数学高二教案人教版(通用14篇)

时间:2024-11-12 作者:碧墨

教案是教师教学的重要准备工作,它体现了教师对课程内容和教学活动的安排和组织。这些高二教案范文不仅为教师提供了教学指导,同时也激发了学生的学习兴趣和积极性。

数学高二教案人教版(通用14篇)篇一

本节是继直线和圆的方程之后,用坐标法研究曲线和方程的又一次实际演练。椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。因此这节课有承前启后的作用,是本章和本节的重点内容之一。

(二)教学重点、难点。

1.教学重点:椭圆的定义及其标准方程。

2.教学难点:椭圆标准方程的推导。

(三)三维目标。

1.知识与技能:掌握椭圆的定义和标准方程,明确焦点、焦距的概念,理解椭圆标准方程的推导。

3.情感、态度、价值观:通过主动探究、合作学习,相互交流,对知识的归纳总结,让学生感受探索的乐趣与成功的喜悦,增强学生学习的信心。

采用启发式教学,在课堂教学中坚持以教师为主导,学生为主体,思维训练为主线,能力培养为主攻的原则。

“授人以鱼,不如授人以渔。”要求学生动手实验,自主探究,合作交流,抽象出椭圆定义,并用坐标法探究椭圆的标准方程,使学生的学习过程成为在教师引导下的“再创造”过程。

三、教学程序。

1.创设情境,认识椭圆:通过实验探究,认识椭圆,引出本节课的教学内容,激发了学生的求知欲。

2.画椭圆:通过画图给学生一个动手操作,合作学习的机会,从而调动学生的学习兴趣。

3.教师演示:通过多媒体演示,再加上数据的变化,使学生更能理性地理解椭圆的形成过程。

4.椭圆定义:注意定义中的三个条件,使学生更好地把握定义。

5.推导方程:教师引导学生化简,突破难点,得到焦点在x轴上的椭圆的标准方程,利用学生手中的图形得到焦点在y轴上的椭圆的标准方程,并且对椭圆的标准方程进行了再认识。

6.例题讲解:通过例题规范学生的解题过程。

7.巩固练习:以多种题型巩固本节课的教学内容。

8.归纳小结:通过小结,使学生对所学的知识有一个完整的体系,突出重点,抓住关键,培养学生的概括能力。

9.课后作业:面对不同层次的学生,设计了必做题与选做题。

10.板书设计:目的是为了勾勒出全教材的主线,呈现完整的知识结构体系并突出重点,用彩色增加信息的强度,便于掌握。

四、教学评价。

本节课贯彻了新课程理念,以学生为本,从学生的思维训练出发,通过学习椭圆的定义及其标准方程,激活了学生原有的认知规律,并为知识结构优化奠定了基础。

数学高二教案人教版(通用14篇)篇二

班主任工作:

1、确立规范,抓紧学风建设。

2、开好主题班会,统一思想,树立目标,激励斗志,陶冶情操,提升素养。

3、加强家校联系,取得学校教育和家庭教育携手发展的局面,从而促进学生的全面发展。

4、加强以班主任为核心的一体化建设,形成班级教育小组,齐抓共管,从而使控流工作取得实效。

教学工作:

高二(1)班。

1、夯实基础,突显专题,提升作文发展等级成绩。

2、提优补差,夺取期末成都市统考的胜利(争取平均分突破110分)。

3、开展有益活动,提升学生语文素养。

高二(10)班。

1、夯实基础,激发兴趣。

2、加强阅读和写作的引导,培养学生的文科素养。

3、突出学生的个性,根据学生差异性制定培养计划。

备课组工作:

1、抓好常规工作建设。

2、组织好一次大型活动。

3、做好青年教师的培养工作。

4、引导教师积极参与教学研究与新课程改革工作。

教科研工作:

1、组织好区级课题研究。

2、积极参与并认真完成市级以上课题研究。

3、组织好本备课组教师积极开展小专题研究。

4、认真完成学校科研部下达的有关科研工作。

数学高二教案人教版(通用14篇)篇三

教学目的:

1.掌握常用基本不等式,并能用之证明不等式和求最值;。

2.掌握含绝对值的不等式的性质;。

教学过程:

一、复习引入:本章知识点。

二、讲解范例:几类常见的问题。

(一)含参数的不等式的解法。

例1解关于x的不等式.

例2解关于x的不等式.

例3解关于x的不等式.

例4解关于x的不等式。

例5满足的x的集合为a;满足的x。

的集合为b1若ab求a的取值范围2若ab求a的取值范围3若ab为仅含一个元素的集合,求a的值.

(二)函数的最值与值域。

例6求函数的最大值,下列解法是否正确?为什么?

解一:,

解二:当即时,

例7若,求的最值。

例8已知x,y为正实数,且成等差数列,成等比数列,求的取值范围.

例9设且,求的最大值。

例10函数的最大值为9,最小值为1,求a,b的值。

三、作业:

1.

2.,若,求a的取值范围。

3.

4.

5.当a在什么范围内方程:有两个不同的负根。

6.若方程的两根都对于2,求实数m的范围。

7.求下列函数的最值:

1

2

8.1时求的最小值,的最小值。

2设,求的最大值。

3若,求的最大值。

4若且,求的最小值。

9.若,求证:的最小值为3。

10.制作一个容积为的圆柱形容器(有底有盖),问圆柱底半径和。

高各取多少时,用料最省?(不计加工时的损耗及接缝用料)。

数学高二教案人教版(通用14篇)篇四

教学目标:

1、进一步理解和掌握数列的有关概念和性质;

2、在对一个数列的探究过程中,提高提出问题、分析问题和解决问题的能力;

3、进一步提高问题探究意识、知识应用意识和同伴合作意识。

教学重点:

问题的提出与解决。

教学难点:

如何进行问题的探究。

启发探究式。

教学过程:

研究方向提示:

1、数列{an}是一个等比数列,可以从等比数列角度来进行研究;

2、研究所给数列的项之间的关系;

3、研究所给数列的子数列;

4、研究所给数列能构造的新数列;

5、数列是一种特殊的函数,可以从函数性质角度来进行研究;

6、研究所给数列与其它知识的联系(组合数、复数、图形、实际意义等)。

针对学生的研究情况,对所提问题进行归类,选择部分类型问题共同进行研究、分析与解决。

课堂小结:

1、研究一个数列可以从哪些方面提出问题并进行研究?

2、你最喜欢哪位同学的研究?为什么?

数学高二教案人教版(通用14篇)篇五

style="color:#125b86">教材分析

因式分解是代数式的一种重要恒等变形。《数学课程标准》虽然降低了因式分解的特殊技巧的要求,也对因式分解常用的四种方法减少为两种,且公式法的应用中,也减少为两个公式,但丝毫没有否定因式分解的教育价值及其在代数运算中的重要作用。本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系。分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续—分式的化简、解方程等—恒等变形的基础,为数学交流提供了有效的途径。分解因式这一章在整个教材中起到了承上启下的作用。本章的教育价值还体现在使学生接受对立统一的观点,培养学生善于观察、善于分析、正确预见、解决问题的能力。

学情分析。

通过探究平方差公式和运用平方差公式分解因式的活动中,让学生发表自己的观点,从交流中获益,让学生获得成功的体验,锻炼克服困难的意志建立自信心。

教学目标。

1、在分解因式的过程中体会整式乘法与因式分解之间的联系。

2、通过公式a-b=(a+b)(a-b)的逆向变形,进一步发展观察、归纳、类比、等能力,发展有条理地思考及语言表达能力。

3、能运用提公因式法、公式法进行综合运用。

4、通过活动4,能将高偶指数幂转化为2次指数幂,培养学生的化归思想。

教学重点和难点。

重点:灵活运用平方差公式进行分解因式。

难点:平方差公式的推导及其运用,两种因式分解方法(提公因式法、平方差公式)的综合运用。

数学高二教案人教版(通用14篇)篇六

1、知识与技能:

(1)推广角的概念、引入大于角和负角;

(2)理解并掌握正角、负角、零角的定义;

(3)理解任意角以及象限角的概念;

(4)掌握所有与角终边相同的角(包括角)的表示方法;

(5)树立运动变化观点,深刻理解推广后的角的概念;

(6)揭示知识背景,引发学生学习兴趣;

(7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识。

2、过程与方法:

通过创设情境:“转体,逆(顺)时针旋转”,角有大于角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习。

3、情态与价值:

通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物。

重点:理解正角、负角和零角的定义,掌握终边相同角的表示法。

难点:终边相同的角的表示。

投影仪等。

我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于之间,这正是我们这节课要研究的主要内容——任意角。

1.初中时,我们已学习了角的概念,它是如何定义的呢?

[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。如图1.1-1,一条射线由原来的位置,绕着它的端点o按逆时针方向旋转到终止位置ob,就形成角a.旋转开始时的射线叫做角的始边,ob叫终边,射线的端点o叫做叫a的顶点。

[展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角,这些都说明了我们研究推广角概念的必要性。为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positiveangle),按顺时针方向旋转所形成的角叫负角(negativeangle)。如果一条射线没有做任何旋转,我们称它形成了一个零角(zeroangle)。

3.学习小结:

(1)你知道角是如何推广的吗?

(2)象限角是如何定义的呢?

(3)你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直线上的角的集合。

作业:

1、习题1.1a组第1,2,3题.

2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,

进一步理解具有相同终边的角的特点.

数学高二教案人教版(通用14篇)篇七

例1解关于x的不等式 .

例2解关于x的不等式 .

例3解关于x的不等式 .

例4解关于x的不等式

例5 满足 的x的集合为a;满足 的x

的集合为b 1 若ab 求a的取值范围 2 若ab 求a的取值范围 3 若ab为仅含一个元素的集合,求a的值.

(二)函数的最值与值域

例6 求函数 的最大值,下列解法是否正确?为什么?

解一: ,

解二: 当 即 时,

例7 若 ,求 的最值。

例8 已知x , y为正实数,且 成等差数列, 成等比数列,求 的取值范围.

例9 设 且 ,求 的最大值

例10 函数 的最大值为9,最小值为1,求a,b的值。

1.

2. , 若 ,求a的取值范围

3.

4.

5.当a在什么范围内方程: 有两个不同的负根

6.若方程 的两根都对于2,求实数m的范围

7.求下列函数的最值:

1

2

8.1 时求 的最小值, 的最小值

2设 ,求 的最大值

3若 , 求 的最大值

4若 且 ,求 的最小值

9.若 ,求证: 的最小值为3

10.制作一个容积为 的圆柱形容器(有底有盖),问圆柱底半径和

高各取多少时,用料最省?(不计加工时的损耗及接缝用料)

数学高二教案人教版(通用14篇)篇八

教学目标。

1、知识与技能:

(1)推广角的概念、引入大于角和负角;

(2)理解并掌握正角、负角、零角的定义;

(3)理解任意角以及象限角的概念;

(4)掌握所有与角终边相同的角(包括角)的表示方法;

(5)树立运动变化观点,深刻理解推广后的角的概念;

(6)揭示知识背景,引发学生学习兴趣;

(7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识。

2、过程与方法:

通过创设情境:“转体,逆(顺)时针旋转”,角有大于角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习。

3、情态与价值:

通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物。

教学重难点。

重点:理解正角、负角和零角的定义,掌握终边相同角的表示法。

难点:终边相同的角的表示。

教学工具。

投影仪等。

教学过程。

【创设情境】。

我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于之间,这正是我们这节课要研究的主要内容——任意角。

【探究新知】。

1.初中时,我们已学习了角的概念,它是如何定义的呢?

[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。如图1.1-1,一条射线由原来的位置,绕着它的端点o按逆时针方向旋转到终止位置ob,就形成角a.旋转开始时的射线叫做角的始边,ob叫终边,射线的端点o叫做叫a的顶点。

[展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角,这些都说明了我们研究推广角概念的必要性。为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positiveangle),按顺时针方向旋转所形成的角叫负角(negativeangle)。如果一条射线没有做任何旋转,我们称它形成了一个零角(zeroangle)。

3.学习小结:

(1)你知道角是如何推广的吗?

(2)象限角是如何定义的呢?

(3)你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直线上的角的集合。

课后习题。

作业:

1、习题1.1a组第1,2,3题.

2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,

进一步理解具有相同终边的角的特点.

板书。

数学高二教案人教版(通用14篇)篇九

(1)推广角的概念、引入大于角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与角终边相同的角(包括角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学生学习兴趣.(7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识.

2、过程与方法。

通过创设情境:“转体,逆(顺)时针旋转”,角有大于角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习.

3、情态与价值。

通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物.

教学重难点。

重点:理解正角、负角和零角的定义,掌握终边相同角的表示法.

难点:终边相同的角的表示.

教学工具。

投影仪等.

教学过程。

【创设情境】。

思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25。

小时,你应当如何将它校准?当时间校准以后,分针转了多少度?

[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于之间,这正是我们这节课要研究的主要内容——任意角.

【探究新知】。

1.初中时,我们已学习了角的概念,它是如何定义的呢?

[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置,绕着它的端点o按逆时针方向旋转到终止位置ob,就形成角a.旋转开始时的射线叫做角的始边,ob叫终边,射线的端点o叫做叫a的顶点.

[展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角,这些都说明了我们研究推广角概念的必要性.为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positiveangle),按顺时针方向旋转所形成的角叫负角(negativeangle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zeroangle).

8.学习小结。

(1)你知道角是如何推广的吗?

(2)象限角是如何定义的呢?

(3)你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直。

线上的角的集合.

五、评价设计。

1.作业:习题1.1a组第1,2,3题.

2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,

进一步理解具有相同终边的角的特点.

课后小结。

(1)你知道角是如何推广的吗?

(2)象限角是如何定义的呢?

(3)你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直。

线上的角的集合.

课后习题。

作业:

1、习题1.1a组第1,2,3题.

2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,

进一步理解具有相同终边的角的特点.

板书。

数学高二教案人教版(通用14篇)篇十

一、指导思想:

全面贯彻教育方针,深入实施素质教育,使学生在高一学习的基础上,进一步体会数学对发展自己思维能力的作用,体会数学对推动社会进步和科学发展的意义以及数学的文化价值,提高数学素养,以满足个人发展与社会进步的需要。

二、教学具体目标。

1、期中考前完成必修3、选修2-3第一章。

2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

3、提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

三、教材特点:

我们所使用的教材是人教版《普通高中课程标准实验教科书》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,强调了问题提出,抽象概括,分析理解,思考交流等研究性学习过程。具体特点如下:

1、“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

2、“问题性”:专门安排了“课题学习”和“探究活动”,培养问题意识,孕育创新精神。

3、“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

4、“时代性”与“应用性”:教材中有“信息技术建议”和“信息技术应用”,以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

5、“人文应用价值性”:编写了一些阅读材料,开拓学生视野,从数学史的发展足迹中获取营养和动力,全面感受数学的科学价值、应用价值和文化价值。

四、教法分析:

1、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。

2、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

五、教学措施:

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

6、重视数学应用意识及应用能力的培养。

六、教学进度安排(略) 。

数学高二教案人教版(通用14篇)篇十一

教学目标:

(1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化.

(2)理解直线与二元一次方程的关系及其证明。

(3)培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点.

教学重点、难点:直线方程的一般式.直线与二元一次方程(、不同时为0)的对应关系及其证明.

教学用具:计算机。

教学方法:启发引导法,讨论法。

教学过程:

下面给出教学实施过程设计的简要思路:

教学设计思路:

(一)引入的设计。

前边学习了如何根据所给条件求出直线方程的方法,看下面问题:

问:说出过点(2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?

答:直线方程是,属于二元一次方程,因为未知数有两个,它们的次数为一次.

肯定学生回答,并纠正学生中不规范的表述.再看一个问题:

问:求出过点,的直线的方程,并观察方程属于哪一类,为什么?

答:直线方程是(或其它形式),也属于二元一次方程,因为未知数有两个,它们的次数为一次.

肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的次数为一次”.

启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论.

学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:

【问题1】“任意直线的方程都是二元一次方程吗?”

(二)本节主体内容教学的设计。

这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路.

学生或独立研究,或合作研究,教师巡视指导.

经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:

思路一:…。

思路二:…。

……。

教师组织评价,确定方案(其它待课下研究)如下:

按斜率是否存在,任意直线的位置有两种可能,即斜率存在或不存在.

当存在时,直线的截距也一定存在,直线的方程可表示为,它是二元一次方程.

当不存在时,直线的方程可表示为形式的方程,它是二元一次方程吗?

学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:

平面直角坐标系中直线上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的.

综合两种情况,我们得出如下结论:

在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于、的二元一次方程.

至此,我们的问题1就解决了.简单点说就是:直线方程都是二元一次方程.而且这个方程一定可以表示成或的形式,准确地说应该是“要么形如这样,要么形如这样的方程”.

同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?

学生们不难得出:二者可以概括为统一的形式.

这样上边的结论可以表述如下:

在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如(其中、不同时为0)的二元一次方程.

启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?

【问题2】任何形如(其中、不同时为0)的二元一次方程都表示一条直线吗?

师生共同讨论,评价不同思路,达成共识:

(1)当时,方程可化为。

这是表示斜率为、在轴上的截距为的直线.

(2)当时,由于、不同时为0,必有,方程可化为。

这表示一条与轴垂直的直线.

因此,得到结论:

在平面直角坐标系中,任何形如(其中、不同时为0)的二元一次方程都表示一条直线.

为方便,我们把(其中、不同时为0)称作直线方程的一般式是合理的.

【动画演示】。

演示“”文件,体会任何二元一次方程都表示一条直线.

至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系.

(三)练习巩固、总结提高、板书和作业等环节的设计在此从略。

数学高二教案人教版(通用14篇)篇十二

【知识点精讲】。

三角函数式的求值的关键是熟练掌握公式及应用,掌握公式的逆用和变形。

三角函数式的求值的类型一般可分为:。

(3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。

注意点:灵活角的变形和公式的变形重视角的范围对三角函数值的影响,对角的范围要讨论。

【课堂小结】。

三角函数式的求值的关键是熟练掌握公式及应用,掌握公式的逆用和变形。

三角函数式的求值的类型一般可分为:。

(3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。

三角函数式常用化简方法:切割化弦、高次化低次。

注意点:灵活角的变形和公式的变形。

重视角的范围对三角函数值的影响,对角的范围要讨论。

数学高二教案人教版(通用14篇)篇十三

1.理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。

2.掌握坐标法解决几何问题的步骤;体会坐标系的作用。

体会直角坐标系的作用。

能够建立适当的直角坐标系,解决数学问题。

新授课

启发、诱导发现教学.

多媒体、实物投影仪

一、复习引入:

情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。

情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。

问题1:如何刻画一个几何图形的位置?

问题2:如何创建坐标系?

二、学生活动

学生回顾

刻画一个几何图形的位置,需要设定一个参照系

1、数轴 它使直线上任一点p都可以由惟一的实数x确定

2、平面直角坐标系

在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点p都可以由惟一的实数对(x,y)确定。

3、空间直角坐标系

在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点p都可以由惟一的实数对(x,y,z)确定。

三、讲解新课:

1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:

任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置

2、确定点的位置就是求出这个点在设定的坐标系中的坐标

四、数学运用

例1 选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。

变式训练

变式训练

2在面积为1的中,,建立适当的坐标系,求以m,n为焦点并过点p的椭圆方程

例3 已知q(a,b),分别按下列条件求出p 的坐标

(1)p是点q 关于点m(m,n)的对称点

(2)p是点q 关于直线l:x-y+4=0的对称点(q不在直线1上)

变式训练

用两种以上的方法证明:三角形的三条高线交于一点。

思考

通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?

五、小 结:本节课学习了以下内容:

1.平面直角坐标系的意义。

2. 利用平面直角坐标系解决相应的数学问题。

六、课后作业:

数学高二教案人教版(通用14篇)篇十四

这是一个特殊的线性规划问题,再来研究它的解法。

c.改变这个例子的个别条件,再来研究它的解法。

将这个例子中方木料存有量改为,其他条件不变,则。

作出可行域,如图阴影部分,且过可行域内点m(100,400)而平行于的直线离原点的距离最大,所以最优解为(100,400),这时(元)。

故生产书桌100、书橱400张,可获最大利润56000元。

总结、扩展。

1.线性规划问题的数字模型。

2.线性规划在两类问题中的应用。

布置作业。

到附近的工厂、乡镇企业、商店、学校等作调查研究,了解线性规划在实际中的应用,或提出能用线性规划的知识提高生产效率的实际问题,并作出解答。把实习和研究活动的成果写成实习报告、研究报告或小论文,并互相交流。

探究活动。

如何确定水电站的位置。

由,,得b(300,700).于是直线的方程为。

相关范文推荐

    草原旅行心得体会版(优秀18篇)

    写心得体会可以帮助我们更好地梳理知识结构,加深对专业知识的理解和应用。"通过心得体会,我发现自己在决策能力上还有所欠缺,因此我决定要提高自己的决策能力,做出更加

    电子出版物图书出版合同(优质19篇)

    双方在签署合同协议之前应当充分了解协议内容,并对其中的条款进行充分沟通和协商。以下是一些成功企业使用的合同协议案例,我们可以从中学习和借鉴经验。作品名称:___

    愿者心得体会及收获感悟(通用14篇)

    心得体会能够激发我们的学习和工作动力,帮助我们在以后的学习和工作中有更好的表现。下面是一些经典的心得体会范文,它们通过具体案例和深入的思考展示了写作的技巧和表达

    足浴客服工作总结(专业20篇)

    随着这个月的结束,我们需要对过去的工作进行一次全面的回顾和总结了。让我们一起来浏览一下其他人的月工作总结实例,或许能给我们一些灵感。足浴的意思就是说用热水泡脚,

    大数据实践总结(优秀21篇)

    实践报告不仅是对实践过程的客观描述,更是对实践目标的达成情况进行评估和反思。以下是小编为大家收集的实践报告范文,供大家参考和借鉴。大数据转正是每位在大数据行业从

    开展工作计划书(专业17篇)

    通过编写工作计划书,可以有效地组织和安排工作时间,提高工作效率。以下是小编为大家收集的工作计划书范文,仅供参考,希望能够对大家编写工作计划书有所启发。

    谈话时心得体会总结(专业21篇)

    在工作和学习中,我们常常需要总结自己的经验和收获,以便更好地改进和提升。参考以下心得体会范文,可以帮助我们更好地了解写作的要点和技巧。谈话,是人与人之间进行交流

    个人下半年工作计划与安排(优质18篇)

    下半年是个收获的季节,让我们一起追逐属于我们的成就吧。10.为了帮助大家更好地完成下半年总结,以下是一些经典的范文供参考。日历即将翻到201x年,细细回味梳理着

    工商注册心得体会报告(实用21篇)

    心得体会是对自己成长轨迹和经验的记录和整理,有助于形成自己独特的学习方法和工作方式。通过总结心得体会,我明确了自己的职业发展目标,并制定了相应的计划。

    母亲节演讲稿格式(专业19篇)

    演讲稿范文是演讲者在演讲前准备的一篇具有结构和逻辑的演讲稿,它可以帮助演讲者更加有条理地展示自己的思想和观点。以下是小编为大家收集的演讲稿范文,供大家参考和学习