学习总结是对学习目标和计划的检查和评估,可以帮助我们更好地规划学习的未来。小编整理了一些学习总结范文,希望能为大家提供一些写作思路和方法。
高等数学学习方法总结(汇总23篇)篇一
任何学科,基础内容常常是最重要的部分,它关系到学习的成败与否。高等数学本身就是数学和其他学科的基础,而高等数学又有一些重要的基础内容,它关系的全局。以微积分部分为例,极限贯穿着整个微积分,函数的连续性及性质贯穿着后面一系列定理结论,初等函求导法及积分法关系到今后个学科。因此,一开始就要下狠功夫,牢牢掌握这些基础内容。在学习高等数学时要一步一个脚印,扎扎实实地学和练,成功的大门一定会向你开放。
高等数学学习方法总结(汇总23篇)篇二
所谓学,包括学和问两方面,即向教师,向同学,向自己学和问。惟有在学中问和问中学,才能消化数学的概念,理论。方法。所谓思,就是将所学内容,经过思考加工去粗取精,抓本质和精华。华罗庚“抓住要点”使“书本变薄”的这种勤于思考,善于思考,从厚到薄的`学习数学的方法,值得我们借鉴。所谓习,就高等数学而言,就是做练习。这一点数学有自身的特点,练习一般分为两类,一是基础训练练习,经常附在每章每节之后。这类问题相对来说比较简单,无大难度,但很重要,是打基础部分。知识面广些不局限于本章本节,在解决的方法上要用到多种数学工具。数学的练习是消化巩固知识极重要的一个环节,舍此达不到目的。
高等数学学习方法总结(汇总23篇)篇三
2、认真听课:紧紧抓住课堂50分钟,注意老师的讲解方法和思路及其分析问题、解决问题的过程,特别是渗透在典型例题中的数学思想方法,记好课堂笔记。听课是一个全身心投入----听、记、思相结合的过程。要做到听讲不走神,练习不求情,考试不靠人,一听二写三问四记五参考,能力也就提高了。
3、课后复习:当天必须回顾一下老师讲授的内容,看看自己记得多少;然后打开笔记、教材,完善笔记,沟通联系;最后完成作业。
高等数学学习方法总结(汇总23篇)篇四
数学中有很多概念。概念反映的是事物的本质,弄清楚了它是如何定义的、有什么性质,才能真正地理解一个概念。所有的问题都在理解的基础上才能做好。
第二,要掌握定理。
定理是一个正确的命题,分为条件和结论两部分。对于定理除了要掌握它的条件和结论以外,还要搞清它的适用范围,做到有的放矢。
第三,在弄懂例题的基础上作适量的习题。
要特别提醒学习者的是,课本上的例题都是很典型的,有助于理解概念和掌握定理,要注意不同例题的特点和解法在理解例题的基础上作适量的习题。作题时要善于总结——不仅总结方法,也要总结错误。这样,作完之后才会有所收获,才能举一反三。
第四,理清脉络。
要对所学的知识有个整体的把握,及时总结知识体系,这样不仅可以加深对知识的理解,还会对进一步的学习有所帮助。
高等数学中包括微积分和立体解析几何,级数和常微分方程。其中尤以微积分的内容最为系统且在其他课程中有广泛的应用。微积分的理论,是由牛顿和莱布尼茨完成的。(当然在他们之前就已有微积分的应用,但不够系统)。
数学备考一定要有一个复习时间表,也就是要有一个周密可行的计划。按照计划,循序渐进,切忌搞突击,临时抱佛脚。其实数学是基础性学科,解题能力的提高,是一个长期积累的过程,因而复习时间就应适当提前,循序渐进。大致在三、四月分开始着手进行复习,如果数学基础差可以将复习的时间适当提前。复习一定要有一个可行的计划,通过计划保证复习的进度和效果。一般可以将复习分成四个阶段,每个阶段的起止时间和所要完成的任务考生应给予明确规定,以保证计划的可行性。第一个阶段是按照考试大纲划分复习范围,在熟悉大纲的基础上对考试必备的基础知识进行系统的复习,了解考研数学的基本内容、重点、难点和特点。这个时间段一般划定为六月前。第二个阶段是在第一阶段的基础上,做一定数量的题,重点解决解题思路的问题。一般从七月到十月。这个阶段要注意归纳总结,即拿到题后要知道从什么角度,可以分几步去求解,每道题并不要求都要写出完整步骤,只要思路有了,运算过程会做了,可以视情况而灵活掌握,这样省出时间来看更多的题。所选试题可以是历年真题,也可以是书上的练习题,但真题一定要做,而且要严格按照实考的要求去做,把握真题的特点和解题思路及运算步骤。第三个阶段是实战训练阶段,从十一月到十二月的中旬,这也是临考前非常重要的阶段。考生要对大纲所要求的知识点做最后的梳理,熟记公式,系统地做几套模拟试卷,进行实战训练,自测复习成果。在做模拟题前先要系统记忆掌握基本公式,做题要讲究质量,既要有速度,又要有严格的步骤、格式和计算的准确性。最后阶段是考前冲刺,从十二月下旬到考试。针对在做模拟试题过程中出现的问题作最后的补习,查缺补漏,以便以的状态参加考试。学好数学是一个长期的过程,来不得半点的投机取巧,所以考前突击,临时抱佛脚的做法是不足取的,只有按照自己的计划,踏踏实实的进行准备,才能以不变应万变,只要自己的综合能力提高了,不管考试如何变化,都能取得好的成绩。
数学的学习一定要每天都有个进度,每天都要有题量,我们不应该搞题海战术,但是通过做题提高实战经验也是必须的,首先有个大的学习框架,然后计划到每天,怎么去学习,每天做那方面的题,定期的查漏补缺,这样的学习才真正的有效果。
在高等教育自学考试的很多专业中,很多都有高等数学课程。很多考生反映,高等数学(一)通过非常难,林士中老师所教授的高等数学课程一直受到广大网校学员的好评。在授课之余,林教授传授了通过高数的诀窍。他说,在学习高数(一)之前,首先你要打好基础,把初中的数学补回来,再参加这两门课程的考试就好的多。
林士中:我对同学了解的情况,一种是原来中学学的初等知识掌握太少,高等数学没有用大量的初等数学知识,但是要用一部分的知识。有些同学不是高等数学知识没掌握好,主要是初等数学知识不够数量,或者掌握太少,变形变不过来,这样就算你知道高等数学,但是初等掌握不好,考试肯定会遇到一定困难。如果你是初等数学掌握过少影响考试不及格,你应该把最基本的初等数学知识复习。自考365网校已经推出了高等数学的基础辅导课程,介绍微积分当中用到的初等数学有哪些,大概有6课时。介绍微积分当中用到的初等数学有哪些,如果有一部分同学感到初等数学知识不够用,我希望同学不要害怕,你即便初等数学知识不够好,不见得过不了。希望大家多花点时间学习,可以起到事半功倍的效果。
第二个,有些同学觉得,学高等数学,或者微积分,主要靠理解,但是实际上这里边有一些误会,数学主要是靠理解,但是和其他课程有区别,其他课程靠记忆比较多,当然也要理解,但是数学,靠理解的比较多,不等于不要记忆,特别有些基本的东西必须记的大家还要记忆,比如说一些基本概念,导数的定义,连续性的定义这些基本的东西要适当的记一下。
第三个,基本公式表,微分公式表也要记,这些基本的东西大家还要记。积分公式表记不住,积分就过不了关,在记忆的基础上适当做一些题达到融会贯通,我希望大家做好这两方面的复习。
有同学初等数学不会的,经过努力,这样的都能考过,其他人一定能考过。当然得补一些数学,不补是不行的,你们提出来补什么好,我跟大家说,初等数学不像你们中学那样什么都要考,中学老师教你们主要是竞争,考大学是一种竞争性质,要求的内容相当多,偏题怪题都有,但是作为学高等数学不是竞争性质,只要求掌握基本知识,所以这部分就要把初等数学的基本内容掌握好就行,实际上我个人觉得,你只要有决心补初等数学,有两三天就够了。
认真听课。既然是高数课,自然是老师讲课,一周的高数课的节数肯定不会少。所以,老师上课就是最好的一个学习媒介。少年们,上课努力早起去做前排吧。如果老师够认真负责,相信做好了这一步,那就基本上成功了一半.
买一本靠谱的考研书。如果老师不认真负责,只会用蚊子般大小的声音念念ppt怎么办;根本听不下去怎么办。这个时候,不用慌张,其实还是有很多很好的选择,推荐去买一本厚厚的考研书,不用担心,考研书就是帮你们复习大一的高数知识,而且上面通常整理的非常好。各类例题也都是平时常考的类型。
做好笔记。书上一些没有的证明和老师上课随性发挥的精华可是一瞬即逝的哒。做好笔记还有益于自己上课认真专注。如果是自己看书也需要记笔记。
按时做作业。还记得高中时怎么没日没夜的做作业吗,practicemakesperfect,这句话是没有错的,高数的作业会有很多,而它对你学好高数的重要性也不言而喻的。而且,作业好还有平时分还高,最后总评也高不是。
学习公开课。如果对一些证明,推理,或者概念不清楚,想要找个名师的话,网络上的公开课其实是一个非常好的选择。这也是现在的教育的一种趋势,这里推荐一些常用的,比如mooc,爱课程网,网易公开课等等。国外名校的都是大师,听完他们的讲解相信一定会对高数和整个数学体系有一个新的理解,并对它产生兴趣。
高等数学学习方法总结(汇总23篇)篇五
数学最需要强调的是基础而不是技巧。很多同学不重视基础的学习,反而只是忙着做题,做难题,就想通过题海战术取胜,这是不行的,选择辅导班一定不要选择一味追求技巧的,可以上有命题组老师的辅导班,从而能够准确把握命题思路,不至于走偏了方向。
善于归纳,学会总结,使知识条理化系统化。
善于总结也是我要十分强调的一点。因为很多同学做题的过程就到对过答案或是纠正过错误就简单的结束了,一套题的价值也就到此为止了。大家在纠正完错误之后,再把这套试题从头看一遍,总结一下自己都在哪些方面出错了,原因是什么,这套题中有没有出现我不知道的新的方法、思路,新推导出的定理、公式等,并把这些有用的知识全都写到你的笔记本上,以便随时查看和重点记忆。对于大题的解题方法,要仔细想一想,都涉及到哪些科目和章节了,这些知识点之间有哪些联系等,从而使自己所掌握的知识系统化,以达到融会贯通。只有这样,才能使你做过的题目实现其的价值,也才算是你真正做懂了一套题。如果你能够这样做了,那么做过的题在以后的复习中如果没有时间了,就不用再拿出来重新看了,因为你已经把要掌握的精华总结好了,只需看你的笔记本就行了。解数学题一定要从思路,原理的角度入手。
要勤于思考,多动脑子。
很多同学学数学就喜欢看例题,看别人做好的题目,分析别人总结好的解题方法、步骤。只这样是远远不够的。只是一味的被动的接受别人的东西,就永远也变不成自己的东西。第一遍复习可以只看题,但以后就必须自己试着做了,先不看答案,完全通过自己的能力做着试试,不管能做到什么程度,起码你自己先思考了,只有启动自己的大脑,才会使知识更深入的得到理解和掌握,才能真正成为自己的知识,也才会具有独立的解题能力。在做题时不要太轻易的选择放弃,想一会儿没有思路就去看答案,一定要仔细开动脑筋想过之后,实在不行再求助于外力。
高等数学学习方法总结(汇总23篇)篇六
数学的方法和理论的掌握,就实践经验表明常常需要频率大于4否则做不到熟能生巧,触类旁通。人不可能通过一次学习就掌握所学的知识,需要有几个反复。
所谓“学而时习之”温故而知新”都有是指学习要经过反复多次。高等数学的记忆,必建立在理解和熟练做题的基础上,死记硬背无济于事。在学习的道路上是没有平坦大道的,可是“学习有险阻,苦战能过关“。”人生能有几回搏?“人生总能搏几回!”每个学子应当而且能与高等数学“搏一搏”。
高等数学学习方法总结(汇总23篇)篇七
所谓把基本概念搞懂,我想是不是应该从以下几个方面来理解和把握。第一个是这个概念产生的实际背景是什么。然后,定义这个概念所运用到的数学思想和方法是什么。接下来这个概念的定义式,它的数学含义,几何意义和物理意义以及在这个概念上的拓展和延伸等等。对于每个概念我们都要尽可能的从这几个方面来理解把握。把概念学懂了,这是学懂数学的至关重要的一步。
二、基本理论搞透。
这包含三个方面的内容。第一所谓理论性的内容,定理、性质、推论,你首先要清楚它的条件是什么,结论是什么,这是最起码的要求。然后这些定理、性质、条件它的性质和条件要搞清楚,比如说是充分必要的还是充分必要的。我结合07年的考题给大家说。07年数学二第7个选择题,同学可以回去对照题目看。它是考察二元函数在某一点处可微的一个充分条件。你在学习的时候,你刚开始学高等数学的时候,老师都讲,二元函数在某一点处可微的充分条件是一阶偏导连续。
再比如数学一三四考的第十道选择题,是写边缘概率密度是哪个。告诉你一个二维正态分布。我们在辅导的时候告诉同学,我还总结了一条文登语录,你见到了这个,你第一要想到二维正态分布的边缘分布是正态分布,第二个是边缘现象的任意组合仍然是正态分布,第三个是两个随机变量的不相关和独立是充分必要的,也就是等价的。在这样的情况下,你知道了这些就可以做出正确的选择,所以说基本的理论要搞透,首先搞清楚它的条件和结论,这个条件是充分必要的还是充分的,必须要搞清楚。
基本理论的第二个方面就是要尽可能的从几何和数值的角度来理解这些抽象的理论。反映到今年的考题上,比如说一二三四都用到的一个选择题,基本象限函数这道题,f3、f负2、f2哪个选项正确的问题,如果你的基本的理论搞清楚了,只需要算一个f2就可以了。
基本理论搞透的第三个方面是要注意搞清楚相关理论间的有机联系。这一点,在线性代数这门课中更加的突出。在今年的考题中问你两个矩阵的关系是合同还是相似,我们对这些理论和概念,你如果比较熟练和清楚的话,你就知道找什么东西。我们在讲课的时候说,相似有四等,你一看这两个不相等,肯定不相似,必要条件有一个不满足,肯定是不相似的。合同,你需要找两个矩阵的特征值的,正的特征值和负的特征值的个数,这是要搞清楚基本理论第三个方面,相关理论的有机联系。
高等数学学习方法总结(汇总23篇)篇八
有些同学在接触高等数学时就没有把握好自己,一看高等数学一开始的内容和中学所学内容极其相似,就掉以轻心,认为自己看看就会了,要么不认真听课,要么不完成作业,结果导致后面的章节听不懂、跟不上,甚至有些同学就一直跟不上,导致期末考试成绩不理想,甚至不及格。
高等数学学习方法总结(汇总23篇)篇九
由于《高等数学》自身的特点,不可能老师一教,学生就全部领会掌握。一些内容如函数的连续与间断,积分的换元法、分步积分法等一时很难掌握,这需要每个同学反复琢磨,反复思考,反复训练,锲而不舍。通过正反例子比较,从中悟出一些道理,才能从不懂到一知半解到基本掌握。这里仅结合一般学习方法,谈一点学习《高等数学》的方法,供参考。
第一,要勤学、善思、多练。所谓学,包括学和问两方面,即向教师,向同学,向自己学和问。惟有在“学中问”和“问中学”,才能消化数学的概念、理论、方法;所谓思,就是将所学内容,经过思考加工去粗取精,抓本质和精华。华罗庚“抓住要点”使“书本变薄”的这种勤于思考、善于思考、从厚到薄的学习数学的方法,值得我们借鉴;所谓习,就《高等数学》而言,就是做练习,这是数学自身的特点。练习一般分为两类,一是基础训练练习,经常附在每章每节之后,这类问题相对来说比较简单,无大难度,但很重要,是打基础部分。二是提高训练练习,知识面广些,不局限于本章本节,在解决的方法上要用到多种数学工具。数学的练习是消化巩固知识极重要的一个环节,舍此达不到目的。
第二,狠抓基础,循序渐进。任何学科,基础内容常常是最重要的部分,它关系到学习的成败与否。《高等数学》本身就是数学和其他学科的基础,而《高等数学》又有一些重要的基础内容,它关系到整个知识结构的全局。以微积分部分为例,极限贯穿着整个微积分,函数的连续性及性质贯穿着后面一系列定理结论,初等函数求导法及积分法关系到今后各个学科。因此,一开始就要下狠功夫,牢牢掌握这些基础内容。在学习《高等数学》时要一步一个脚印,扎扎实实地学和练。
节时,要特别注意有基础内容派生出来的一些结论,即所谓一些中间结果,这些结果常常在一些典型例题和习题上出现,如果你能多掌握一些中间结果,则解决一般问题和综合训练题就会感到轻松。
第四,精读一本参考书。实践证明,在教师指导下,抓准一本参考书,精读到底,如果你能熟读了一本有代表性的参考书,再看其它参考书就会迎刃而解了。
第五,注意学习效率。数学的方法和理论的掌握,常常需要做到熟能生巧、触类旁通。人不可能通过一次学习就掌握所学的知识,需要有几个反复。所谓“学而时习之”、“温故而知新”都是指学习要经过反复多次。《高等数学》的记忆,必须建立在理解和熟练做题的基础上,死记硬背无济于事。
第六,掌握学习规律。
1.书:课本+习题集(必备),因为学好数学绝对离不开多做题,建议习题集最好有本跟考研有关的,这样也有利于你做好将来的考研准备。
2.笔记:尽量有,我说的笔记不是指原封不动的抄板书,那样没意思,而且不必非单独用个小本,可记在书上。关键是在笔记上一定要有自己对每一章知识的总结,类似于一个提纲,(有时老师或参考书上有,可以参考),最好还有各种题型+方法+易错点。
3.上课:建议最好预习后听,听不懂不要紧,很多大学的课程都是靠课下结合老师的笔记自己重新看。但是记住:高数千万别搞考前突击,绝对行不通,所以平时你就要跟上,步步尽量别断层。
4.学好高数=基本概念透+基本定理牢+基本网络有+基本常识记+基本题型熟。数学就是一个概念+定理体系(还有推理),对概念的理解至关重要,比如说极限、导数等,你既要有形象的对它们的理解,也要熟记它们的数学描述,不用硬背,可以自己对着书举例子,画个图看看(形象理解其实很重要),然后多做题,做题中体会。建议你用一只彩笔专门把所有的概念标出来,这样看书时一目了然(定理用方框框起来)。基本网络就是上面说的笔记上的总结的知识提纲,也要重视。基本常识就是高中时老师常说的“准定理”,就是书上没有,在习题中我们总结的可以当定理或推论用的东西,还有一些自己小小的经验。这些东西不正式但很有用的,比如各种极限的求法。
这些都做到了,高等数学应该学得不会差了,至少应付考试没问题。如果你想提高些,可以做些考研的数学题,体会一下,其实也不过如此,并不象你想象的那么难。还可以看些关于高数应用的书,其实数学本来就是从应用中来的,你会知道高等数学真的很有用。
高等数学学习方法总结(汇总23篇)篇十
一个高中生升入大学学习后,不仅要在环境上、心理上适应新的学习生活,同时学习方法的改变也是一个不容忽视的方面。
从中学升入大学学习后,在学习方法上将会遇到一个比较大的转折。首先是对大学的教学方式和方法会感到很不适应。这在高等数学课程的教学中反应特别明显,因为它是一门对大一新生首当其冲的理论性较强的基础理论课程。而学生正是习惯于模仿性和单一性的学习方法。这是从小学到中学的教育中长期养成的,一时还难以改变。
中学的教学方式和方法与大学有质的差别,中学的学习学生是在教师的直接指导下进行模仿和单一性的学习,大学则是在教师的指导下进行创造性的学习。而大学高等数学课程的学习,教材仅是作为一种主要的参考书,要求学生以课堂上老师所讲的重点和难点为线索,课后去钻研教材和阅读大量的同类参考书,然后去完成课后习题。就这样反复地进行创造性学习。这是一种艰苦的脑力劳动,需要学生能反复地、自觉地进行学习。还要在松散的环境中能约束自己。
大学生活是人生的一大转折点。大学时期注重于培养同学们的独立生活、独立思考、独立分析问题和解决问题的能力,而不像中学那样有一个依赖的环境。高等数学与高中数学相比有很大的不同,内容上主要是引进了一些全新的数学思想,特别是无限分割逐步逼近,极限等;从形式上讲,学习方式也很不一样,特别是一般都是大班授课,进度快,老师很难个别辅导,故对自学能力的要求很高。中学时期主要是老师领着学,学生只需要跟着老师的指挥棒走就可以了,而在大学时主要靠自学,教师只起一个引导的作用。新同学应尽快适应大学生活,形成一个良好的开端,这对四年的大学生涯是有益的。
中学数学课程的中心是从具体数学到概念化数学的转变。中学数学课程的宗旨是为大学微积分作准备。学习数学总要经历由具体到抽象、由特殊到一般的渐进过程。由数引导到符号,即变量的名称;由符号间的关系引导到函数,即符号所代表的对象之间的关系。高等数学首先要做的是帮助学生发展函数概念——变量间关系的表述方式。这就把同学们的理解力从常量推进到变量、从描述推进到证明、从具体情形推进到一般方程,开始领会到数学符号的威力。但《高等数学》的主要内容是微积分,它继承了中学的训练,它们之间有千丝万缕的联系。
为了适应21世纪高等数学课程的教学改革,高等数学课程的教学也发生了很大的变化,在传统的教学手段的基础上,采用了更加具体化、形象化的现代教育技术,这也是一般中学所没有的,因此,同学们在进入大学以后,不仅要注意高等数学课程的内容与中学数学的区别与联系,还要尽快适应高等数学课程的新的教学特点。认真上好第一节高等数学课,严格按照任课老师的要求去做。若能坚持做到,课前预习,课上听讲,课后复习,认真完成作业,课后对所学的知识进行归纳总结,加深对所学内容的理解,从而也就掌握了所学的知识,就不难学好高等数学这门课。有些同学就是没有把握好自己,一看高等数学一开始的内容和中学所学内容极其相似,就掉以轻心,认为自己看看就会了,要么不听课,要么不完成作业,结果导致后面的章节听不懂,跟不上,甚至有的同学就一直跟不上,学期末成绩不理想,甚至不及格。
第一,要勤学、善思、多练。所谓学,包括学和问两方面,即向教师,向同学,向自己学和问。惟有在“学中问”和“问中学”,才能消化数学的概念、理论、方法;所谓思,就是将所学内容,经过思考加工去粗取精,抓本质和精华。华罗庚“抓住要点”使“书本变薄”的这种勤于思考、善于思考、从厚到薄的学习数学的方法,值得我们借鉴;所谓习,就《高等数学》而言,就是做练习,这是数学自身的特点。练习一般分为两类,一是基础训练练习,经常附在每章每节之后,这类问题相对来说比较简单,无大难度,但很重要,是打基础部分。二是提高训练练习,知识面广些,不局限于本章本节,在解决的方法上要用到多种数学工具。数学的练习是消化巩固知识极重要的一个环节,舍此达不到目的。
第二,狠抓基础,循序渐进。任何学科,基础内容常常是最重要的部分,它关系到学习的成败与否。《高等数学》本身就是数学和其他学科的基础,而《高等数学》又有一些重要的基础内容,它关系到整个知识结构的全局。以微积分部分为例,极限贯穿着整个微积分,函数的连续性及性质贯穿着后面一系列定理结论,初等函数求导法及积分法关系到今后各个学科。因此,一开始就要下狠功夫,牢牢掌握这些基础内容。在学习《高等数学》时要一步一个脚印,扎扎实实地学和练。第三,归类小结,从厚到薄。记忆总的原则是抓纲,在用中记。归类小结是一个重要方法。《高等数学》归类方法可按内容和方法两部分小结,以代表性问题为例辅以说明。在归类小节时,要特别注意有基础内容派生出来的一些结论,即所谓一些中间结果,这些结果常常在一些典型例题和习题上出现,如果你能多掌握一些中间结果,则解决一般问题和综合训练题就会感到轻松。
第四,精读一本参考书。实践证明,在教师指导下,抓准一本参考书,精读到底,如果你能熟读了一本有代表性的参考书,再看其它参考书就会迎刃而解了。
第五,注意学习效率。数学的方法和理论的掌握,常常需要做到熟能生巧、触类旁通。人不可能通过一次学习就掌握所学的知识,需要有几个反复。所谓“学而时习之”、“温故而知新”都是指学习要经过反复多次。《高等数学》的记忆,必须建立在理解和熟练做题的基础上,死记硬背无济于事。
1.书:课本+习题集(必备),因为学好数学绝对离不开多做题,建议习题集最好有本跟考研有关的,这样也有利于你做好将来的考研准备。
2.笔记:尽量有,我说的笔记不是指原封不动的抄板书,那样没意思,而且不必非单独用个小本,可记在书上。关键是在笔记上一定要有自己对每一章知识的总结,类似于一个提纲,(有时老师或参考书上有,可以参考),最好还有各种题型+方法+易错点。
3.上课:建议最好预习后听,听不懂不要紧,很多大学的课程都是靠课下结合老师的笔记自己重新看。但是记住:高数千万别搞考前突击,绝对行不通,所以平时你就要跟上,步步尽量别断层。
4.学好高数=基本概念透+基本定理牢+基本网络有+基本常识记+基本题型熟。数学就是一个概念+定理体系(还有推理),对概念的理解至关重要,比如说极限、导数等,你既要有形象的对它们的理解,也要熟记它们的数学描述,不用硬背,可以自己对着书举例子,画个图看看(形象理解其实很重要),然后多做题,做题中体会。建议你用一只彩笔专门把所有的概念标出来,这样看书时一目了然(定理用方框框起来)。基本网络就是上面说的笔记上的总结的知识提纲,也要重视。基本常识就是高中时老师常说的“准定理”,就是书上没有,在习题中我们总结的可以当定理或推论用的东西,还有一些自己小小的经验。这些东西不正式但很有用的,比如各种极限的求法。
这些都做到了,高等数学应该学得不会差了,至少应付考试没问题。如果你想提高些,可以做些考研的数学题,体会一下,其实也不过如此,并不象你想象的那么难。还可以看些关于高数应用的书,其实数学本来就是从应用中来的,你会知道高等数学真的很有用。
高等数学学习方法总结(汇总23篇)篇十一
记忆总的原则是抓纲,在用中记。归类小结是一个重要方法。高等数学归类方法可按内容和方法两部分小结,以代表性问题为例辅以说明。在归类小节时,要特别注意有基础内容派生出来的一些结论,即所谓一些中间结果,这些结果常常在一些典型例题和习题上出现,如果你能多掌握一些中间结果,则解决一般问题和综合训练题就会感到轻松。
高等数学学习方法总结(汇总23篇)篇十二
我们必须意识到高等数学不可能像中学数学那样通过大量的练习来学习,甚至是模仿。一方面是它没有多种相关的资料,另一方面是高等数学与中学数学的思维方式有很大的差别。所以我们要想学好高等数学,就要做到读懂参考书,要反复的看,要从你看似熟悉的'参考书中不断的探索出新的东西,把它总结出来纳入自己的知识结构当中去(华考范文)。古人云:“温故而知新”,跟我们这里的新的学习思路大概异曲同工吧。
高等数学学习方法总结(汇总23篇)篇十三
大学生学习高等数学要掌握合适的学习方法,因人而异,这里我只是结合我自己的一些学习方法和经验供大家参考。
高等数学作为高等教育的一门基础学科,几乎对所有的专业的学习都有帮助,对于我们飞行器动力工程专业,高等数学是联系物理,力学,以及贯穿于专业基础课的一把刃剑和纽带,对于大一这一年的学习尤为重要,只有打下坚实的基础,对于之后学习其他的学科,包括选修课中的工程数学的分支(复变函数,数理方程等),都有很大的帮助。
首先了解高等数学的组织结构,大一上学期主要学习极限,函数,以及微分和积分,(空间几何在下学期学),在期末考试中大多数都集中在积分和微分这部分。极限是积分和微分的基础,重要的概念和思想在学习极限这部分就会体现出来,有些问题运用基本定义就会迎刃而解,在掌握了基本概念和常用的解题方法后,学习起来就会很轻松;下学期比较重要,相对于上学期的内容也较丰富和复杂;对于偏导数和曲线积分、曲面积分,需要扎实的微积分思想,此外就是级数和微分方程;总之,高等数学可以说是积分,微分占据主要地位。
(一)做题的方法和技巧。
学习高等数学的过程中必不可少的就是学习方法的及时总结,理想的情况下就是保证每个人手中都有一本课外的教辅书(个人推荐吉米多维奇),在平时做作业和做课外题目的过程中,自己会做的题目也要做到自己的思想和答案的思想进行比较,互相补充,遇到好的解题方法要记下来,要记的内容是题目,方法和自己的感受;遇到不明白的题目时不要浮躁,也不要着急先看答案,首先进行冷静的思考,要知道考的内容是什么,要用到什么知识点,然后一步一步看答案,这里我的意思是先看答案的第一步求解的问题是什么,然后停止看答案,想一想答案的这一步对你是否有启示作用,接下来自己试一试能不能继续独立往下做,如果不行的话继续往下看答案,直到做出来为止,做完后一定做好笔记。
(二)考试后的反思。
每次的期中考试和期末考试结束后,应该知道自己在考场上不足的地方在哪里,需要提高的地方在哪里,这里不仅仅是对知识的掌握程度,更重要的还有考场技巧和心态的把握;并做好相应总结。期中考试结束后将卷子上的错题改正过来,将错题记到笔记上(包括解题思想和自己的感受),避免犯同样的错误;期末考试卷子不会发下来,但是考完后也要反思自己的不足,要记住学习不是为了应付考试,而是为将来学习专业基础课以及专业课。
(三)心态的养成。
作为学习理工科的学生,我们应具备的素质是切勿浮躁,抵得住寂寞,无论做什么题目,一定做好冷静的分析后在做,避免走弯路,并注意平时勤思考习惯的养成,注意多种方法的比较以及发散思维的培养。以上我说的在做题是注意将自己的思想和答案的思想做比较就是培养发散思维的一方面,当题目做到一定的数量时,就会发现得心应手,习惯成自然,也不知不觉做到的举一反三,这不仅仅是对高等数学的学习,其他科目也是一样。
总之,做好了以上三大点,我想学好高等数学不会成问题了。
高等数学学习方法总结(汇总23篇)篇十四
由于《高等数学》自身的特点,不可能老师一教,学生就全部领会掌握。一些内容如函数的连续与间断,积分的换元法、分步积分法等一时很难掌握,这需要每个同学反复琢磨,反复思考,反复训练,锲而不舍。通过正反例子比较,从中悟出一些道理,才能从不懂到一知半解到基本掌握。这里仅结合一般学习方法,谈一点学习《高等数学》的方法,供参考。
第一,要勤学、善思、多练。所谓学,包括学和问两方面,即向教师,向同学,向自己学和问。惟有在“学中问”和“问中学”,才能消化数学的概念、理论、方法;所谓思,就是将所学内容,经过思考加工去粗取精,抓本质和精华。华罗庚“抓住要点”使“书本变薄”的这种勤于思考、善于思考、从厚到薄的学习数学的方法,值得我们借鉴;所谓习,就《高等数学》而言,就是做练习,这是数学自身的特点。练习一般分为两类,一是基础训练练习,经常附在每章每节之后,这类问题相对来说比较简单,无大难度,但很重要,是打基础部分。二是提高训练练习,知识面广些,不局限于本章本节,在解决的方法上要用到多种数学工具。数学的练习是消化巩固知识极重要的一个环节,舍此达不到目的。
第二,狠抓基础,循序渐进。任何学科,基础内容常常是最重要的部分,它关系到学习的成败与否。《高等数学》本身就是数学和其他学科的基础,而《高等数学》又有一些重要的基础内容,它关系到整个知识结构的全局。以微积分部分为例,极限贯穿着整个微积分,函数的连续性及性质贯穿着后面一系列定理结论,初等函数求导法及积分法关系到今后各个学科。因此,一开始就要下狠功夫,牢牢掌握这些基础内容。在学习《高等数学》时要一步一个脚印,扎扎实实地学和练。
节时,要特别注意有基础内容派生出来的一些结论,即所谓一些中间结果,这些结果常常在一些典型例题和习题上出现,如果你能多掌握一些中间结果,则解决一般问题和综合训练题就会感到轻松。
第四,精读一本参考书。实践证明,在教师指导下,抓准一本参考书,精读到底,如果你能熟读了一本有代表性的参考书,再看其它参考书就会迎刃而解了。
高等数学学习方法总结(汇总23篇)篇十五
俗话说,熟能生巧。练习做多了,看到类似的问题就能轻松应付,对症下药。在做练习时,要清楚每一步的思路,上一步为什么会得到下一步,都要了如指掌。对不懂的问题一定要问。说到问,陶行知先生说过:“发明千千万,起点在一问。”学数学也是一样,一定要多动手,动口。在动口之前要先学会思考,因为思考了才会有问题可问。不要以为思考是那些做学问的学者们的专利,只要是有思想的人,任何人都可以步入思考的行列。只有在不断思考探求中才能充实自己的大脑。当然也要避免盲目做习题,改变中学时期“只知道做题”的习惯。要独立思考,不要做太多的难题、偏题。另外要注意数学语言表述的正确性,论证的严密性,养成一种科学严谨的思维习惯。
高等数学学习方法总结(汇总23篇)篇十六
>学习高等数学要做的准备
在高等教育自学考试的很多专业中,很多都有高等数学课程。很多考生反映,高等数学(一)通过非常难,林士中老师所教授的高等数学课程一直受到广大网校学员的好评。在授课之余,林教授传授了通过高数的诀窍。他说,在学习高数(一)之前,首先你要打好基础,把初中的数学补回来,再参加这两门课程的考试就好的多。
林士中:我对同学了解的情况,一种是原来中学学的初等知识掌握太少,高等数学没有用大量的初等数学知识,但是要用一部分的知识。有些同学不是高等数学知识没掌握好,主要是初等数学知识不够数量,或者掌握太少,变形变不过来,这样就算你知道高等数学,但是初等掌握不好,考试肯定会遇到一定困难。如果你是初等数学掌握过少影响考试不及格,你应该把最基本的初等数学知识复习。自考365网校已经推出了高等数学的基础辅导课程,介绍微积分当中用到的初等数学有哪些,大概有6课时。介绍微积分当中用到的初等数学有哪些,如果有一部分同学感到初等数学知识不够用,我希望同学不要害怕,你即便初等数学知识不够好,不见得过不了。希望大家多花点时间学习,可以起到事半功倍的效果。
第二个,有些同学觉得,学高等数学,或者微积分,主要靠理解,但是实际上这里边有一些误会,数学主要是靠理解,但是和其他课程有区别,其他课程靠记忆比较多,当然也要理解,但是数学,靠理解的比较多,不等于不要记忆,特别有些基本的东西必须记的大家还要记忆,比如说一些基本概念,导数的定义,连续性的定义这些基本的东西要适当的记一下。
第三个,基本公式表,微分公式表也要记,这些基本的东西大家还要记。积分公式表记不住,积分就过不了关,在记忆的基础上适当做一些题达到融会贯通,我希望大家做好这两方面的复习。
有同学初等数学不会的,经过努力,这样的都能考过,其他人一定能考过。当然得补一些数学,不补是不行的,你们提出来补什么好,我跟大家说,初等数学不像你们中学那样什么都要考,中学老师教你们主要是竞争,考大学是一种竞争性质,要求的内容相当多,偏题怪题都有,但是作为学高等数学不是竞争性质,只要求掌握基本知识,所以这部分就要把初等数学的基本内容掌握好就行,实际上我个人觉得,你只要有决心补初等数学,有两三天就够了。
高等数学学习方法总结(汇总23篇)篇十七
第一,要勤学、善思、多练。所谓学,包括学和问两方面,即向教师,向同学,向自己学和问。惟有在“学中问”和“问中学”,才能消化数学的概念、理论、方法;所谓思,就是将所学内容,经过思考加工去粗取精,抓本质和精华。华罗庚“抓住要点”使“书本变薄”的这种勤于思考、善于思考、从厚到薄的学习数学的方法,值得我们借鉴;所谓习,就《高等数学》而言,就是做练习,这是数学自身的特点。练习一般分为两类,一是基础训练练习,经常附在每章每节之后,这类问题相对来说比较简单,无大难度,但很重要,是打基础部分。二是提高训练练习,知识面广些,不局限于本章本节,在解决的方法上要用到多种数学工具。数学的练习是消化巩固知识极重要的一个环节,舍此达不到目的。
第二,狠抓基础,循序渐进。任何学科,基础内容常常是最重要的部分,它关系到学习的成败与否。《高等数学》本身就是数学和其他学科的基础,而《高等数学》又有一些重要的基础内容,它关系到整个知识结构的全局。以微积分部分为例,极限贯穿着整个微积分,函数的连续性及性质贯穿着后面一系列定理结论,初等函数求导法及积分法关系到今后各个学科。因此,一开始就要下狠功夫,牢牢掌握这些基础内容。在学习《高等数学》时要一步一个脚印,扎扎实实地学和练。
第三。
归类小结,从厚到薄。记忆总的原则是抓纲,在用中记。归类小结是一个重要方法。《高等数学》归类方法可按内容和方法两部分小结,以代表性问题为例辅以说明。在归类小节时,要特别注意有基础内容派生出来的一些结论,即所谓一些中间结果,这些结果常常在一些典型例题和习题上出现,如果你能多掌握一些中间结果,则解决一般问题和综合训练题就会感到轻松。精读一本参考书。实践证明,在教师指导下,抓准一本参考书,精读到底,如果你能熟读了一本有代表性的参考书,再看其它参考书就会迎刃而解了。
第四。
注意学习效率。数学的方法和理论的掌握,常常需要做到熟能生巧、触类旁通。人不可能通过一次学习就掌握所学的知识,需要有几个反复。所谓“学而时习之”、“温故而知新”都是指学习要经过反复多次。
高等数学学习方法总结(汇总23篇)篇十八
《高等数学》是高职生必修的一门主干基础课程,其主要作用有三个:一是培养学生的逻辑思维能力,这里的逻辑思维并不是指狭义的数学思维,还包括了其它很多的学习、生活方面;二是为高职生将来学习专业课做知识铺垫,理工科的学生都要开设高数的必修课,尤其是近年来国家的新政策对文科类的专业也要开设相应的数学课程,这就说明,数学不仅仅是一门工具更是人类自身修养必须具备的一种计算能力;三是为学生专升本及将来的工作学习提供知识基础。高职生要真正学好高等数学,使其更好地指导专业、考试、生活,就必须运用理论联系实际学习法,掌握理论,培养能力,提高素质,综合创新。为此,结合近几年的教学对学生和课本的把握,我觉得应从以下几点出发,以达到学以致用.
一、学习掌握扎实的理论基础及基本的计算能力。
高职高专类的教材,包括的理论知识相对较少,甚至不到本科类院校高数需要学习的十分之一,相对而言计算能力的要求要多一些;而现在的学生无法准确评价自己,上课老师讲的内容能听懂,但是实际做题时就不知该如何下手,这是严重的眼高手低现象,其主要原因是学生没有自学的习惯,不知道自己主动去搜索资料多加练习以达到掌握。针对这样的现象,应该给学生传授一些好的自学手段,介绍一些相关的书籍,补充一些习题,多做习题熟练掌握所学内容,能做到对知识的灵活应用.
二、紧密联系专业实际学习。
学生对知识的灵活应用不应只限制在数学方面,很多人对于函数而言,出现x,y的表达式知道如何解题,把字母变成另外的表示就必然会出错。让数学老师去讲解专业课里面用到了哪些数学知识不是件容易的事,但是专业课的老师们学习专业课之前必定是学过高数的,那么在讲专业课时顺便提及该内容用到了数学知识里面的哪些知识反而相对简单,所以当学生不明白的时候,不妨向专业课的老师们问一下。
三、提高自学能力。
俗语曰:师父领进门,修炼在个人。很多学生在高中那种紧张的学习氛围中转换到大学生活的自由空间,就好像是慌了手脚不知道自己该干些什么,对周围的事物环境感到新鲜,时间也不像高中时的那样紧张。我们应该了解自己掌握的知识仅是沧海一粟,要解决将来工作生活中的问题远远不够,现代的很多学科都是相互渗透的,仅仅某一个领域里的知识往往是不够用的,而每天上课的时间是有限的,我们必须学会在有限的时间里去追求更多的无限的知识。
高等数学学习方法总结(汇总23篇)篇十九
1。举例具体化。如理解导数时,自己也举个例子,如f(x)=820302x2+811211(x的平方)。
2。比喻形象化。就是打比方,比如把一个二元函数的图形想成邻家女孩的头上的草帽。
3。类比初级化。比如把二元函数跟一元函数类比,泰勒公式想成二次函数,好理解。
4。多书参考法。去你们图书管借几本不是一个作者写的高数教材,虽然讲的内容都一样,但不同的作者往往对同一个问题从不同的角度表述,对你来说,从很多不同的角度、例子理解同一个问题,往往就容易多了。justhaveatry!
5。不懂暂跳法。对一些定理的证明、推导过程等,如果一时不明白没关系,暂时放过,记下这个疑点待以后解决就可以了。
高等数学学习方法总结(汇总23篇)篇二十
1.书:课本+习题集(必备),因为学好数学绝对离不开多做题,建议习题集最好有本跟考研有关的,这样也有利于你做好将来的考研准备。
2.笔记:尽量有,我说的笔记不是指原封不动的抄板书,那样没意思,而且不必非单独用个小本,可记在书上。关键是在笔记上一定要有自己对每一章知识的总结,类似于一个提纲,(有时老师或参考书上有,可以参考),最好还有各种题型+方法+易错点。
3.上课:建议最好预习后听,听不懂不要紧,很多大学的课程都是靠课下结合老师的笔记自己重新看。但是记住:高数千万别搞考前突击,绝对行不通,所以平时你就要跟上,步步尽量别断层。
将本文的word文档下载到电脑,方便收藏和打印。
高等数学学习方法总结(汇总23篇)篇二十一
-->
数学中有很多概念。概念反映的是事物的本质,弄清楚了它是如何定义的、有什么性质,才能真正地理解一个概念。所有的问题都在理解的基础上才能做好。
第二,要掌握定理。
定理是一个正确的命题,分为条件和结论两部分。对于定理除了要掌握它的条件和结论以外,还要搞清它的适用范围,做到有的放矢。
第三,在弄懂例题的基础上作适量的习题。
要特别提醒学习者的是,课本上的例题都是很典型的,有助于理解概念和掌握定理,要注意不同例题的特点和解法在理解例题的基础上作适量的习题。作题时要善于总结——不仅总结方法,也要总结错误。这样,作完之后才会有所收获,才能举一反三。
第四,理清脉络。
要对所学的知识有个整体的把握,及时总结知识体系,这样不仅可以加深对知识的理解,还会对进一步的学习有所帮助。
高等数学中包括微积分和立体解析几何,级数和常微分方程。其中尤以微积分的内容最为系统且在其他课程中有广泛的应用。微积分的理论,是由牛顿和莱布尼茨完成的。(当然在他们之前就已有微积分的应用,但不够系统)。
数学备考一定要有一个复习时间表,也就是要有一个周密可行的计划。按照计划,循序渐进,切忌搞突击,临时抱佛脚。其实数学是基础性学科,解题能力的提高,是一个长期积累的过程,因而复习时间就应适当提前,循序渐进。大致在三、四月分开始着手进行复习,如果数学基础差可以将复习的时间适当提前。复习一定要有一个可行的计划,通过计划保证复习的进度和效果。一般可以将复习分成四个阶段,每个阶段的起止时间和所要完成的任务考生应给予明确规定,以保证计划的可行性。第一个阶段是按照考试大纲划分复习范围,在熟悉大纲的基础上对考试必备的基础知识进行系统的复习,了解考研数学的基本内容、重点、难点和特点。这个时间段一般划定为六月前。第二个阶段是在第一阶段的基础上,做一定数量的题,重点解决解题思路的问题。一般从七月到十月。这个阶段要注意归纳总结,即拿到题后要知道从什么角度,可以分几步去求解,每道题并不要求都要写出完整步骤,只要思路有了,运算过程会做了,可以视情况而灵活掌握,这样省出时间来看更多的题。所选试题可以是历年真题,也可以是书上的练习题,但真题一定要做,而且要严格按照实考的要求去做,把握真题的特点和解题思路及运算步骤。第三个阶段是实战训练阶段,从十一月到十二月的中旬,这也是临考前非常重要的阶段。考生要对大纲所要求的知识点做最后的梳理,熟记公式,系统地做几套模拟试卷,进行实战训练,自测复习成果。在做模拟题前先要系统记忆掌握基本公式,做题要讲究质量,既要有速度,又要有严格的步骤、格式和计算的准确性。最后阶段是考前冲刺,从十二月下旬到考试。针对在做模拟试题过程中出现的问题作最后的补习,查缺补漏,以便以的状态参加考试。学好数学是一个长期的过程,来不得半点的投机取巧,所以考前突击,临时抱佛脚的做法是不足取的,只有按照自己的计划,踏踏实实的进行准备,才能以不变应万变,只要自己的综合能力提高了,不管考试如何变化,都能取得好的成绩。
数学的学习一定要每天都有个进度,每天都要有题量,我们不应该搞题海战术,但是通过做题提高实战经验也是必须的,首先有个大的学习框架,然后计划到每天,怎么去学习,每天做那方面的题,定期的查漏补缺,这样的学习才真正的有效果。
高等数学学习方法总结(汇总23篇)篇二十二
学习数学首先就要不怕挫折,有勇气面对遇到的困难,有毅力坚持继续学习,这一点在刚开始进入大学学习数学时尤为重要。
在中学的时候,可能许多同学都比较喜欢学习数学,而且数学成绩也很优秀,因而这时是处于一种良性循环的状态,不会有太多的挫败感,因而也就不会太在意勇于面对的重要性。而刚一进入大学,由于理论体系的截然不同,使得我们会在学习开始阶段遇到不小的麻烦,甚至会有不如意的结果出现(比如考试不及格),这时就一定得坚持住,能够知难而进,继续跟随老师学习。
很多同学在刚入学不久,就是一直感觉很晕。对于上课老师所讲的知识,虽然表面上能听懂,但却不明白知识背后的真正原因,所以总是感觉学到的东西不实在。至于做题就更差劲了,“吉米多维奇”上的习题根本不敢去看,因为书上的课后习题都没几个会做的。这确实与高中的情形相差太大了,香港浸会大学的杨涛教授曾经在一次讲座中讲过:“在初学高数时感觉晕是很正常的,而且还得再晕几个月可能就好了。”所以关键是不要放弃,初学者必须要克服这个困难才能学好大学理论知识。除了要坚持外,还要注意不要在某些问题的解决上花费过多的时间。因为大学数学理论十分严谨,教科书在讲解初步知识时,有时会不可避免地用到一些以后才能学到的理论思想,因而在初步学习时就对着这种问题不放是十分不划算的。
比如说,在“数学分析”一开始学习实数系的确界存在基本定理时,可能会有很多同学花很多时间来思考引入这个定理的目的是什么,但往往因为当时根本没什么基础,所以对于这个问题怎么想也想不通,甚至觉得这个定理没有什么实质的意义。直到后来学到了多元部分的数学分析,以及专业课“实变函数”时,才开始慢慢理解它的真正目的。这里之所以要说明是实数系有确界存在的性质,即相当于有一种连续的性质,目的就是为了后面的极限和连续做铺垫的,因为只有在自变量能够连续变化的时候,考虑因变量的相应变化才有意义,进而才能研究函数的性质。但是如果没有学到后面,只了解区间而不知其它一些怪异的点集时是很难想通这个问题的。
所以,在开始学习数学时,可以考虑采取迂回的学习方式。先把那些一时难以想通的问题记下,转而继续学习后续知识,然后不时地回头复习,在复习时由于后面知识的积累就可能会想通以前遗留的问题,进而又能促进后面知识的深刻理解。这种迂回式的学习方法,使得温故不但能知新,而且还能更好地知故。
但是,也并不是说在初学时就不去思考任何问题。相反,勤于思考是学好数学必备的好习惯,“数学是思维的体操”,只有坚持思考才能掌握它的理论体系和逻辑关系。因此,应该在学习时掌握尺度,既要保证有充分的思考,但同时又不能过于钻牛角尖。
了解背景,理论式学习。
大学数学与中学数学明显的一个差异就在于大学数学强调数学的基础理论体系,而中学数学则是注重计算与解题。直接反应就是大学数学系的考试几乎全是关于数学定理或定义的证明题,而中学则有很多技巧性强的计算或证明题。所以,针对这个特点,学习大学数学就应该注重建立自己的数学理论知识框架。
要学习理论体系,首先就应该知道为什么要建立这种理论,它的作用是什么,这就要了解数学的历史背景知识。因此,向各位推荐两本数学史方面的书:《古今数学思想》(克莱因)和《20世纪数学经纬》(张奠宙)。前一本书是从古希腊一直写到了19世纪的数学发展,而后一本书则全是在讲上个世纪数学理论的发展情况,因此这两本书基本上恰好记录了整个数学理论的发展历史。
比如“数学分析”在一开始就强调对语言的掌握,而它的产生则是由于数学史上的“第二次数学危机”引起的。众所周知,newton创立的微积分,虽然在其应用方面取得了巨大的成就,但微积分在那时的理论基础是相当混乱的。newton在求导数时先将无穷小量看成非零数作为分母,后来又将其视做零而舍去,因此这就导致了逻辑上的错误。为了给微积分奠定正确而坚实的基础,大数学家cauchy提出了用语言的方法来推出极限和导数的概念。借助语言,可以十分清晰地展示出函数取极限的过程,而且在逻辑上也非常清楚严谨。这样,当了解了这些历史背景知识之后,就觉得学习语言是很必要的,学起来也就自然得多了。《20》一书中,还写了许多有关数学家的有趣故事,尤其其中有一篇是其书作者采访数学大师陈省身的记录稿。在那篇文章中,陈省身大师就谈了他自己许多学习数学的方法和态度,尤其是关于心态的问题,这对于我们学数学的学生有很大的启发意义。因此,建议大家如果有时间就一定要读一读这本数学史书。
除了了解背景帮助我们学习理论知识外,还要下苦功夫去学习。在接触了这些陌生的数学理论一段时间后,可能觉得看起来已经懂了,但其实自己不一定能真正掌握,尤其是那些证明中内含的逻辑关系最容易出错。所以在学习时,应该适当地记忆理论知识,有时还应该默写定理,只有通过默写才能发现自己在理论上的漏洞,才能培养出自己严密的理论、逻辑能力,这对以后的学习都是很有帮助的。
高等数学学习方法总结(汇总23篇)篇二十三
学好高等数学是一个长期的过程,要做到边学边巩固,今天的事今天完成,分阶段有目的的复习,学习来不得半点的投机取巧,所以考前突击,临时抱佛脚的做法都是不足取的,只有按照自己的计划,踏踏实实的进行准备,才能以不变应万变,只要自己的综合能力提高了,就能取得好的成绩。
数学是严密的科学。数学是由概念、公理、定理、公式等,按照一定的逻辑规则组成的严密的知识体系,有很强的系统性。因此,在数学的学习中,一定要循序渐进,打好基础,完整地、系统地掌握基本概念和基本原理,这样才能为解题打好坚实的基础。总之,学好高等数学并不是一件难事,只要你付出必要的努力,数学不应是枯燥乏味的符号,只要你钻进去就会感到趣味盎然,数学不是一堆繁琐无用的公式,掌握了它的真谛,就会给你增添知识和力量。