数学解题技巧分享范文(21篇)

时间:2024-11-25 作者:MJ笔神

多读范文范本可以帮助我们学习优秀的表达方式和语言运用,提高文章的质量。以下是小编为大家准备的一些范文范本,供大家参考和学习,希望能够对大家的写作有所帮助。

数学解题技巧分享范文(21篇)篇一

初中数学阅读理解题大致可分四类:纯文型(全部用文字展示条件和问题)、图文型(用文字和图形结合展示条件和问题)、表文型(用文字和表格结合展示条件和问题)、改错型(条件、问题、解题过程都已展示,但解题过程可能要改正)。无论哪种类型,其解题步骤一般都可分为以下几步:

在阅读时不仅要特别留心短文中的事件情景、具体数据、关键语句等细节,还要注意问题的提出方式。据此估计是我们平常练习时的哪种类型,会涉及到哪些知识,一般是如何解决的,在头脑中建立初步印象。

在阅读过程中不仅要注意各个关键数据,还要注意各数据的内在联系、标明单位,特别是一些特殊条件(如附加公式),以简明的方式列出各量的关系,提炼信息,读"薄"题目,同时还要能回到原题中去。

根据前面提炼的信息分析,通过文中关键词、句的提示作用,选用恰当的数学模型,例如由"大于、超过、不足……"等联想到建立不等式,由"恰好……,等于……"联想到建立方程,由"求哪种方案更经济……"联想到运用分类讨论方法解决问题,由"求出……和……的函数关系式或求最大值(最小值)"联想到建立函数关系,将题中的.各种已知量用数学符号准确地反映出其内在联系。

们的作用;二是关键词句的理解是否准确、到位;三是判断所列关系式是否符合生活经验;四是在解题过程中要善于反思,发现问题及时纠正。

在解题中需注意的几个问题:

1、克服缺乏仔细审题意识,避免因片面审题,快速答题带来的失误。

2、克服受思维定势的影响,用"想当然"代替现实的偏面意识。

3、忽略题中的关键词语、条件,对题意的理解有偏差。

4、善于回顾反思,及时发现问题纠正错误,克服侥幸意识带来不必要的失误。

5、平时要重视阅读、理解和表述能力的培养,加强数学语言的理解和应用,数学语言包括文字语言、符号语言、图形语言、数表,它是数学思维和数学交流的工具,所以要仔细梳理问题的脉络结构,培养良好的思维习惯。

数学解题技巧分享范文(21篇)篇二

周日,扬子晚报和学大教育将共同邀请江苏省高考数学阅卷点专家组成员曹安陵老师开讲高考数学复习之道。相信在他的点拨下,考生一定能够用好最后的几十天时间,做好应对数学考试的准备。

“有的学生做题目,同一类型的题,第一次做会错,第二次做还错,主要原因就是不总结。”曹安陵老师坦言,不少人觉得数学就是要多做题。“不能说做题没用,但是如果做的题目不好,做完题不进行有效总结,那么基本没多大效果。”除了错题之外,做对的题同样可能在下次做错。因此在复习中,除了对错题进行总结之外,对一些虽然做对了,但是掌握得还不够扎实的题目,也要认真梳理,巩固相关知识点。

据了解,去年江苏省高考数学状元最终得了154分。让大家感到意外的是,他竟在一道相对容易的题目上丢了5分。原来,数学状元在解题过程中,有一个关键的步骤没了,按照要求不能得分。专家提醒,在高考答题中,千万不要表现出思维的跳跃性,在按得分点和步骤给分的高考中,考生跳过的是解题步骤,丢掉的是考试分数。

有不少数学基础相对较差的考生觉得,基础没打好,现在就算恶补也来不及。对此,曹安陵老师表示,“数学绝对不能放弃,因为即使原先基础比较差的学生,也在利用最后一段时间进行冲刺。”学生只要肯下工夫,时间还是相对充裕的。

曹安陵表示,在周日的讲座上,他将重点教学生研读《考试说明》,另外还有不少阅卷中的体会与考生交流。另悉,在此次讲座现场,还将为考生带来江苏志愿填报专家熊丙奇教授研发的“高考志愿填报服务包”,其中包含高考志愿填报模拟系统前程卡,它集合了高考志愿填报专家熊丙奇团队10多年的专业经验。

曹安陵,江苏省数学特级教师,南京市首届学科带头人,高中数学中心组成员,省高考数学命题组成员和阅卷点专家组成员,中学数学学科特级教师工作室负责人。

熊丙奇,上海交通大学教授,著名高考志愿咨询及职业规划专家、21世纪教育研究院副院长。20xx年、20xx年在江苏省主讲高考志愿填报公益讲座达100多场。

数学解题技巧分享范文(21篇)篇三

很多考生对审题重视不够,往往要做的题目都没有看清楚就急于下笔,审好题是做题的关键,审题一一定要逐字逐句的看清楚,通过审题发现题目有无易漏、易错点,只有仔细审题才能从题目中获取更多的信息,只有挖掘题目中的隐含条件、启发解题思路,提醒常见解题误区和自己易出现的错误,才能提高解题能力。只有认真的审题,谨慎的态度,才能准确地揣摩出题者的意图,发现更多的信息,从而快速找到解题方向。

考前保持头脑清醒,要摒弃杂念,不断进行积极的心理暗示,创设宽松的氛围,创设数学情境,进而酝酿数学思维,静能生慧,满怀信心的进行针对性的自我安慰,以平稳自信、积极主动的心态准备应考。这就要求我们要善于观察。

二、先做简单题,后做难题

从我们的心理学角度来讲,一般拿到试卷以后,心情比较紧张,此时不要急于下手解题,可以先对试题多少、分布、难易程度从头到尾浏览一遍,做题要先易后难,做到心中有数,一般简单的题目占全卷60%,这是很重要的一部分分数,见到简单题要细心解题,尽量使用数学语言,而且要更加严谨以振奋精神,养成良好的审题习惯鼓舞信心。

如果顺序做题既耗费时间又拿不到分,会做的题又被耽误了。所以先做简单题,多年的经验告诉我们,当你解题不顺利时,更要冷静,静下心来,沉住气,根据自己的实际情况,果断跳过自己不会做的题目,把简单的都做完,如果我们能把这部分的分数拿到,就已经打了胜仗,再集中精力做比较难的题,有了胜利的信心,面对住偏难的题更要有耐心,不要着急,可以先放弃,但也要注意认真对待每一道题,不能走马观花,要相信自己。到应有的分数。最好还有善于把难题转换成简单的题目的能力。

三、多做练习,提升能力

整体而言高考数学要想考好,一定要做大量的练习,要有扎实的理论基础,在此基础上辅以做题技巧,才不会出现考试时间不够用,自己会做的题最后没时间做,得不偿失。就要求我们在大量的练习的基础上,认真总结方程的思想,数形结合的思想,函数的思想等等,掌握各种类型题目的规律。

我们还要求考生不但会做题还要准确快速地解答出来通过练习掌握解题技巧,利用解题技巧快速解题,通过多做练习,做到熟能生巧,这才是我们练习的目的。做题还要集中注意力,这是是考试成功的保证。有时精神紧张,会做的题也会变的不会做,平时要有针对性的训练一些难题,有益于积极思维,树立信心。

因此,对于大部分高考生来说,平时加强训练,养成准确的解题习惯,熟练掌握解题技巧是非常有必要的。

四、会做的题保证做对

这一点很重要,实践中发现,考试我们会做的题丢分率是百分之十,也就是说由于大意每次考试大家都要丢掉这么多的分,怎么将你的解题策略转化为得分点,虽然解题思路正确甚至很巧妙,但是最后可能做不对,这一点往往被一些考生所忽视,但是由于不善于把图形语言变成自己理解的语言,因此卷面上出现大量会又做不对的情况,我们自己的估分和得分相差甚远。如立体几何论证中的跳步,大总分人会丢掉三分之一以上的分数,代数论证中,得分更是少 的可怜。所心我们要边做边检查解题思路正确与否,做完后认真核对。不仅把题目做完,更要保证准确率,会做的一定要保证做对,要能得到分。

数学解题技巧分享范文(21篇)篇四

在高考数学试题的三种题型中,解答题的题量虽比不上选择题,但其占分的比重最大,足见它在试卷中地位之重要,解答题也就是通常所说的主观性试题,这种题主要由综合问组成,就题型而言主要包括计算题、证明题和应用题等.其基本模式是:给出一定的题设(即已知条件),然后提出一定的要求(即要达到的目标),让考生解答.而且,题设和要求的模式则五花八门,多种多样,考生解答时,应把已知条件作为出发点,运用有关的数学知识和方法,进行推理、演绎或计算,最后达到所要求的目标,同时要将整个解答过程的主要步骤和经过,有条理、合逻辑、完整地陈述清楚.

完成解答题,首先要审题,这是解题的开始,也是解题的基础,审题时一定要全面审视题目的所有条件和答题要求,以求正确、全面理解题意,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计.

审题时要把握三性,即明确目的性,提高准确性,注意隐含性,解题实践表明:条件暗示可启发解题手段,结论预示可诱导解题方向,有细致地审题,才能从题目本身获得尽可能多的信息,这一步,不要怕慢,其实慢中有快,解题方向明确,解题手段合理得当,这是快的前提和保证.

(1)熟悉化原则,即在分析题目特点的基础上,联想并利用与其有关的定理、公式和命题,把问题转化为熟知的情形来处理.

(2)具体化原则,即把题日中的各种概念和概念之间的关系化、明确化,以便把一般原理、一般规律应用到具体的解题过程中去.

(3)简单化原则,即把复杂的问题转化为较简单的问题,把复杂的形式转化为较简单的形式.

(4)和谐化原则,即强调变换问题的条件和结论,使其表现形式符合数或形内部固有的和谐统一的特点,或者突出所涉及的各种数学对象之间的知识联系.

(1)设计有效的解题过程和步骤:初步确定了问题的思路和方法后,就要设计好解题的过程和步骤,切忌盲目落笔,顾此失彼.解题过程中的每个步骤都要做到推理严谨,言必有据,演算准确,表述得当,及时核对数据,进行必要检查,注意不要跳步,防止无根据的判断,防止只凭直观,以不存在的图形特征作为条件进行推理.

(2)力求表述得当:解题过程要用规范的数学语言,不要以某些习题中的结论为依据,只写结论,不写过程.

(3)画好图形,做到定形(状)、定性(质)、定(数)量、定位(置).画好图形,对于理解题意,寻求思路,帮助分析等都具有重要的作用,这一点在立体几何解答题中显得尤其重要.

高考中常见的解答题按所考查知识点主要分为以下几种:(1)函数不等式与导数;(2)三角函数;(3)数列;(4)立体几何(计算、推理与证明(5)解析几何(有时与向量结合);(6)概率与统计;(7)应用题(函数、不等式、数列、解三角形、线性规划等).

【类题解法提示】

导数是研究函数性质的强有力工具,利用导数解决函数问题不但避开了初等函数变形技巧性强的难点,而且便解法程序化,变巧法为通法,因此在求角与函数的切线、极(最)值、单调性以及与不等式有关的问题时,要充分发挥导数的工具性作用,优化解题策略,简化运算过程。

数学解题技巧分享范文(21篇)篇五

注意归一公式、诱导公式的准确性(生成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;标记看象限)时,很容易因为粗心,造成失误。一着不慎,满盘皆输。)。

2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般思考用放缩法;假如两头都是含n的式子,一般思考数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假定,否则不正确。

3、证明不等式时,有时构造函数,运用函数单调性非常简单(因此要有结构函数的观念)。

三、立体几何题。

1、证明线面位置关系,一般不需要去建系,更简易;。

3、注意向量所成的角的余弦值(范畴)和所求角的余弦值(范畴)的关系(标记问题、钝角、锐角问题)。

数学解题技巧分享范文(21篇)篇六

第一步:结合几何意义记住零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如20xx年数学一真题第16题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。

第二步:借助几何意义寻求证明思路。一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如20xx年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数f(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。再如20xx年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。

一、合情推理

2.类比推理是由特殊到特殊的推理,是两类类似的对象之间的推理,其中一个对象具有某个性质,则另一个对象也具有类似的性质。在进行类比时,要充分考虑已知对象性质的'推理过程,然后类比推导类比对象的性质。

二、演绎推理

演绎推理是由一般到特殊的推理,数学的证明过程主要是通过演绎推理进行的,只要采用的演绎推理的大前提、小前提和推理形式是正确的,其结论一定是正确,一定要注意推理过程的正确性与完备性。

三、直接证明与间接证明

直接证明是相对于间接证明说的,综合法和分析法是两种常见的直接证明。综合法一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法(或顺推证法、由因导果法)。分析法一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法。

间接证明是相对于直接证明说的,反证法是间接证明常用的方法。假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫做反证法。

四、数学归纳法

数学上证明与自然数n有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题,在高中数学中常用来证明等式成立和数列通项公式成立。

题型:这种题型分为两类:第一类就是证明题,也就是证明平行(线面平行、面面平行),第二类就是证明垂直(线线垂直、线面垂直、面面垂直);第二就是计算题,包括棱锥体的体积公式计算、点到面的距离、有关二面角的计算(理科生掌握)解题思路:

证线面平行如直线与面有两种方法:一种方法是在面中找到一条线与平行即可(一般情况下没有现成的线存在,这个时候需要我们在面做一条辅助线去跟线平行,一般这条辅助线的作法就是找中点);另一种方法就是过直线作一个平面与面平行即可,辅助面的作法也基本上是找中点。

证面面平行:这类题比较简单,即证明这两个平面的两条相交线对应平行即可。

证线面垂直如直线与面:这类型的题主要是看有前提没有,即如果直线所在的平面与面在题目中已经告诉我们是垂直关系了,那么我们只需要证明直线垂直于面与面的交线即可;如果题目中没有说直线所在的平面与面是垂直的关系,那么我们需要证明直线垂直面内的两条相交线即可。

其实说实话,证明垂直的问题都是很简单的,一般都有什么勾股定理呀,还有更多的是根据一个定理(一条直线垂直于一个面,那么这条直线就垂直这个面的任何一条线)来证明垂直。

证面面垂直与证面面垂直:这类问题也比较简单,就是需要转化为证线面垂直即可。

体积和点到面的距离计算:如果是三棱锥的体积要注意等体积法公式的应用,一般情况就是考这个东西,没有什么难度的,关键是高的寻找,一定要注意,只要你找到了高你就胜利了。除了三棱锥以外的其他锥体不要用等体积法了哈,等体积法是三棱锥的专利。二面角的计算:这类型对理科生来说是一个噩梦,其难度有二,第一是首先你要找到二面角在什么地方,另一个难度就是你要知道这个二面角所在直角三角形的边长分别是多少。

二面角(面与面)的找法主要是遵循以下步骤:首先找到从一个面的顶点a出发引向另一个面的垂线,垂足为b,然后过垂足b向这两个面的交线做垂线,垂足为c,最后将a点与c点连接起来,这样即为二面角(说白了就是应用三垂线定理来找)

二面角所在直角三角形的边长求法:一般应用勾股定理,相似三角形,等面积法,正余弦定理等。

这里我着重说一下就是在题目中可能会出现这样的情况,就是两个面的相交处是一个点,这个时候需要我们过这个点补充完整两个面的交线,不知道怎么补交线的跟我说一声。

数学解题技巧分享范文(21篇)篇七

古语云:授人以鱼,只供一饭。授人以渔,则终身受用无穷。学知识,更要学方法。高考数学解题中,一个不小心,就会丢分。本文针对数学考试中出现的问题,进行了详细的讲解,希望帮助学生培养良好的学习习惯,使学生在学习中能够事半功倍。

学习数学就是学习解题。搞题海战术的方法固然是不对的,但离开解题来学习数学同样也是错误的。其中的关键在于对待题目的态度和解题的方式上。同学们应该认识到数学学科的特点,在复习方法上和其他学科区别开来。下面我们就来听听清华大学附属中小学网校的老师对高考数学解题方法的一些建议:

1.精选题目,避免题海战术

只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。

2.认真分析题目

解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,消除这些差异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。

3.做好题目总结

解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结:

1)在知识方面。题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。

2)在方法方面。如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。

3)能否归纳出题目的类型,进而掌握这类题目的解题方法。

1.思路思想提炼法

催生解题灵感。“没有解题思想,就没有解题灵感”。但“解题思想”对很多学生来说是既熟悉又陌生的。熟悉是因为教师每天挂在嘴边,陌生就是说不请它究竟是什么。建议同学们在老师的指导下,多做典型的数学题目,则可以快速掌握。

2.典型题型精熟法

抓准重点考点管理学的“二八法则”说:20%的重要工作产生80%的效果,而80%的琐碎工作只产生20%的效果。数学学习上也有同样现象:20%的题目(重点、考点集中的题目)对于考试成绩起到了80%的贡献。因此,提高数学成绩,必须优先抓住那20%的题目。针对许多学生“题目解答多,研究得不透”的现象,应当通过科学用脑,达到每个章节的典型题型都胸有成竹时,解题时就会得心应手。

3.逐步深入纠错法

巩固薄弱环节管理学上的“木桶理论”说:一只水桶盛水多少由最短板决定,而不是由最长板决定。学数学也是这样,数学考试成绩往往会因为某些薄弱环节大受影响。因此,巩固某个薄弱环节,比做对一百道题更重要。

数学解题技巧分享范文(21篇)篇八

我们处理事情或是解题的习惯思维是从事情的起始状态,根据将要发生的变化,推断结束时的状态;递推法是利用问题本身所具有的一种递推关系求解问题的一种方法。用递推法解题,首先是要列出符合题意的递归关系式——递归方程,再解方程。通常办法是按某一元素(或位置)或某一方式进行分类讨论,从而得出问题间的递推关系。

例题:2009年行测真题。

a.128平方厘米b.162平方厘米。

c.200平方厘米d.242平方厘米。

【答案】c.

数学思想剖析:推导法数学思想依据是化归思想。所谓“化归”,就是转化和归结。在解决数学问题时,人们常常将待解决的问题甲,通过某种转化过程,归结为一个已经解决或者比较容易解决的问题乙,然后通过问题乙的解答返回去求得原问题甲的解答,这就是化归方法的基本思想。总而言之,化归就是要化复杂为简单,化陌生为熟悉。推导法是最常用的化归方法。化归方法还有分解与组合、构造法、定义回归法和升降维(立体化归)等。

数学解题技巧分享范文(21篇)篇九

平移问题:永远记住左右平移只是对x做变化,上下平移就是对y考点:对于这类题型我们首先要知道它一般都是考我们什么,我觉做变化,永远切记。

b、概率解题技巧

解题思路:布列、期望、方差的公式,难度也是不大,都属于送分题,是要求第一步就是根根据向量公式将表示出来:其表示共有两种方法,一我们必须拿全部分数。

导公式(只要题目出现了跟或者有关的角度,一定想到诱导公式),题目。

解题思路:

第一步就是求出总体的情况

第二步就是求出符合题意的情况

第三步就是将两者比起来就是题目要求的概率

这类型题目对理科生来说一定要掌握好期望与方差的公式,同时最重要的是独立重复试验概率的求法。

数学解题技巧分享范文(21篇)篇十

解决方法一:要克服在某个单元上的弱点,把那个单元整理出来也就轻而易举地解决了。

接下来,不断反复,直到把那些题目完全记在脑子中为止,并去理解其解题过程。

数学学不好的问题二:某种类型的题目经常做错。

解决方法二:要克服在某种类型题目上的弱点,就要对考试中做错题目的根源一追到底,找出来后解决掉。

考试的时候,很多题目看上去好像是陌生的,但实际上大部分都是做过一遍的题目,或者与之类似的题目。而即便这样还是做错了,就是因为没有以去除弱点的方式来学习的缘故。

即使题目的内容有所不同,但如果上一次你在利用概率的加法定理解答的题目中做错了,这次又在类似的题目中做错了的话,就是因为没有以克服弱点的方式来学习。

因此,考完试之后,要想一下做错的题目当初不会做或者没有想起来的理由到底是什么,如果自己有哪部分在理解或解答上没有信心,就要找到内容的出处,不仅与那道题直接相关的内容,就连它周围的东西都要毫无遗漏地学习一遍。

数学学不好的问题三:对某个主题没有信心。

解决方法三:克服在某一主题上的弱点的方法。

在某一主题上的弱点,对于初中生来说就是碰到以新面目出现的题目经常不会解答,对于高中生来说就是经常在值、最小值题目上没有自信。为了解决这一问题,就要像前面说过的克服某一单元弱点的方法一样去做整理工作。只不过在这儿更应该侧重的是整理这一过程,而不是对题目进行复习、检查的解题过程。

数学学不好的问题四:考试或学习中有坏习惯。

解决方法四:如果某种习惯成了自己的弱点的话,为了使其得到纠正,就要努力有意识地或者使用特定的方法来改掉这一习惯。

数学解题技巧分享范文(21篇)篇十一

很多考生对审题重视不够,往往要做的题目都没有看清楚就急于下笔,审好题是做题的关键,审题一一定要逐字逐句的看清楚,通过审题发现题目有无易漏、易错点,只有仔细审题才能从题目中获取更多的信息,只有挖掘题目中的隐含条件、启发解题思路,提醒常见解题误区和自己易出现的错误,才能提高解题能力。只有认真的审题,谨慎的态度,才能准确地揣摩出题者的意图,发现更多的信息,从而快速找到解题方向。

考前保持头脑清醒,要摒弃杂念,不断进行积极的心理暗示,创设宽松的氛围,创设数学情境,进而酝酿数学思维,静能生慧,满怀信心的进行针对性的自我安慰,以平稳自信、积极主动的心态准备应考。这就要求我们要善于观察。

二、先做简单题,后做难题。

从我们的心理学角度来讲,一般拿到试卷以后,心情比较紧张,此时不要急于下手解题,可以先对试题多少、分布、难易程度从头到尾浏览一遍,做题要先易后难,做到心中有数,一般简单的题目占全卷60%,这是很重要的一部分分数,见到简单题要细心解题,尽量使用数学语言,而且要更加严谨以振奋精神,养成良好的审题习惯鼓舞信心。

如果顺序做题既耗费时间又拿不到分,会做的题又被耽误了。所以先做简单题,多年的经验告诉我们,当你解题不顺利时,更要冷静,静下心来,沉住气,根据自己的实际情况,果断跳过自己不会做的题目,把简单的都做完,如果我们能把这部分的分数拿到,就已经打了胜仗,再集中精力做比较难的题,有了胜利的信心,面对住偏难的题更要有耐心,不要着急,可以先放弃,但也要注意认真对待每一道题,不能走马观花,要相信自己。到应有的分数。最好还有善于把难题转换成简单的题目的能力。

三、多做练习,提升能力。

整体而言高考数学要想考好,一定要做大量的练习,要有扎实的理论基础,在此基础上辅以做题技巧,才不会出现考试时间不够用,自己会做的题最后没时间做,得不偿失。就要求我们在大量的练习的`基础上,认真总结方程的思想,数形结合的思想,函数的思想等等,掌握各种类型题目的规律。

我们还要求考生不但会做题还要准确快速地解答出来通过练习掌握解题技巧,利用解题技巧快速解题,通过多做练习,做到熟能生巧,这才是我们练习的目的。做题还要集中注意力,这是是考试成功的保证。有时精神紧张,会做的题也会变的不会做,平时要有针对性的训练一些难题,有益于积极思维,树立信心。

因此,对于大部分高考生来说,平时加强训练,养成准确的解题习惯,熟练掌握解题技巧是非常有必要的。

四、会做的题保证做对。

这一点很重要,实践中发现,考试我们会做的题丢分率是百分之十,也就是说由于大意每次考试大家都要丢掉这么多的分,怎么将你的解题策略转化为得分点,虽然解题思路正确甚至很巧妙,但是最后可能做不对,这一点往往被一些考生所忽视,但是由于不善于把图形语言变成自己理解的语言,因此卷面上出现大量会又做不对的情况,我们自己的估分和得分相差甚远。如立体几何论证中的跳步,大总分人会丢掉三分之一以上的分数,代数论证中,得分更是少的可怜。所心我们要边做边检查解题思路正确与否,做完后认真核对。不仅把题目做完,更要保证准确率,会做的一定要保证做对,要能得到分。

数学解题技巧分享范文(21篇)篇十二

计算能力是高考数学考查的一项基本能力,但目前反映出来的问题是,很多考生计算能力非常不足。“在评卷过程中,我们经常看到考生解题的方法和思路都正确,但就是计算出错。很多解答题都是多步计算,中间步骤的计算出错会直接导致后续解答相应出错,造成严重丢分。一句话:不是不会做,而是计算错!”

在这些错误中,最常见的是“代数式的恒等变形(含纯数字运算)”出错,包括整式、分式和二次根式的运算,因式分解等内容;其次是求解方程(组)与不等式(组)计算出错,这是很容易预防的错误。事实上,解方程或方程组时将所求出来的解代入到原方程或方程组进行检验即可发现正确与否,解不等式或不等式组则可以考虑用解集区间端点或一些特殊值进行检验。

无谓失误2:答题不规范。

高考数学解答题明确要求考生写出文字说明、证明过程和演算步骤。考生们必须明白,做一道解答题实际是在写一篇数学作文!必须要把解答的思维过程无声地展示给评卷人员,而不是把一堆数学式子和数学符号写在试卷上即可。很多考生的文字说明词不达意,证明过程条件不明显、推理不到位、演算步骤详略不当、卷面不整洁。有些考生则是文字表述思路不清,令人费解,评卷老师需要猜测其解题意图。

千万不要触碰高考答题要求的“红线”:必须在指定答题区域内书写相应题号的解答。有些考生将部分解答内容写在指定的区域之外,甚至有一些考生更改答题卡的题号,如在18题答题区域上将“18”涂改成“19”并将19题解答写在这个区域上,这些都会被作零分处理。

数学解题技巧分享范文(21篇)篇十三

所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。

一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的联系方式上多下功夫。

所谓简单化策略,就是当我们面临的是一道结构复杂、难以入手的题目时,要设法把转化为一道或几道比较简单、易于解答的新题,以便通过对新题的考察,启迪解题思路,以简驭繁,解出原题。

简单化是熟悉化的补充和发挥。一般说来,我们对于简单问题往往比较熟悉或容易熟悉。

因此,在实际解题时,这两种策略常常是结合在一起进行的,只是着眼点有所不同而已。

解题中,实施简单化策略的途径是多方面的,常用的有:寻求中间环节,分类考察讨论,简化已知条件,恰当分解结论等。

所谓直观化策略,就是当我们面临的是一道内容抽象,不易捉摸的题目时,要设法把它转化为形象鲜明、直观具体的问题,以便凭借事物的形象把握题中所及的各对象之间的联系,找到原题的解题思路。

所谓特殊化策略,就是当我们面临的是一道难以入手的一般性题目时,要注意从一般退到特殊,先考察包含在一般情形里的某些比较简单的特殊问题,以便从特殊问题的研究中,拓宽解题思路,发现解答原题的方向或途径。

所谓一般化策略,就是当我们面临的是一个计算比较复杂或内在联系不甚明显的特殊问题时,要设法把特殊问题一般化,找出一个能够揭示事物本质属性的一般情形的方法、技巧或结果,顺利解出原题。

数学解题技巧分享范文(21篇)篇十四

按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。

对于同一道数学题,常常可以不同的侧面、不同的角度去认识。因此,根据自己的知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟悉的解题方向。

数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论(或问题)之间,也存在着多种联系方式。因此,恰当构造辅助元素,有助于改变题目的形式,沟通条件与结论(或条件与问题)的内在联系,把陌生题转化为熟悉题。

数学解题中,构造的辅助元素是多种多样的,常见的有构造图形(点、线、面、体),构造算法,构造多项式,构造方程(组),构造坐标系,构造数列,构造行列式,构造等价性命题,构造反例,构造数学模型等等。

数学解题技巧分享范文(21篇)篇十五

试题的综合性比较强,也有一定的灵活性,没有过于专业和抽象难懂的内容;控制一定的及格率,要求以中等偏上题为主,没有通常意义下的所谓“难题”。所以考生在数学复习中一定要重视基础知识。对概念和性质一定要理解其内涵和外延,对各个知识点一定要弄清楚其区别和联系。同时要做一定数量的题目,要逐步提高运算的速度和准确度。逐步培养解答综合试题的能力。

在考研复习期间,每个人都会做大量的数学题,但题目的数量并不是决定胜负的关键,关键在于做题的质量。所谓“质量”,是指你从一道题中学到了多少知识和解题方法,发现了多少自身存在的问题,体会到了多少命题的思路和考点。考研数学复习必须做题,但是不能把做题和基础知识的复习对立起来。有人认为数学基本题太简单,不愿意做,都去做更多更难的题目。但是,如果对理论知识领会不深,基本概念都没搞清楚,恐怕基本题也做不好,又怎么谈得上做更多更难的题目呢?缺乏基本功,盲目追求题目的深度、难度和做题数量,结果只能是深的不会做,浅的也难免错误百出。其实解题的过程也是加深对数学定理、公式和基本概念的理解和认识的过程。

用一句话概括就是:“先阶段,后综合;勤总结,多温故”。这个非常好理解,重点是在实施的时候要注意什么方面,如在进行阶段时的复习当中,我们常做的方法是将基础知识通看一遍,然后拿来自己选用的参考书进行练习。一定要多问几个为什么!在理解概念时,多问问自己为什么,它的潜在意义在哪,应用的题型是什么样的,适用的范围有哪几个,应该套用的公式是哪些。在做题方面,需要我们注意的就是要经常性地总结,把自己做得题常常找出来好好地总结归纳,同一题型经常用什么样的解题通式,这样在拿到题的时候心中进不会发慌。

做题有很多好处的:一是通过做题来准确理解、把握基本概念、公式、结论的内涵和外延,并逐渐掌握它们的使用方法。试卷上不需要考生默写某个概念或公式,而是用这些概念或公式解决问题,这种灵活运用公式的能力只有也只能通过做题来获得,所以考生必须做一定数目的题目。二是题目做的多了,做题才有思路。数学的题目虽然千变万化,但基本结构却大体相同,题型也不会变化太大,题目的解答也有一定规律可寻,题目做的多了,自然而然就会迅速形成解题思路。三是题目做的多了,可以提高解题速率和正确率。选择题和填空题在数学考卷中所占的比重很大,这些题目的解答往往会“一失足成千古恨”,稍不留神,一步做错就全军覆没。另外,题目也不需要做得太多,整天泡在题海中没有必要,只要掌握了需要掌握的知识点并能熟练应用即可。考生一方面要做真题,另一方面要做难度适宜,覆盖面全,集中体现考纲要求的题目,数量自己把握。

第一,按照大纲对数学基本概念、基本方法、基本定理准确把握。数学是一门演绎的科学,靠侥幸押题是行不通的。只有对基本概念有深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。分析近几年考生的数学答卷可以发现,考生失分的一个重要原因就是对基本概念、定理理解不准确,数学中最基本的方法掌握不好,给解题带来思维上的困难。

第二,要加强解综合性试题和应用题能力的训练,力求在解题思路上有所突破。在解综合题时,迅速地找到解题的切入点是关键一步,为此需要熟悉规范的解题思路,考生应能够看出面前的题目与他曾经见到过的题目的内在联系。为此必须在复习备考时对所学知识进行重组,搞清有关知识的纵向与横向联系,转化为自己真正掌握的东西。解应用题的一般步骤都是认真理解题意,建立相关数学模型,如微分方程、函数关系、条件极值等,将其化为某数学问题求解。建立数学模型时,一般要用到几何知识、物理力学知识和经济学术语等。

第三,重视历年试题的强化训练。统计表明,每年的研究生入学考试高等数学内容较之前几年都有较大的重复率,近年试题与往年考题雷同的占50%左右,这些考题或者改变某一数字,或改变一种说法,但解题的思路和所用到的知识点几乎一样。通过对考研的试题类型、特点、思路进行系统的归纳总结,并做一定数量习题,有意识地重点解决解题思路问题。对于那些具有很强的典型性、灵活性、启发性和综合性的题,要特别注重解题思路和技巧的培养。尽管试题千变万化,其知识结构基本相同,题型相对固定。提练题型的目的,是为了提高解题的针对性,形成思维定势,进而提高考生解题的速度和准确性。

数学解题技巧分享范文(21篇)篇十六

微分法是极限思想中的重要方法,我们主要利用微分法来解决极值问题。

例题:2008年江苏省行测a类真题。

数学思想剖析:微分法数学思想依据是极限思想。极限的思想是近代数学的一种重要思想。所谓极限的思想,是指用极限概念分析问题和解决问题的一种数学思想。其主要方法除了微分法,还有积分法。

上述数学运算常用解题方法及其数学思想剖析的介绍,不仅运用相应真题从理论上对每种解题方法做了总结,而且就解题方法的思想依据也做了深入剖析,深入浅出,有很强的针对性和适用性,希望能够帮助考生做到有的放矢,对数学运算常考的几种题型有一个明确的把握,对解题方法能合理有效的运用,对目前数学运算考试题型及解题方法在头脑中建立数学运算的知识体系,在短时间内提高应对同类型试题的能力。从根本上走出数学运算耗时但低分的困境。

数学解题技巧分享范文(21篇)篇十七

经常能够在学生口中听到这样的话――“那道题我会做的,可惜没有时间了。”“都怪我粗心,题目要选错误的,我选成正确的。”“这道题的图很明显就是要证这两个三角形全等,当时怎么就没看到。”诸如此类的失误丢分时常让老师和学生都觉得很可惜,而如果学生在平时就能养成较好的做题习惯,大部分情况还是可以避免的。

恰当的答题顺序常常能够事半功倍:通俗来说要培养学生先易后难的答题习惯,然而很多孩子常常难以在考试中严格执行。以深圳市数学中考为例,考查方式通常为12道选择题4道填空6道解答题。其中选择题最后两题,填空题最后一题,倒数第二题最后一问以及最后一大题有较大难度。学生在答题过程中,如果对于选择填空的难题部分遇到困难,可以考虑先猜想一个答案后先回答有把握的其他题目。如此可以有效的避免宝贵答题时间的浪费。

良好的心态是答题成功的前提。

对于很多初中阶段的孩子而言,数学的难不在于题目本身,更大程度上是一种畏难的心态。很多孩子一碰到题干部分略微偏长的题目,常常是题目还没有读完就已经“缴械投降”了。这一方面体现了学生读题能力的欠缺,另一方面更说明心态在某种程度上对学生有较重要的心理暗示。

由此,数学教师在教学过程中在注重提高孩子们数学学习兴趣的同时,更要注重孩子自信心的培养。让学生对于数学形成有良好的心理暗示――我觉得难的时候别人也会觉得难。同时,也要让学生对于自己的数学学习形成这样的一个概念――并不是做到满分才是成功,而是每一次对于自己能力范围内的题目都能做对就是一种成功,不懂的题目可以通过自己的努力下次完成。

数学解题技巧分享范文(21篇)篇十八

读题是理解题和解决问题的前提,要反复读题,加深理解。但常常有这样的同学,读完题后还未完全理解题意便忙于解题,于是就出现理解不出来或解错题的情况,欲速则不达。

用方程解题的最大好处就是可以用字母代替未知数,在考虑数量关系时,未知数与已知数始终处于平等地位,可以直接参加列式和计算,便于把题目中的数量关系直接地反映出来,从形式上看,它比列算术式要简便。如此说来,是不是在解题时我们就应一味地去追求列方程呢?实际并非如此。

这些题进一步说明列方程解题并不一定是最好的选择。

通过以上几道例题的分析比较可以看出,很多数学题用算术方法求解要比用代数方法求解简便得多,而且用算术的方法分析问题能很好地锻炼同学们的思维,使自己的头脑越来越灵活,有利于智力的开发。所以,在小学阶段,应尽可能使用算术方法去思考问题,而不要盲目追求列方程。

对错误的解答,要能够认真分析错误原因。搞清楚是理解题意有误还是计算错误,是考虑问题不全面还是解题思路有问题。认真反思,吸取教训,你离成功就不远了。

就是把题目改了再做,当然你不是故意这样的。同学们在考试时常受一些曾经似乎做过的题的影响,这个见过,那个见过,就顺着记忆做下去了,实际上由于其中一个条件或关键词的改变或数据的改变,编排顺序的改变等已使题目变得与原题大不相同了,因此在审题时一定要认真,再认真,条件是什么?条件与条件之间的关系是什么?数据又是什么?与问题有怎样的联系?这些都需要思索一番的,我们在教学过程中一般都强调同学们画图、列条件、标数据、写等量关系等,把题目中提供的信息,通过自己的大脑再在草稿纸上表现出来,这样不易遗漏。当然这些都存在一个时间和效率问题,在考试时是不容你花大量的时间琢磨的,要在有限的时间内把题意掌握清楚,争取不受原来那些题的干扰。

当然,类似的情况太多了,你只要不受“老朋友”的影响,以为做过就轻视它。考试时,把关键落实到审题上,通过自己的.努力,这些还是可以避免的。

这一错误的产生是由于同学们在解题时关注点不全面,想了这个忘了那个。我仔细分析,大致情况是这样:在每道题中都有一个赛点,或者说是一个难点,有些题是出现连续的几个赛点,一般同学们在突破赛点,解决难点后是非常兴奋的,我懂了,我会了,我明白,给自己的感觉是这道题的分数唾手可得,就什么都不顾了,问乙多少答成了丙多少,问多多少答成了总数是多少,问男比女答成了女比男……有同学感叹:我怎么忘了乘以3了呢?我怎么最后没加起来呢?……这种情况比比皆是。

因此,同学们在做题尤其是考试时,既要有一定的兴奋来刺激大脑思维的活跃,也要以相当的冷静来分析全题的道道机关,弄清出题人的意图,它要考你什么知识点,用什么方法,赛点在哪儿。不要因为题目似乎见过,难点已经突破而忘乎所以。在考试解题时首先能做到这两点,你的数学成绩一定会有大幅提高。

“丢三落四”这是最常见的错误,对于考虑问题不全面不周到的例子,我在很多专题课上讲到过。而对于一题多答案的试题在各重点中学的招生考试题中十分常见。

较多的错误,还是开篇提到的理解的误区。

数学解题技巧分享范文(21篇)篇十九

数学模型是指针对或参照某种客观事物的主要特征、主要关系,采用形式化的数学语言,抽象概括地或近似地表达出来的一种数学结构。一切数学概念、数学理论体系、各种数学公式、各种方程式、各种函数关系,以及由公式系列构成的算法系统等等都可以称为数学模型,这些模型经过教学法的加工和逻辑处理,有机地结合在一起,构成了中学的数学知识体系。在这种意义下,我们可以说中学数学教学实际上是数学系模型的.教学,而通过构造数学模型来解决有关问题的方法称为数学模型思想方法。

随着科学技术的发展,特别是现代计算机的广泛应用和科学技术的数字化,通过构造数学模型来解决实际问题的方法正广泛应用于自然科学、工程技术以及社会科学等多个领域。在中学数学教学中恰当地渗透数学模型思想方法,可使抽象的数学知识形象化,对培养学生的观察分析能力,逻辑思维能力有很大的作用。使学生在学习中更容易理解、加深记忆,能够灵活地运用所学和数学知识。

在初中阶段,几何问题是一部分同学的难点,而难就难在没有思路。模型的引入则很好的解决了这个问题,将千变万化、灵活多变的几何问题总结成一个个具体的规律的模型,学生所要做的就是能够准确的识别模型、套用模型结论,使得每一道几何问题都有套路可循,从而解决了初中几何的最大难点。

以初三上学期的重点内容“相似三角形”为例,我们依据一模、二模和中考的常考题型,将相似三角形的内容分为a型、x型、有公共边的斜a型、斜a型与斜x型的混合模型、射影定理模型、一线三等角模型、等腰三角形模型、以及旋转型等基本模型,详细给出每种模型的识别和相应的结论,配以例题详讲帮助学生理解掌握模型,经过这番强化之后,学生会发现面对每一道几何大题,不再会没有思路茫然无措的困惑,而是能够有目标的去分析这道题中能用到的模型,进而利用模型的结论和套路顺利解答出这个问题。

数学解题技巧分享范文(21篇)篇二十

(1)了解向量的实际背景。

(2)理解平面向量的概念,理解两个向量相等的含义。

(3)理解向量的几何意义。

2.向量的`线性运算。

(1)掌握向量加法、减法的运算,并理解其几何意义。

(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义。

(3)了解向量线性运算的性质及其几何意义。

3.平面向量的基本定理及坐标表示。

(1)了解平面向量的基本定理及其意义。

(2)掌握平面向量的正交分解及其坐标表示。

(3)会用坐标表示平面向量的加法、减法与数乘运算。

(4)理解用坐标表示的平面向量共线的条件。

4.平面向量的数量积。

(1)理解平面向量数量积的含义及其物理意义。

(2)了解平面向量的数量积与向量投影的关系。

(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算。

(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。

5.向量的应用。

(1)会用向量方法解决某些简单的平面几何问题。

(2)会用向量方法解决简单的力学问题与其他一些实际问题。

考情聚焦:1.向量的有关概念及运算,在近几年的高考中年年都会出现。

2.该类问题多数是单独命题,考查有关概念及其基本运算;有时作为一种数学工具,在解答题中与其他知识点交汇在一起考查。

3.多以选择、填空题的形式出现,有关会渗透在解答题中。

:向量的有关概念及运算要注意以下几点:

(1)正确理解相等向量、共线向量、相反向量、单位向量、零向量等基本概念,如有遗漏,则会出现错误。

(2)正确理解平面向量的运算律,一定要牢固掌握、理解深刻。

数学解题技巧分享范文(21篇)篇二十一

无论是中考还是高考的复习都有两轮。第一轮就是基本上让学生把在初一、初二或者是初三上学期学的内容再回忆起来。因此,第一轮复习更多侧重于知识的回顾;而第二轮复习,则需要做好以下几件事。

第三,合理利用。即对书中某些典型例题、习题应当合理利用,变式拓展,总结方法,便于学生掌握。这是因为命题的老师很喜欢把书上的课题进行一个拓展之后作为我们的考题,同时也让学生更重视课本。

考试可预估难度调整策略。

在考试的过程中,有的同学“艺高人胆大”,拿了试卷就直接从后往前做;有的同学则“争分夺秒”,答题铃声还没响就匆匆做题,这些都是不可取的。

中考数学试卷是有一定梯度的,答题时一定要从前往后答,切忌从后往前答或从中间向前后答。这是因为前面题简单,容易做,能够给考生“旗开得胜”的快感,使考生紧张心情马上得到平静。同时,在答题的铃声没响前也不要急着答题。如果被监考老师发现而被责备会更加紧张影响答题。这时候可以看一看最后的一两道压轴题。在看的时候就可以预估一下整套试卷的难易度,同时制定答题策略。假如觉得这一份试卷不难,那就可以在前面的题目多花些时间,将答题书写整齐有条理。如果觉得压轴题十分难,就要争取把题目能做多少做多少,不能后面几大题都空着。这时候书写潦草一点,过程简单点都是可以的。

相关范文推荐

    实用S改善心得大全(19篇)

    总结心得体会可以帮助我们更加理性客观地认识自己,发现自身的优势和不足。下面是一些学生和职场新人的心得体会,他们在学习和工作中遇到的问题和经验可能与我们有共鸣。

    专业家庭赡养协议书大全(15篇)

    无论是个人还是企业,签署合同协议都是规范交易行为、保护自身权益的必要举措。在下面是一些合同协议的案例分析,希望能够对你编写合同提供一些思路。甲方:乙方:被赡养人

    优质白酒业务员每周工作总结(通用16篇)

    一个好的月工作总结应该包括工作目标的完成情况、工作中遇到的困难和解决方法、自身的成长和发展等内容。以下是一些值得学习和借鉴的月工作总结范文,希望能够为大家写作提

    热门工资卡申请书格式范文(16篇)

    更多申请书是向招生官或招聘者展示自己才华与能力的良机。这些申请书范文覆盖了不同领域和职位的申请,希望能够帮助你更好地理解写作要点和技巧。尊敬的领导:您好!提笔先

    优秀预算员转正申请书范文(18篇)

    通过阅读优秀范文,我们可以学到很多写作技巧和表达方式,对我们的写作能力有很大的帮助。以下是小编为大家精心收集的优秀范文,希望能够给大家提供一些写作的灵感和参考。

    最优企业在营商环境座谈会发言(通用19篇)

    发言稿可以通过多次修改和润色,使得演讲者的表达更加简练、生动和具有感染力,让听众更易于接受和记住。请欣赏以下几篇来自不同领域的发言稿,相信对大家有所启发。

    2023年收费站安全隐患排查工作总结范文(22篇)

    安全工作总结是经验总结的重要手段,有助于提高安全工作质量。下面是一些关于安全工作总结的示例,大家可以借鉴参考,希望对大家的安全工作有所帮助。为了进一步规范我县学

    热门长征的心得(汇总22篇)

    心得体会可以帮助我们更好地总结经验,吸取教训,避免重复犯错。接下来,我们将分享一些优秀的心得体会范文,希望对大家有所启发。无论怎样都压抑不了心中的震撼,或者说是

    2023年土地种植合作协议合同(案例18篇)

    一份有效的合同协议应包含清晰明确的条款和明确的双方意图。以下是小编为大家收集的合同协议范文,供大家参考和借鉴。在日新月异的现代社会中,用到协议的地方越来越多,签

    专业空调维护保养合同(案例18篇)

    一份合同协议应当包含双方的姓名、地址、联系方式以及具体的合作内容。如果您正在编写合同协议,不妨参考以下的合同协议范文,或许能为您提供有用的信息。甲方:(以下简称