基础不好的学生来说有一定的难度,因此,我认为必须让学生经历从多种角度思考,运用多种方法解决问题的过程,使学生展开讨论,根据自己已有的经验,不断调整解题策略,逐步探讨出不同的方法,找到合理解决问题的策略;并在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法,并灵活运用该方法解决生活中的类似“鸡兔同笼”问题。特别是用假设法解答,学生理解起来很难,为此我用画图的方法来帮助学生理解,先画8个圆圈代表8只鸡,每只鸡画2只脚,这样就有16只脚,缺了10只脚,再把其中的几只鸡每只添上2只脚就变成了兔子,所以有5只兔子。这样把抽象的知识直观化了,学生很快理解了这种方法。
我注重从以下几个方面进行数学文化的渗透:
中国有着历史悠久、成就辉煌的数学文化,出现了许多伟大的数学家和经典的数学名著。结合本节课的教学内容,教师通过向学生介绍记载“鸡兔同笼”问题的数学名著《孙子算经》,介绍古人解决鸡兔同笼问题的巧妙方法,使学生了解数学知识丰富的历史渊源,感受古人的聪明智慧,增强民族的自豪感。
数学思想方法是数学文化的精髓,教师有意识地向学生渗透一些基本的数学思想方法,可以加深学生对数学知识的理解,提高学生的思维品质。结合本节课的数学内容,教师适当渗透了化繁为简、猜测验证、假设、数形结合等思想方法,其目的不仅是让学生掌握好本节课的基础知识和基本技能,更重要的让学生了解一些解决问题的策略,提高解决问题的能力。
在数学教学中,从学生已有的生活经验出发,让学生亲身经历讲实际问题抽象成数学模型并进行解释与应用的过程,能激发学生的兴趣,让他们全身心地投入学习。结合本节课的教学内容,教师安排了大量与“鸡兔同笼”有着类似数量关系的问题,让学生会用数学的思维方式去观察、分析周围世界,并且在这现实的、有意义的,富有挑战性的探索活动中,加深对数学知识的理解与掌握,感受到数学的真谛与价值。
但在平时的教学中也存在值得我们进一步思考的问题:
3、有意义的练习及作业的设计要考虑有利于知识点的落实,要能激发学生的兴趣,还要考虑练习内容的层次性,手段的灵活性,逐步培养学生的创新能力和动手能力。
虽然课已经上完,同课异构的教研活动也已经结束,但是我知道我们的教学工作并没有结束,我不能停下前进的脚步,是应该静下心来,好好地自我反思、总结的时候了。
这一连串的疑惑多亏了学校领导和老师们的一语道破,真是一语惊醒梦中人啊!让我重新细细地、全面地解读教材,才明白其实假设法、画图法等与列表法并不是孤立的、互不相干的几部分,而恰恰相反的,假设法、画图法与列表法一样都是在应用假设的数学思想,它们是相互关联的。教材将这一经典、传统的题目“鸡兔同笼”选编为“尝试与猜测”一节,其目的是借助“鸡兔同笼”这个问题作为载体,让学生初步获得一些数学活动的经验,引导学生对一些日常生活中的现象的观察与思考,从而发现一些特殊的规律,体会解决问题的一般策略——列表,即逐一列表法、跳跃列表法和取中列表法。
让学生在参与观察、猜想、验证、综合实践等数学活动中,发展合情推理和演绎推理能力。用数学语言清晰地表达自己的想法是培养学生思维能力的重要途径。从课初的随意猜想到表格中的有序猜想,从一般验证到表格中数据变化规律的发现,从列表法很快自然联想到画图法、假设法,学生的思维经历了从无序到有序、从特殊到一般、从借鉴到创新、从肤浅到深刻等方面的巨大变化,学生的思维能力也随之得到了极大的提升。
教师有意识的向学生渗透数学思想和方法。如:用容易探究的小数量替代《孙子算经》原题中的大数量的“替换法”解决问题,渗透了转化的思想和方法;用“列表法”、“画图法”等解决问题,渗透了假设的思想和方法。这些对于学生而言,无疑奠定了可持续发展的坚实基础。
鸡兔同笼问题是《孙子算经》中一道影响较大的名题,一直流传至日本等国,引起了许多国家的众多数学爱好者的广泛关注。教学中,教师把“数学文化”和《孙子算经》及其中关于鸡兔同笼问题的原题,用课件科学而生动地再现于课堂,极大地激发和调动了学生的探究兴趣,充分地传承和弘扬了经典的数学文化,较好地体现和提升了课堂的教学品味,也让“数学味”萦绕课堂,贯穿课堂始终。
由于学生原有认知水平的不同,存在较大的差异。所以,在同样的列表中,学生的认知水平也有一定的层次。但在教学的过程中,我并没有提出统一的要求,允许不同的学生采用不同的解题方法。在交流时,有些学生用逐一列表的方法,也没去指责他们,而是肯定他们想出的方法有序且不遗漏。再引导学生从上往下看、从下往上看、从左往右看发现规律,体会鸡兔只数变化之间的置换关系。等待学生充分掌握规律,已经跃跃欲试了,教师再指引学生运用自己发现的变化规律在表格中调整验证过程,进行二次调整,快一点找到答案?学生不但可以应用跳跃列表法、取中列表法,来调整过程,而且部分学生已能把跳跃和取中的方法相结合起来列表解决问题。最后引导学生对解题技巧进行归纳与总结:做任何题目的时候,都要先认真思考、分析,根据题目的条件,选择适当的方法,找到解决问题的小窍门!
这样学生在具体的解决问题过程中,他们根据自己的经验,逐步探索不同的方法,找到解决问题的策略;在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。本来只要求从3道题中任选1道题进行解答,没想到一会功夫,已经一大部分学生把3道题都解答完了,就因为他们在自己亲身经历的调整过程中学会了将取中和跳跃的方法相结合,所以速度之快。这同时也体现了不同的学生在同一节课中都有不同程度的提高,不同的学生学有不同的数学。
这是我教学这一课之前感到有困难的,也是我教学时做得不够到位的地方。比如:学生猜出鸡兔各几只后,有个别学生就开始用口算进行验证。此时,教师的引导让学生感觉需要列表的必要性不够明确。
鸡兔同笼教学设计理念(精选21篇)篇十二
《鸡兔同笼》问题有一定的难度,课前我对我班的学生进行了估计。一小部分学生接触过鸡兔同笼问题,但对于多数的学生来说,学习《鸡兔同笼》可能会有一定的难度。所以在这节课当中,我决定主要借助教师引导探究这个手段,让学生在尝试,探索,合作中弄懂鸡兔同笼问题的基本解题思路。
《鸡兔同笼》本来就是很抽象的课程,估计学习《鸡兔同笼》可能会有一定的难度。所以也只能按照课本那样的列表法,再配合假设法,充分运用了动手操作这个手段,让学生弄懂鸡兔同笼问题的基本解题思路:
师生共同经历了列表方法后,问:能用图形来表示鸡兔头和腿之间的关系吗?
引导学生画图的方法去试:先画8个圆圈表示8个头,再在每个鸡下面画两条腿,8只鸡有16条腿,还多出10条腿,把剩下的10条腿要给其中的几只鸡添上呢?(5只鸡分别添2条腿)。这5只就是兔子,另外的3只就是鸡。这时候有学生问能把动物都看成是兔吗?在师生们的共同操作下再把腿依次减少,也得到了同样的结论。
虽然这只是一个简单操作活动,但是,在画图的过程中充分调动了学生的积极性,经历了一个探索的过程,这时候再介绍假设法就水到渠成了。也实现了运用多种方法解决问题的目的。起到了意想不到的效果。
师生共同经历了二种不同的方法:列表法、假设法,让学生自己选择喜欢的方法解决《孙子算经》中的问题。学生很自然地选择假设法,自觉进行方法最优化。因为毕竟鸡兔同笼问题比较难。但教学中也存在着很多问题,反思如下:
1、学生汇报时,可以多找学生汇报,其他学生可能会听得更明白。
2、培养学生质疑能力,听不明白的及时向别人提问,及时解决不懂的问题。
3、学生比较喜欢假设法,但发现推理时思路不清,容易出错,如果及时指导学生写推导过程就会较好地避免问题的`出现。
本节课,在整个课堂中,在问题得到解决的同时体验到了成功的喜悦,感受到数学知识的价值和数学学习的乐趣。但在教学时间的控制上还略显紧张,一些环节的处理还应该在从主次的角度更好地进行设计。
但在平时的教学中也存在值得我们进一步思考的问题:
1、小组合作学习中教师如何调控才能进一步提高合作学习的效率,如时间的把握、学生合作过程的控制、合作学习的效果等。
2、要想大面积提高课堂教学效益,必须在课堂中注重培优辅困,特别是学困生的辅导如何在课堂教学中落实,使他们通过教师的引导取得明显的学习效果,真正落实新课标提出的“不同的人在数学上得到不同的发展”目标。
3、有意义的练习及作业的设计要考虑有利于知识点的落实,要能激发学生的兴趣,还要考虑练习内容的层次性,手段的灵活性,逐步培养学生的创新能力和动手能力。
鸡兔同笼教学设计理念(精选21篇)篇十三
“鸡兔同笼”问题最早出现在我国古代一本数学著作《孙子算经》中,虽历经1500多年,该问题解决办法有多种,是它魅力所在,所以一直是人们津津乐道的有趣的问题。四年级学生学习主要是用假设法解答,而列表法是假设发的基础,单独列表麻烦;抬腿方法作为方法的补充,只作为了解,由于有局限性,用得少。
课件出示图画鸡兔同笼,引起学生兴趣,感觉好玩,勾起探知的愿望。接着用古文叙述题目,并说明题目的时间是1500年前,现在我们需要帮古人解答问题,学生感到好奇,争强好胜心陡然升起,学习劲头十足。
为了研究方便,我变换题目数字,把例题改为8只头,26条腿,数字变小好想像。列表法学生推理填写,数字小可以得出答案。
假设法对学生尤其是基础不好的学生来说有难度,学生理解起来很难。我先对列表数字分析、比较,为后面的假设法做好铺垫。我就推荐用中间列表法,发现鸡4只,兔子4只,腿就一共有24条,再进行增加或减少,最后得到了3只鸡,5只兔。学生的速度就加快了。另外,引导学生透过对表格的理解,利用假设法来解决问题。
画图验证:先画8个圆圈表示8个头,再在每个动物下面画两条腿,8只动物只用了16条腿,还多出10条腿,把剩下的10条腿要给其中的几只动物添上呢?(5只动物分别添2条腿)。这5只就是兔子,另外的3只就是鸡。画图的思考过程实际也就是假设方法的思考过程。
虽然很难,但我相信,只要学生喜欢了,那么再难的数学题都不是问题了。本节课,在整个课堂中,在问题得到解决的同时学生也体验到了成功的喜悦,感受到数学知识的价值和数学学习的乐趣。
鸡兔同笼教学设计理念(精选21篇)篇十四
今天,我上了《鸡兔同笼》一课作为我们教研组的展示课。本学期我们教研组的研究的主要内容是如何提高课堂效率。说实话提高课堂效率一直是我们追求的目标,但我们对与提高课堂效率的理解不一样,对于提高课堂效率的手段方法的应用自然也不一样。最后我们在组内研讨决定提高课堂效率不能单纯的理解为习题的处理。高效课堂的体现在一节课中应该是无处不在,他应该分布在教学的每一个坏节,如:重难点的解决,巩固新知的教学活动,例题变式题型的出示等。另外所教学的年级、教学内容不同也应该存在区别。
《鸡兔同笼》这一课我决定把突破重难点作为高效课堂的手段。课本介绍了3种解题方法,既:列表法、假设法、方程法,三种方法各有利弊列表法麻烦计算量大;假设法相对来说计算量小,但不容易理解;方程法容易列式不容易解方程教参中说这三种方法都是解决“鸡兔同笼”问题的一般方法并没有提出方法优化。那么,克服三种方法的弊端就成了这节课的难点。于是课上在提出猜测法后解决问题的朴素解法(打开学生思维的大门)后,我放手让学生自己探索,在汇报中三种方法都出现了,列表法由于数据小没有出现计算量大的问题,这时我引而不发。继续探究第二种方法——假设法。
学生汇报完后,我问其他学生有没有什么疑问,没有学生提问这时我问汇报的学生:“你为什么用6除以二?”让学生结合画图演示。说明多出6只脚,应再添6只,每只动物添2只,6只里面有几个2只就够添几只动物,所以用6除以2等于3,这三只动物添了2只脚就变成4只脚所以是兔子。在方程法的汇报中(由于这节课不是新授所以没有出现设鸡的只数为未知数的情况)自然避免了不好解的情况。紧接着回过头来解决《孙子算经》中的“鸡兔同笼”问题,这时在汇报列表方法中出现了数据大的问题,学生的方法出现了我预想的“取中列表”也出现了“脚数找规律法”,在“取中列表”中接着算下去是难点,学生在汇报中用不同的方法(尝试法和根据脚数决定鸡和兔谁的数量增加谁的数量减少)解决了这个难点。
在习题中按照由易到难的层次安排了6道习题,我觉得提高课堂效率虽然不能单纯做习题,但是习题是不可缺少的。因为“鸡兔同笼”问题不是单纯的解决鸡和兔的问题还涉及到生活中的许多问题,学生能否灵活运用也是我担心的一个问题,例如:植树,坐船等。在坐船一题中我也安排了演示法加强理解假设法同时也总结规律多或少的只数、人数应该除以几。这样下来一节课看似解决了预想的难点,但是我也有一些遗憾例如因为不是新授所以没有出现第一次上课时学生表现出来的积极性,另外假设法没有出现类似假设全是鸡的形式,从这一点我也深刻的体会到自己驾驭课堂的能力不强。由于有些紧张在课堂结束时本想安排总结——同学们相互提醒做题应该注意的问题却忘记了。另外教学环节之间的衔接语言比较生硬不自然。
课堂气氛不活跃。没有在新授中的探讨式气氛,如:新授时我问同学们喜欢那种方法,大多数学生说喜欢假设法,我说:“那好,我们来做一道题(植树、坐船问题)”做着做着,有的同学会问:”老师,接下来除以几呀?”没有类似这样的生成,整节课堂比较平静,平静像没有一丝涟漪的湖面,不活跃不生动。但是值得庆幸的是,同组的老师给我的一些建议,真的让我有茅塞顿开的感觉,是的在不断的探索,不断的听取他人的宝贵意见的过程中我不断的充实自己。
鸡兔同笼教学设计理念(精选21篇)篇十五
课堂上,黄老师从《孙子算经》中的古代名题导入,让学生解释意思,并猜想鸡和兔的只数。当学生感到困难时,黄老师引出化繁为简的方法,降低题目难度后放手让学生独立解决教材中的例题“笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?”。由于,黄老师给足学生充分思考的时间,所以在汇报时,学生精彩纷呈。汇报时,学生依次展示了图示法、列表法、假设法,每种解法黄老师都让学生说全说透,如说图示法时让学生用学具在黑板上操作,边摆边说,形象具体的解说赢得学生自发的掌声;说列表法时得出结论后又让学生进一步观察发现其中的规律,并学会用规律快速解决问题;重点而详细的解说假设法,突出本节课的重点,并让多名学生反复说明每步算式的意义,尤其注重理解核心步骤,直至全体学生都理解假设法。最后,黄老师还将练习了生活中的“鸡兔同笼”问题,培养学生的应用意识,并学会用数学的眼光看待生活中的问题。
课后,老师们进行了积极的评课,肯定本节课体现了“生本课堂”的理念。而后,刘教授对本节课作了总结,讲到兴起之处,刘教授还走上讲台亲自示范教学,引起了台下的阵阵掌声。刘教授认为:
1、本课的`导入不宜使用原题来化繁为简,不是学生自己的思考而是老师强加。
2、思维是本课的重难点,应该在操作中思维,在思维中操作,特别理解“假设法”时应结合图示法操作,并思考操作到哪一步就不用了,而可以推理出结论。这样能很好的突破难点。
3、应用之后建模,进一步培养学生的模型思想。形成良好的思维习惯。
而后,数学组开展了“好书推荐阅读交流”,邓x老师向大家推荐了教师必看的书籍《给教师的建议》,提倡自主阅读要融合到教学实践之中。
文档为doc格式。
鸡兔同笼教学设计理念(精选21篇)篇十六
“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。本节课主要是借助我国古代趣题“鸡兔同笼”这个题材,培养学生从多角度思考,运用列表法和假设法解决问题的能力。因此本节课重在研究解决“鸡兔同笼”问题的方法和策略上。这节课上完后,自我感觉还不够理想,有些环节时间没把握好,更有一些细节未加重视,下面就谈谈我的反思:
一、在课始,我开门见山的引出本节课要研究的主题“鸡兔同笼”问题;然后以一个数据比较小的鸡兔同笼问题,来引导学生,经历列表法,探讨假设法和方程法等多种解题策略和方法,并加以多媒体课件的展示,帮助学生比较直观形象的理解解题方法,从而更好的突出本节课的重点。
二、由于“鸡兔同笼”问题在小学五年级时出现过,也有小部分学生可能在奥数书上见过,会做。大部分学生不是很会做,因此在备课时我充分考虑到这个情况,所以在教学本课的重难点用假设法解答“鸡兔同笼”问题的第一部分假设全是鸡时以老师引导进学生行分析,加以课件演示,帮助学生理解这种方法。然后学习假设全是兔时,以学生根据刚才的学习和理解自己独立完成并说明对每步理解,再加以课件演示。通过这两步的学习,大部分学生应该基本能利用假设法来解答“鸡兔同笼”问题。在此基础上教学方程法,主要教给学生找等量关系式,列方程从而让大部分学生能用方程法解决"鸡兔同笼"问题。估计教学时间有些问题,所以只是简单提了下。
三、我认为本节课的重难点都应该是在用假设法来解决“鸡兔同笼”问题上,在这部分的设计上,我看了很多资料和课例。都说得较为简单,并有不同的说法。在假设全部都是鸡这里,用26-16=10条腿,这里应该说是“多10条腿”还是“少10条腿”呢,教材上只是简单的说“这样就多出了10只脚”,通过我和我们年级组其他教师的讨论,并看了很多教案和课例,我觉得以假设后的腿与实际比学生较容易理解,当说到这个问题时可以直接说“比实际少了10条腿,为什么少呢?是把兔当成鸡算了,”这里是把兔假设成了鸡,肯定应该是少算10条腿。如果说成“多10条腿,为什么多呢?”就不好给学生解释了。这样也便于同前面的把一只兔当成一只鸡算就少2条腿联系起来。
在实际的教学中,我发现了以下几个问题:
1、我感觉多媒体课件虽然帮助学生非常直观的理解了“假设法”的这种思维过程,让复杂问题简单化了。但我发现学生的思维过程只是停留在直观、表象这一层面,只有少数同学将这一思考过程内化成成为了自己的一种解决这类知识的模型。
2、在时间的安排上不够合理,导致本节课我并没有完成我预设的内容,导致最后没有时间来介绍古人的抬脚法。
3、应该在探究中学生发现和提出问题的能力得到培养,提出解决问题的能力以及表达思想和交流成果的能力,学会利用多种有效手段,通过多种途径获取信息的能力都有所增强。
在经历这一次青年教师赛课的过程后,我深深地感受到,我们期望的不仅仅是学生对于这一个知识点的学习,而是能感悟到更多更广的数学思想和方法。通过这一节课的研读与授课,我想我也收获了许多,这一个小小的广角,也给了我更大的视野,更大的世界。
鸡兔同笼教学设计理念(精选21篇)篇十七
我把“鸡兔同笼”这个内容划分为两个课时,本节课为第一个课时,在本节课中重点研究解决问题的一般策略——列表。我想通过本节课列表发现的规律为探索新策略奠定一定的基础。在教学过程中,我给学生充分的时间他们经历列表、尝试和不断调整的过程,从中对于列表策略有所体会。学生在这个过程中也出现了多种列表方法,对于多种列表方法引导学生对方法进行优化,从而达到能灵活运用列表解决鸡兔同笼问题。
教学中我补充了其他的解法,但是却分散了学生的注意力,影响了学生对列表方法这一常用方法的掌握。这是本节课的遗憾之处。
我觉得学习要让学生感兴趣地去学,发自内心的想去学,觉得学习是有用的。而鸡兔同笼问题来于生活。但它高与生活,它需要用一些数学策略去解决,而学习策略以后用来解决生活中的问题。因此在课堂小结时我放手让学生对生活中类似于鸡兔同笼问题的举例,让学生体会到现实生活中此类问题是广泛存在的。进而凸显了本节课的价值。
结果是比较直接的,容易被大家重视,而过程也是不可忽视的。我们不仅要关注结果同时也需要关注过程。在解题的过程中学生的思维是一大亮点,有些学生想法很有创意但算错了,这样的学生我们应该给予表扬和肯定。
鸡兔同笼教学设计理念(精选21篇)篇十八
教学完《尝试与猜想》一课后,在一张综合练习的题卡上,出现了这样一道题。“鸡兔同笼,有17个头,24条腿。鸡兔各有多少只?”这是课堂上练过的习题,并没有什么难度,我想孩子做起来应该是没有问题的。一个学生问我,“老师,这道题可以用“假设法”做。可是我已经忘了假设法怎么做了,你能告诉我吗?”我沉吟了片刻,回忆了一下我上“鸡兔同笼”的经过。
鸡兔同笼出现在“尝试与猜想”中,既然课题是《尝试与猜想》,那么编者的意图一定不再是让我们教给孩子做此类题的技巧,而是通过合理猜测和调整达到想要的结果。不管是枚举还是列表,都是要不断调整自己的假设结果里正确结果更近。也就是要在一个合理区间中不断逼近正确的答案。我记得当时是通过一个幸运52的“猜价格”导入的。孩子在课堂中也展现了自己的很多思路,包括画图,有的孩子还在课外书上读过说让兔都抬起前腿,鸡都金鸡独立。这些有趣的解答方法虽然没有代表性,但也为课堂增添了很多乐趣。孩子对鸡兔同笼问题的记忆还是很深刻的。后来我简要介绍了“假设法”。其实以前我们奥数内容是直接把这种方法教给孩子。这种方法孩子不易理解,也很难自己探索到,但老师教会后,这确实是解答此类问题的`最有效方法。在新课改后,我们理解的是:让孩子获得解决问题的方法比掌握一点知识更重要。所以再讲鸡兔同笼问题,课堂的主阵场交给了孩子,孩子自己先列举再调整,这样是费了一些时间。“假设法”的介绍时间相对就短了许多,孩子当时听懂了,过一段又忘了,这实在是再正常不过的事。
给他讲了一遍,他很快听懂了,高兴的走了。我实在不能保证他是不是过一段还会忘。
这件事过去了很久,我一直在想,新课改后,老师的许多观念都发生了变化。我们想给孩子最有价值的东西。最有思维价值的数学方法。希望这些数学思想和方法能伴随孩子的一生,即使在以后的生活工作中不做数学了,也可以用这些思路和方法来解决一些其他的问题。所以我们的价值取向就变了。当时间发生冲突时,我们更愿意让孩子多感受多经历,相对讲授和练习的时间就少了。象鸡兔同笼这样的问题学生掌握假设法,不反复练习是很容易遗忘的。但是一节课的时间是有限的。孩子的经历也是需要大量的时间。就我们现在的价值观来取舍,我们选择了让孩子来自己体会尝试与猜测的快乐!可是,这个孩子的一句话却一直在我的心里回响:“老师,那样太麻烦了,请你告诉我吧”孩子有他自己的价值取向,他认为猜测再调整太麻烦,当他没有学到“假设法”时,他没有比较。但当他比较之后,他执着的选择了这个简洁的方法。虽然这个方法对于一个孩子的思维来说还是有点生涩难懂。但是,简洁明了不正是数学的魅力吗?我们总是想通过一些别的东西让孩子感受数学的美,当孩子感到数学的魅力去追寻时,我们还迟疑什么呢?对于课改,我们应以平常心去看待。我想,以后我遇到这样的问题,我一定不会迟疑。我会很高兴的告诉他:“孩子,你选择了最简单的方法,老师乐意给你再讲一遍。”
鸡兔同笼教学设计理念(精选21篇)篇十九
教学完《尝试与猜想》一课后,在一张综合练习的题卡上,出现了这样一道题。“鸡兔同笼,有17个头,24条腿。鸡兔各有多少只?”这是课堂上练过的习题,并没有什么难度,我想孩子做起来应该是没有问题的。一个学生问我,“老师,这道题可以用“假设法”做。可是我已经忘了假设法怎么做了,你能告诉我吗?”我沉吟了片刻,回忆了一下我上“鸡兔同笼”的经过。
鸡兔同笼出现在“尝试与猜想”中,既然课题是《尝试与猜想》,那么编者的意图一定不再是让我们教给孩子做此类题的技巧,而是通过合理猜测和调整达到想要的结果。不管是枚举还是列表,都是要不断调整自己的假设结果里正确结果更近。也就是要在一个合理区间中不断逼近正确的答案。我记得当时是通过一个幸运52的“猜价格”导入的。孩子在课堂中也展现了自己的很多思路,包括画图,有的孩子还在课外书上读过说让兔都抬起前腿,鸡都金鸡独立。这些有趣的解答方法虽然没有代表性,但也为课堂增添了很多乐趣。孩子对鸡兔同笼问题的记忆还是很深刻的。后来我简要介绍了“假设法”。其实以前我们奥数内容是直接把这种方法教给孩子。这种方法孩子不易理解,也很难自己探索到,但老师教会后,这确实是解答此类问题的最有效方法。在新课改后,我们理解的是:让孩子获得解决问题的方法比掌握一点知识更重要。所以再讲鸡兔同笼问题,课堂的主阵场交给了孩子,孩子自己先列举再调整,这样是费了一些时间。“假设法”的介绍时间相对就短了许多,孩子当时听懂了,过一段又忘了,这实在是再正常不过的事。
给他讲了一遍,他很快听懂了,高兴的走了。我实在不能保证他是不是过一段还会忘。
这件事过去了很久,我一直在想,新课改后,老师的许多观念都发生了变化。我们想给孩子最有价值的东西。最有思维价值的数学方法。希望这些数学思想和方法能伴随孩子的一生,即使在以后的生活工作中不做数学了,也可以用这些思路和方法来解决一些其他的问题。所以我们的价值取向就变了。当时间发生冲突时,我们更愿意让孩子多感受多经历,相对讲授和练习的时间就少了。象鸡兔同笼这样的`问题学生掌握假设法,不反复练习是很容易遗忘的。但是一节课的时间是有限的。孩子的经历也是需要大量的时间。就我们现在的价值观来取舍,我们选择了让孩子来自己体会尝试与猜测的快乐!可是,这个孩子的一句话却一直在我的心里回响:“老师,那样太麻烦了,请你告诉我吧”孩子有他自己的价值取向,他认为猜测再调整太麻烦,当他没有学到“假设法”时,他没有比较。但当他比较之后,他执着的选择了这个简洁的方法。虽然这个方法对于一个孩子的思维来说还是有点生涩难懂。但是,简洁明了不正是数学的魅力吗?我们总是想通过一些别的东西让孩子感受数学的美,当孩子感到数学的魅力去追寻时,我们还迟疑什么呢?对于课改,我们应以平常心去看待。我想,以后我遇到这样的问题,我一定不会迟疑。我会很高兴的告诉他:“孩子,你选择了最简单的方法,老师乐意给你再讲一遍。”
将本文的word文档下载到电脑,方便收藏和打印。
鸡兔同笼教学设计理念(精选21篇)篇二十
这节课上完后,自我感觉不够理想,有些设计不够好,更有一些细节未加重视,还有就是教师的基本功太弱。但在设计上还是有必须优势的,主要体此刻以下几点:
一、在课始,我开门见山的引出本节课要研究的主题“鸡兔同笼”问题;然后以一个数据比较小的鸡兔同笼问题,来引导学生,经历列表法,探讨假设法和方程法等多种解题策略和方法,并加以多媒体课件的展示,帮忙学生比较直观形象的理解解题方法,从而更好的突出本节课的重点。
二、由于“鸡兔同笼”问题在小学五年级时出现过,也有小部分学生可能在数奥书上见过,会做。大部分学生不是很会做,因此在备课时我充分思考到这个状况,所以在教学本课的重难点用假设法解答“鸡兔同笼”问题的第一部分假设全是鸡时以老师引导进学生行分析,加以课件演示,帮忙学生理解这种方法。然后学习假设全是兔时,以学生根据刚才的学习和理解自己独立完成并说明对每步理解,再加以课件演示。透过这两步的学习,大部分学生就应基本能利用假设法来解答“鸡兔同笼”问题。在此基础上教学方程法,主要教给学生找等量关系式,列方程从而让大部分学生能用方程法解决”鸡兔同笼”问题。估计教学时间有些问题。根据教学实际状况进行调整。
三、在这节课上我没有讲古人用的“抬脚法”的方法。这主要是依据学生的理解潜力和时间上的思考,本来这节课讲的方法就很多,个性是假设法学生理解就有困难,再将“抬脚法”讲了,可能学生消化不了,以其都没弄清楚,还不如分成两节课来讲,别外就是时间问题,如果把“抬脚法”讲了,可能学生练习的时间就少了,没办法有效的进行课堂巩固。因此,这节课我没有讲古人用的“抬脚法”。
四、我认为本节课的重难点都就应是在用假设法来解决“鸡兔同笼”问题上,在这部分的设计上,我看了很多资料和课例。都说得较为简单,并有不同的说法。在假设全部都是鸡那里,用26-16=10条腿,那里就应说是“多10条腿”还是“少10条腿”呢,教材上只是简单的说“这样就多出了10只脚”,透过我和我们年级组其他教师的讨论,并看了很多教案和课例,我觉得以假设后的腿与实际比学生较容易理解,当说到这个问题时能够直接说“比实际少了10条腿,为什么少呢?是把兔当成鸡算了,”那里是把兔假设成了鸡,肯定就应是少算10条腿。如果说成“多10条腿,为什么多呢?”就不好给学生解释了。这样也便于同前面的把一只兔当成一只鸡算就少2条腿联系起来。
本节课欠缺的地方:
一、在列表观察腿数变化时,在全是兔或全是鸡时,腿与实际相比为什么会有这样的变化,学生似乎不能很好的说出。反思了下,也是我设计时的一个弊端,没有给学生一个阶梯,跳跃太大,导致后面学生对为什么除以2一知半解。蔡老师给了我一个推荐,能够在列表的基础上画图。全部画成鸡,腿16条,一只鸡变为一只兔,腿增加2条,之后再变。让学生透过形象的展示更加清楚腿数变化的真正原因。
二、还有一点比较重要的是计算完验算的过程在上课时被我忘掉了,虽然在课上我也引导他们观察,假设全是鸡先算出的是什么,全是兔是先算出是什么,但学生还是会马虎的,会计算错误,或鸡兔数量弄错因此很多学生会把鸡兔的数量弄错,验算很关键。
三、上课时,为体现方法多样,想着简单让学生了解下方程思想,实践之后发现完全能够把这块去掉,一者学生没有提出,二者在教授假设法时时间不够充裕。
鸡兔同笼教学设计理念(精选21篇)篇二十一
1、通过对日常生活中现象的观察和思考,发现一些特殊的规律。
2、从不同角度分析,掌握列表解题的策略与方法。
3、培养学生分析的能力,初步渗透假设的.数学思想。
从不同角度分析,掌握列表解题的策略与方法。
多媒体课件。
一、激趣导入。
二、开展活动,探究规律。
三、利用规律,实题操作。
四、练习。
五、课外延伸。