2023年初中数学相似三角形教案 数学教案-三角形相似的判定(精选5篇)

时间:2024-11-24 作者:书香墨

作为一位杰出的老师,编写教案是必不可少的,教案有助于顺利而有效地开展教学活动。优秀的教案都具备一些什么特点呢?又该怎么写呢?下面我帮大家找寻并整理了一些优秀的教案范文,我们一起来了解一下吧。

初中数学相似三角形教案篇一

相似三角形的性质(第2课时)

一、教学目标

1.掌握相似三角形的性质定理2、3.

2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题.

3.进一步培养学生类比的教学思想.

4.通过相似性质的学习,感受图形和语言的和谐美

二、教法引导

先学后教,达标导学

三、重点及难点

1.教学重点:是性质定理的应用.

2.教学难点:是相似三角形的判定与性质等有关知识的综合运用.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、常用画图工具.

六、教学步骤

[复习提问]

叙述相似三角形的性质定理1.

[讲解新课]

让学生类比“全等三角形的周长相等”,得出性质定理2.

性质定理2:相似三角形周长的比等于相似比.

同样,让学生类比“全等三角形的面积相等”,得出命题.

性质定理3:相似三角形面积的`比,等于相似比的平方.

此题学生一般不会感到有困难.

教材上的解法是用语言叙述的,学生不易掌握,教师可提供另外一种解法.

解:设原地块为,地块在甲图上为,在乙图上为.

学生在运用掌握了计算时,容易出现的错误,为了纠正或防止这类错误,教师在课堂上可举例说明,如:

1.本节学习了相似三角形的性质定理2和定理3.

2.重点学习了两个性质定理的应用及注意的问题.

七、布置作业

教材p247中a组4、5、7.

八、板书设计

初中数学相似三角形教案篇二

1、两个三角形的两个角对应相等

2、两边对应成比例,且夹角相等

3、三边对应成比例

4、平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。

相似三角形的判定方法

根据相似图形的特征来判断。(对应边成比例,对应边的夹角相等)

(这是相似三角形判定的引理,是以下判定方法证明的基础。这个引理的证明方法需要平行线分线段成比例的证明)

2、如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;

4、如果两个三角形的三组对应边的比相等,那么这两个三角形相似;

5、对应角相等,对应边成比例的两个三角形叫做相似三角形(用定义证明)

绝对相似三角形

1、两个全等的三角形一定相似。

2、两个等腰直角三角形一定相似。(两个等腰三角形,如果顶角或底角相等,那么这两个等腰三角形相似。)

3、两个等边三角形一定相似。

直角三角形相似判定定理

1、斜边与一条直角边对应成比例的两直角三角形相似。

2、直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。

射影定理

三角形相似的判定定理推论

推论一:顶角或底角相等的两个等腰三角形相似。

推论二:腰和底对应成比例的两个等腰三角形相似。

推论三:有一个锐角相等的两个直角三角形相似。

推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。

推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

初中数学相似三角形教案篇三

本章有以下几个主要内容:

一、比例线段

(1)线段比:用同一长度单位度量两条线段a,b,把他们长度的比叫做这两条线段的比。

(2)比例线段:在四条线段a,b,c,d中,如果线段a,b的比等于线段c,d的比,那么,这四条线段叫做成比例线段。简称比例线段。

(3)比例中项:如果a:b=b:c,那么b叫做a,c的比例中项

(4)黄金分割:把一条线段分成两条线段,如果较长线段是全线段和较短线段的比例中项,那么这种分割叫做黄金分割。这个点叫做黄金分割点。

顶角是36度的等腰三角形叫做黄金三角形

宽和长的比等于黄金数的矩形叫做黄金矩形。

(5)比例的性质

基本性质:内项积等于外项积。(比例=====等积)。主要作用:计算。

合比性质,主要作用:比例的互相转化。

等比性质,在使用时注意成立的条件。

二、相似三角形的判定

平行线等分线段------平行线分线段成比例--------平行于三角形一边的直线截其他两边(或两边延长线),所截线段对应成比例------(预备定理)平行于三角形一边的直线和其他两边(或两边延长线)相交,所截三角形与原三角形相似------相似三角形的判定:类比于全等三角形的判定。

三、相似三角形的性质

1、定义:相似三角形对应角相等

对应边成比例。

2、相似三角形对应线段(对应角平分线、对应中线、对应高等)的比等于相似比

3、相似三角形周长的比等于相似比

4、相似三角形面积的比等于相似比的平方

四、图形的位似变换

1、几何变换:平移,旋转,轴对称,相似变换

----2、相似变换:把一个图形变成另一个图形,并保持形状不变的几何变换叫做相似变换。

----3、位似变换:两个图形不但相似,而且对应点连线过同一点的相似变换叫做位似变换。这两个图形叫做位似图形。

4、位似变换可把图形放大或者缩小。

5、外位似(同向位似图形)位似中心在对应点连线外的位似叫外位似。这两个图形叫同向位似图形。

内位似(反向位似图形)位似中心在对应点连线上的位似叫内位似。这两个图形叫反向位似图形。

6、以原点为位似中心,相似比为k,原图形上点的坐标(x,y)则同向位似变换后对称点的坐标为(kx,ky)

以原点为位似中心,相似比为k,原图形上点的坐标(x,y)反向位似变换后对称点的坐标为(-kx,-ky)

初中数学相似三角形教案篇四

本节课的教学设计主要从以下三个方面来考虑的:

一、尊重学生主体地位

本课以学生的自主探究为主线:课前学生自己对比例线段的运用进行整理。这样不仅复习了所学知识,而且可以使学生逐渐学会反思、总结,提高自主学习的能力;课堂上学生亲身体验“实验操作—探索发现—科学论证”获得知识(结论)的过程,体验科学发现的一般规律;解决问题时学生自己提出探索方案,学生的主体地位得到了尊重;课后学有余力的学生继续挖掘题目资源,发展的眼光看问题,观察运动中的“形异实同”,提高学习效率,培养学生思维的深刻性。

2教师发挥主导作用

在探究式教学中教师是学生学习的组织者、引导者、合作者、共同研究者,鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新,哪怕是微小的进步或幼稚的想法都给予热情的赞扬。备课时思考得更多的是学生学法的突破,上课时教师只在关键处点拨,在不足时补充。教师与学生平等地交流,创设民主、和谐的学习氛围,促进教学相长。

3提升学生课堂关注点

学生在体验了“实验操作——探索发现——科学论证”的学习过程后,从单纯地重视知识点的记忆、复习变为有意识关注学习方法的掌握,数学思想的领悟。如在原问题的取点中教师小结了从特殊到一般的归纳,学生在探究矩形的比值时就能意识地把解决特殊问题的策略、方法迁移到解决一般问题中去。在课堂小结中,学生也谈到了这点体会,而且还感悟了一题多解、一题多变等数学学习方法。

相似三角形的判定主要介绍了三种方法以及相似三角形的预备定理,从上下来的结果来看,不是很理想,绝大部分学生对定理的应用不是很熟练,特别对于"两边对应成比例且夹角相等"不能灵活运用,夹角也不能准确找到。我想问题的主要原因在于学生对图形的认知不深,对定理的理解不透,一味死记结论。不能理解每个量所表示的含义。我想在下一阶段中应培养他们认识图形的能力,合情推理的能力,争取这方面有所提高。

初中数学相似三角形教案篇五

1.掌握相似三角形的性质定理2、3.

2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题.

3.进一步培养学生类比的教学思想.

4.通过相似性质的学习,感受图形和语言的和谐美

先学后教,达标导学

1.教学重点:是性质定理的.应用.

2.教学难点:是相似三角形的判定与性质等有关知识的综合运用.

1课时

投影仪、胶片、常用画图工具.

[复习提问]

叙述相似三角形的性质定理1.

[讲解新课]

让学生类比“全等三角形的周长相等”,得出性质定理2.

性质定理2:相似三角形周长的比等于相似比.

同样,让学生类比“全等三角形的面积相等”,得出命题.

性质定理3:相似三角形面积的比,等于相似比的平方.

此题学生一般不会感到有困难.

教材上的解法是用语言叙述的,学生不易掌握,教师可提供另外一种解法.

解:设原地块为,地块在甲图上为,在乙图上为.

学生在运用掌握了计算时,容易出现的错误,为了纠正或防止这类错误,教师在课堂上可举例说明,如:

1.本节学习了相似三角形的性质定理2和定理3.

2.重点学习了两个性质定理的应用及注意的问题.

教材p247中a组4、5、7.

相关范文推荐