2023年初二数学知识点总结(精选8篇)

时间:2024-11-15 作者:储xy

总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以促使我们思考,我想我们需要写一份总结了吧。总结怎么写才能发挥它最大的作用呢?以下是小编精心整理的总结范文,供大家参考借鉴,希望可以帮助到有需要的朋友。

初二数学知识点总结篇一

1.一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.a叫做被开方数.

2.一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根,求一个数a的平方根的运算,叫做开平方.

3.一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.求一个数的立方根的运算,叫做开立方.

4.任何一个有理数都可以写成有限小数或无限循环小数的形式.任何有限小数或无限循环小数也都是有理数.

5.无限不循环小数又叫无理数.

6.有理数和无理数统称实数.

7.数轴上的点与实数一一对应.平面直角坐标系中与有序实数对之间也是一一对应的.

1.平方与开平方互为逆运算.

2.正数的平方根有两个,它们互为相反数,其中正的平方根就是这个数的算术平方根.

3.当被开方数的小数点向右每移动两位,它的算术平方根的小数点就向右移动一位.

4.当被平方数小数点每向右移动三位,它的立方根小数点向右移动一位.

5.数a的相反数是-a[a为任意实数],一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数;0的绝对值是0.

1.被开方数一定是非负数.

2.0,1的算术平方根是它本身;0的平方根是0,负数没有平方根;正数的立方根是正数,负数的立方根是负数,0的立方根是0.

3.带根号的无理数的整数倍或几分之几仍是无理数;带根号的数若开之后是有理数则是有理数;任何一个有理数都能写成分数的形式.

以上就是数学网为大家提供的初二数学知识点总结:实数希望能对考生产生帮助,更多资料请咨询数学网中考频道。

初二数学知识点总结篇二

正整数

整数零负整数有限小数或无限循环小数

正分数

分数

负分数小数

1.正无理数

无理数无限不循环小数

负无理数

2、数轴:规定了(画数轴时,要注童上述规定的三要素缺一个不可),

实数与数轴上的点是一一对应的。

数轴上任一点对应的数总大于这个点左边的点对应的数。

3、相反数与倒数;?a(a?0)4、绝对值?|a|??0(a?0)

5、近似数与有效数字;??a(a?0)?

6、科学记数法

7、平方根与算术平方根、立方根;

8、非负数的性质:若几个非负数之和为零,则这几个数都等于零。

1.无理数:无限不循环小数

算术平方根定义如果一个非负数x的平方等于a,即x2?a

那么这个非负数x就叫做a的算术平方根,记为a,

算术平方根为非负数a?0

叫做a的平方根,记为?a?

正数的立方根是正数???立方根?负数的立方根是负数????0的立方根是0???

定义:如果一个数x的立方等于a,即x3?a,那么这个数x?

就叫做a的立方根,记为3a.?

概念有理数和无理数统称实数

绝对值、相反数、倒数的意义同有理数

实数与数轴上的点是一一对应

实数的运算法则、运算规律与有理数的运算法则?

运算规律相同。

初二数学知识点总结篇三

一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

(1)关系式(解析)法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图象法

用图象表示函数关系的方法叫做图象法。

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

1、正比例函数和一次函数的概念

一般地,若两个变量x,y间的关系可以表示成 (k,b为常数,k 0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

特别地,当一次函数 中的b=0时(即 )(k为常数,k 0),称y是x的正比例函数。

2、一次函数的图像: 所有一次函数的图像都是一条直线

3、一次函数、正比例函数图像的主要特征:

一次函数 的图像是经过点(0,b)的直线;正比例函数 的图像是经过原点(0,0)的直线。

初二数学知识点总结篇四

1 函数的定义,函数的定义域、值域、表达式,函数的图像

2 一次函数和正比例函数,包括他们的表达式、增减性、图像

3 从函数的观点看方程、方程组和不等式

条形图特点:

(1)能够显示出每组中的具体数据;

(2)易于比较数据间的差别

扇形图的特点:

(1)用扇形的面积来表示部分在总体中所占的百分比;

(2)易于显示每组数据相对与总数的大小

折线图的特点;

易于显示数据的变化趋势

直方图的特点:

(1)能够显示各组频数分布的情况;

(2)易于显示各组之间频数的差别

2 会用各种统计图表示出一些实际的问题

1 全等三角形的性质:

全等三角形的对应边、对应角相等

2 全等三角形的判定

边边边、边角边、角边角、角角边、直角三角形的hl定理

3 角平分线的性质

角平分线上的点到角的两边的距离相等;

到角的两边距离相等的点在角的平分线上.

1 轴对称图形和关于直线对称的两个图形

2 轴对称的性质

轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;

如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;

线段垂直平分线上的点到线段两个端点的距离相等;

到线段两个端点距离相等的点在这条线段的垂直平分线上

3 用坐标表示轴对称

点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y).

4 等腰三角形

等腰三角形的两个底角相等;(等边对等角)

等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一)

一个三角形的两个相等的角所对的边也相等.(等角对等边)

5 等边三角形的性质和判定

等边三角形的三个内角都相等,都等于60度;

三个角都相等的三角形是等边三角形;

有一个角是60度的等腰三角形是等边三角形;

推论:

直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半.

在三角形中,大角对大边,大边对大角.

1 整式定义、同类项及其合并

2 整式的加减

3 整式的乘法

(1)同底数幂的乘法:

(2)幂的乘方

(3)积的乘方

(4)整式的乘法

4 乘法公式

(1)平方差公式

(2)完全平方公式

5 整式的除法

(1)同底数幂的除法

(2)整式的除法

6 因式分解

(1)提共因式法

(2)公式法

(3)十字相乘法

1 分式及其基本性质

分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

2 分式的运算

(1)分式的乘除

乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母

除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.

(2) 分式的加减

加减法法则:同分母分式相加减,分母不变,把分子相加减;

异分母分式相加减,先通分,变为同分母的分式,再加减

3 整数指数幂的加减乘除法

4 分式方程及其解法

1 反比例函数的表达式、图像、性质

图像:双曲线

表达式:y=k/x(k不为0)

性质:两支的增减性相同;

2 反比例函数在实际问题中的应用

1 勾股定理:直角三角形的两个直角边的平方和等于斜边的平方

2 勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形.

1 平行四边形

性质:对边相等;对角相等;对角线互相平分.

判定:两组对边分别相等的四边形是平行四边形;

两组对角分别相等的四边形是平行四边形;

对角线互相平分的四边形是平行四边形;

一组对边平行而且相等的四边形是平行四边形.

推论:三角形的中位线平行第三边,并且等于第三边的一半.

2 特殊的平行四边形:矩形、菱形、正方形

(1) 矩形

性质:矩形的四个角都是直角;

矩形的对角线相等;

矩形具有平行四边形的所有性质

判定: 有一个角是直角的平行四边形是矩形;

对角线相等的平行四边形是矩形;

推论: 直角三角形斜边的中线等于斜边的一半.

(2) 菱形

性质:菱形的四条边都相等;

菱形的对角线互相垂直,并且每一条对角线平分一组对角;

菱形具有平行四边形的一切性质

判定:有一组邻边相等的平行四边形是菱形;

对角线互相垂直的平行四边形是菱形;

四边相等的四边形是菱形.

(3) 正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质.

3 梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底边上的两个角相等;

等腰梯形的两条对角线相等;

同一个底上的两个角相等的梯形是等腰梯形.

第五章 数据的分析

加权平均数、中位数、众数、极差、方差

初二数学知识点总结篇五

为了教和学的同步,教师应要求学生在课堂上集中思想,专心听老师讲课,认真听同学发言,抓住重点、难点、疑点听,边听边思考,对中、高年级学生提倡边听边做听课笔记。

积极思考老师和同学提出的问题,使自己始终置身于教学活动之中,这是提高学习质量和效率的重要保证。学生思考、回答问题一般要求达到:有根据、有条理、符合逻辑。随着年龄的升高,思考问题时应逐步渗透联想、假设、转化等数学思想,不断提高思考问题的质量和速度。

审题能力是学生多种能力的综合表现。教师应要求学生仔细阅读教材内容,学会抓住字眼,正确理解内容,对提示语、旁注、公式、法则、定律、图示等关键性内容更要认真推敲、反复琢磨,准确把握每个知识点的内涵与外延。建议教师们经常进行“一字之差义差万”的专项训练,不断增强学生思维的深刻性和批判性。

练习是教学活动的重要组成部分和自然延续,是学生最基本、最经常的独立学习实践活动,还是反映学生学习情况的主要方式。教师应教育学生对知识的理解不盲从优生看法,不受他人影响轻易改变自己的见解;对知识的运用不抄袭他人现成答案;课后作业要按质、按量、按时、书写工整完成,并能作到方法最佳,有错就改。

俗话说:“好问的孩子必成大器”。教师应积极鼓励学生质疑问难,带着知识疑点问老师、问同学、问家长,大力提倡学生自己设计数学问题,大胆、主动地与他人交流,这样既能融洽师生关系,增进同学友情,又可以使学生的交际、表达等方面的能力逐步提高。

6.勇于“辩”的习惯。

讨论和争辩是思维最好的媒介,它可以形成师生之间、同学之间多渠道、广泛的信息交流。让学生在争辩中表现自我、互相启迪、交流所得、增长才干,最终统一对真知的认同。

初二数学知识点总结篇六

分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

图像:双曲线

表达式:y=k/x(k不为0)

性质:两支的增减性相同;

性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;

两组对角分别相等的四边形是平行四边形;

对角线互相平分的四边形是平行四边形;

一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

性质:矩形的四个角都是直角;

矩形的对角线相等;

矩形具有平行四边形的所有性质

判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;

推论:直角三角形斜边的中线等于斜边的一半。

判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。

加权平均数、中位数、众数、极差、方差

初二数学知识点总结篇七

※1、所要考察的对象的全体叫做总体;

把组成总体的每一个考察对象叫做个体;

从总体中取出的一部分个体叫做这个总体的一个样本.

※2、为一特定目的而对所有考察对象作的全面调查叫做普查;

为一特定目的而对部分考察对象作的调查叫做抽样调查.

※1、抽样调查的特点: 调查的范围小、节省时间和人力物力优点.但不如普查得到的调查结果精确,它得到的只是估计值.

而估计值是否接近实际情况还取决于样本选得是否有代表性.

※1、 一般地,能明确指出概念含义或特征的句子,称为定义.

定义必须是严密的.一般避免使用含糊不清的术语,例如"一些"、"大概"、"差不多"等不能在定义中出现.

※2、可以判断它是正确的或是错误的句子叫做命题.

正确的命题称为真命题,错误的命题称为假命题.

※3、 数学中有些命题的正确性是人们在长期实践中总结出来的,并且把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.

※4、有些命题可以从公理或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理.

5、根据题设、定义以及公理、定理等,经过逻辑推理,来判断一个命题是否正确,这样的推理过程叫做证明.

※1、平行判定公理: 同位角相等,两直线平行.(并由此得到平行的判定定理)

※2、平行判定定理: 同旁内互补,两直线平行.

※3、平行判定定理: 同错角相等,两直线平行.

※1. 两条直线平行的性质公理: 两直线平行,同位角相等;

※2. 两条直线平行的性质定理: 两直线平行,内错角相等;

※3. 两条直线平行的性质定理: 两直线平行,同旁内角互补.

※1. 三角形内角和定理: 三角形三个内角的和等于180°

2. 一个三角形中至多只有一个直角

3. 一个三角形中至多只有一个钝角

4. 一个三角形中至少有两个锐角

※1. 三角形内角和定理的两个推论:

推论1: 三角形的一个外角等于和它不相邻的两个内角的和;

推论2: 三角形的一个外角大于任何一个和它不相邻的内角.

初二数学知识点总结篇八

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法

用图像表示函数关系的方法叫做图像法。

相关范文推荐