学习可以培养我们的思维能力、创造力和解决问题的能力。多角度思考问题和学习内容,能够提供更全面的认知和理解。
高一数学学习指南(优秀17篇)篇一
任教153班与154班两个班,其中153班是文化班有男生51人,x22人;154班是美术班有男生23人,x21人,并且有音乐生8人。两个班基础差,学习数学的兴趣都不高。
准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。
1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。
2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。
3、树立以学生为主体的教育观念。学生的.发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。
4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。
5、加强课堂教。
高一数学学习指南(优秀17篇)篇二
在我们生活中,经常会涉及到很多数学问题,只要我们勤于思考,善于发现总结,就能够解决身边的许多问题。
一天,妈妈给我了9个硬币,说:这儿有9枚硬币,其中有一枚是假的,能不能够将假硬币找出来?我说:这还不简单!,我理解了任务。
我左瞧瞧,右看看,仿佛没什么不同嘛。我又用东西敲一敲,声音仿佛也一样!怎样办呢?我想了想,哦!用天平,真硬币和假硬币的重量肯定不一样!妈妈笑了笑,给我了一个没有砝码的天平,说:嗯,假硬币的质量轻一些,但我只是否有砝码的天平,你想办法把假硬币找出来吧。
我先把硬币分成了3份,然后天平的两边各放一份。天平没有反映,我想假硬币肯定不在这2份里面。但我不放心,从天平上拿下了左边的一份,把留下的第三份放了上去,一开始时没什么反映,但左边的这端慢慢的翘起来了,哦,假硬币果然在左边的这3枚硬币里。我又拿出了左边硬币中的2枚称,仿佛一样重呀!我明白了,假硬币肯定是那一枚!我叫了起来。对,你能用所学的数学知识解出生活中的数学题,真不错!妈妈说。
其实,我只是用简单的数学知识解决了这个问题。而且,只需称两次,就从9枚硬币里找出了其中一枚假硬币。
所以,生活中处处有数学。我们不但要学习课本上的知识,还要留心观察生活中的数学。如果你将所学的数学知识运用到生活中去,你就会发现数学原先是那么搞笑。
高一数学学习指南(优秀17篇)篇三
就是教科书,这是基础的基础,但是被中等生最忽视的。笔者高中时,先看教科书再做题,所以往往同学做到第5题,我才刚开始,但当我做了20题时,反过来发现同学做到第17题,这就是磨刀不误砍柴工。最后不仅省时,而且比同学多巩固了书本知识,然后从书本原理到题目及从题目到原理走了一个来回,培养了以理论解决实际问题的能力,提高了以不变应万变的能力。一句话,省时又高效。为摆脱题海打下了基础。
两方法。
1..)找到已知与求解的“桥梁”。主要针对中等题及难题,利用已知,推一步或几步,完成转化,从求解往后推几步,看看还缺什么,再去回忆脑袋里的知识点及解过的经典题,把已知与求解的差距补上,这个就是“桥梁”原理。
(2)有些题按上述方法还遇到困难,可能需要另辟蹊径,如从定义出发或需要再审视已知条件,可能还未用尽已知条件或有些暗含的已知条件未挖掘出来。
三步骤。
(2)利用历年高考真题,这些题很有价值,先掩着答案,根据你之前课本学的基础内容,尝试自己亲自动手做一下,再对答案,明白其原理,真正弄懂它,看看能否举一反三,可问老师及同学,也可请家教,最后达到触类旁通。
(3)同步练习,必须紧跟课程,不能赖下来的,一步一个脚印去做。
数学知识点较多,容易忘记,但以上的步骤你都能做到的话,那么就不那么容易遗忘,即使忘记,你也可以翻阅以前的内容重新巩固一遍。
想要取得好的成绩高一年级数学学习方法是不可或缺的,但是对知识点的掌握也是必不可少的,为此数学网为大家推荐了20xx-高一数学指数函数和对数函数知识点,希望可以帮助大家在近期的学习中更上一层楼。
高一数学学习指南(优秀17篇)篇四
一、授人以鱼,不如授人以渔。
古人云:“授人以鱼,不如授人以渔。”也就是说,教师不仅要教学生学会,而且更重要的是要学生会学,这是二十一世纪现代素质教育的要求。这就需要教师要更新观念,改变教法,把学生看作学习的主人,培养他们自觉阅读,提出问题,释疑归纳的能力。逐步培养和提高学生的自学能力,思考问题、解决问题的能力,使他们能终身受益。
1.在课前预习中培养学生的自学能力。
课前预习是教学中的一个重要的环节,从教学实践来看,学生在课前做不做预习,学习的效果和课堂的气氛都不一样。为了抓好这一环节,我常要求学生在预习中做好以下几点,促使他们去看书,去动脑,逐步培养他们的预习能力。
1、本小节主要讲了哪些基本概念,有哪些注意点?
2、本小节还有哪些定理、性质及公式,它们是如何得到的,你看过之后能否复述一遍?
3、对照课本上的例题,你能否回答课本中的练习。
4、通过预习,你有哪些疑问,把它写在“数学摘抄本”上,而且从来没有要求学生应该记什么不应该记什么,而是让学生自己评价什么有用,什么没用(对于个体而言)。
少数学生的问题具有一定的代表性,也有一定的灵活性。这些要求刚开始实施时,还有一定困难,有些学生还不够自觉,通过一个阶段的实践,绝大多数学生能养成良好的习惯。另外,在课前预习时,我有时要求学生在学习过程中进行角色转移,站在教师的角度想问题,这叫换位思考法。在学习每一个问题,每项学习内容时,先让学生问问自己,假如我是老师,我是否弄明白了?怎样才能给别人讲清楚?这样,学生就会产生一种学习的内驱力,对每一个概念,每一个问题主动钻研,积极思考,自觉地把自己放在了主动学习的位置。
2.在课堂教学中培养学生的自学能力。
课堂是教学活动的主阵地,也是学生获取知识和能力的主要渠道。作为数学教师改变以往的“一言堂”“满堂灌”的教学方式显得至关重要,而应采用组织引导,设置问题和问题情境,控制以及解答疑问的方法,形成以学生为中心的生动活泼的学习局面,激发学生的创造激情,从而培养学生的解决问题的能力。
在尊重学生主体性的同时,我也考虑到学生之间的个体差异,要因材施教,发掘出每个学生的学习潜能,尽量做到基础分流,弹性管理。在教学中我采用分类教学,分层指导的方法,使每一位同学都能够稳步地前进。调动他们的学习积极性。对于问题我没有急于告诉学生答案,让他们在交流中掌握知识,在讨论中提高能力。尽量让学生发现问题,尽量让学生质疑问题,尽量让学生标新立异。
在课堂教学中,我的一个主要的教学特征就是:给学生足够的时间,这时间包括学生的思考时间、演算时间、讨论时间和深入探究问题的时间,在我的课堂上可以看到更多的是学生正在积极的思考、热烈的讨论、亲自动脑,亲自动手,不等不靠,不会将问题结果完全寄托于老师的传授,而是在积极主动的探索。当然数学教学过程作为师生双边活动过程,学生的探索要依靠教师的启发和引导。在教学过程中,我也从来没有放弃对于学生的指导,尤其在讲授新课时,我将教材组成一定的尝试层次,创造探索活动的环境和条件。让学生通过观察归纳,从特殊去探索一般,通过类比、联想,从旧知去探索新知,收到较好的效果。
3.在课后作业,反馈练习中培养学生自学能力。
课后作业和反馈练习、测试是检查学生学习效果的重要手段。抓好这一环节的教学,也有利于复习和巩固旧课,还锻炼了学生的自学能力。在学完一节、一课、一单元后,让学生动手“列菜单”,归纳总结,要求学生尽量自己独立完成,以便正确反馈教学效果,通过一系列的实践活动,把每个学生的学习积极性都调动起来,成为教学活动的参与者和组织者。
学生自学能力的培养不是靠一朝一夕,要长期坚持的,三年来就是靠着这扎扎实实的教学,扎扎实实的学习才使我所教的两个班级的学生在自学能力上得到了长足的进步。科学安排,课前、课堂、课后三者结合,留给学生充分的自学机会。真正把学生推向主动地位,使其变成学习的主人,我想这是每一位教育工作者所梦寐以求的结果吧。
大家都知道中学数学的教学内容为初等数学的基础知识,这些基础知识源远流长。不可能再有什么知识层面的创新了。更不可能要求学生发明创造什么新的初等数学的结论。因此,我个人认为数学教育创新应该着眼于学生建构新的认知过程,用数学的语言就是——“认知建模”。而这过程的创新应该体现在以下三个方面:
1.勤于思考:
创新的前题是理解。我们知道,数学离不开概念,由概念又引伸出性质,这些性质往往以定理或公式呈现出来。对定理、公式少不了要进行逻辑推理论证,形成这些论证的理路需要思维过程。为此,我们首先必须让学生对学习的对象有所理解。因为数学知识的获得主要依赖紧张思维活动后的理解,只有透彻的理解才能溶入其认知结构。这就需要拼弃过去那种单靠记往教师在课堂上传授的数学结论,然后套用这些结论或机械地模仿某种模式去解题的坏习惯。而要做到理解,就需要勤于思考。对知识和方法要多问几个为什么?如:为什么要形成这个概念?为什么要导出这个性质?这个性质、定理、公式有什么功能?如何应用?勤于思考的表现还在于对认知过程的不断反思、回顾,不断总结挫折的教训和成功的经验。避免墨守成规,勇于创新。
2.善于提问:
学生在数学课堂中通过观察、感知学习的对象以后,要学会分析,要有自己的见解,不要人云亦云,要善于挖掘自己尚不清楚的问题,多角度,全方位地探究,并提出质疑。作为一个中学生,不见得也毋须什么问题都能自己解决。我们倡导的只是能对学习的对象提出多角度的问题,尤其是善于提出新颖的具有独特见解的问题。我认为会提问是创新的一个重要标志。
3.解决问题:
学数学离不开解题,解题是在掌握所学知识和方法的基础上进行运用。解题可以训练技巧,磨炼意志。在解题过程中,首先应判断解题的大方向,大致有什么思路,在引导学生解题的探索过程中,要注意联想,要学会用不同的立意、不同的知识、不同的方法去思考,并善于在解题全过程监控自己的行为:是否走弯路?是否走入死胡同?有没有出错?需要及时调整,排除障碍。这样长期形成习惯后,往往可以别出心裁,另辟解题捷径。这种思维品质也是创新的重要标志。为了让学生达到这个境界,必须让学生明确不要为解题而解题,要在解题后不断反思、回顾,积累经验,增强解题意识,提高能力。
如何从一名师范大学生转变成为合格的数学教师这一问题,可能是所有年轻教师都经历过的思索。我想对于老教师的经验的借鉴在这个方面显得尤为重要。在此我要感谢半年来一直帮助我、关心我的老教师们。从他们的经验中我体会到数学的核心——问题;总结出解决问题的途径——问的是什么、有什么、还有什么、是什么;教会学生如何去学习—勤于思考、善于提问、解决问题。
2012-7-3。
高一数学学习指南(优秀17篇)篇五
2、实际问题中的有关术语、名称:
(1)仰角与俯角:均是指视线与水平线所成的角;
(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;
(3)方向角:常见的`如:正东方向、东南方向、北偏东、南偏西等;
3、用正弦余弦定理解实际问题的常见题型有:
测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;
2、实际问题中的有关术语、名称:
(1)仰角与俯角:均是指视线与水平线所成的角;
(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;
(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;
3、用正弦余弦定理解实际问题的常见题型有:
测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;
一、知识归纳
2、实际问题中的有关术语、名称:
(1)仰角与俯角:均是指视线与水平线所成的角;
(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;
(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;
3、用正弦余弦定理解实际问题的常见题型有:
测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;
二、例题讨论
一)利用方向角构造三角形
四)测量角度问题
例4、在一个特定时段内,以点e为中心的7海里以内海域被设为警戒水域.点e正北55海里处有一个雷达观测站a.某时刻测得一艘匀速直线行驶的船只位于点a北偏东。
高一数学学习指南(优秀17篇)篇六
一定要做好预习,带着问题走进课堂,能让学习事半功倍;做完作业要仔细检查,出错并认真订正才合理;老师要求的练习要认真完成,少动笔而能学好数学的天才是没有的;考试时,正确率和做题的速度一样重要,合理地放弃某些题目能帮助你发挥正常水平。
2、成绩进步缓慢。
收集自己做过的错题,订正并写清错误的原因;对于考试成绩,定一个力所能及的奋斗目标;合理的作息时间和良好的学习习惯有助于获得稳定的学习成绩;并且邹老师尤其强调:把很多时间投入到一个科目中去,不如把学习精力合理分配给各个学科。
3、成绩很难取得突破。
邹老师称:数学不是知识性、经验性的学科,而是思维性的学科。所以,数学的学习重在培养观察、分析和推断能力,开发学习者的创造能力和创新思维。因此,在学习数学的过程中,要有意识地培养这些能力。这会使数学成绩取得有效突破。
学习有法,但无定法,贵在得法。邹老师称:要想学会学习,不仅要向别人学习好的学习方法,还要善于总结自己的学习方法。学习理科,要独立思考,深入剖析题目。比如要知道这道题用的方法是什么,这种方法适合于哪类题。如果能如此类比,融会贯通,不但可以记住具体的解题方法,也能提高灵活运用的能力。
将本文的word文档下载到电脑,方便收藏和打印。
高一数学学习指南(优秀17篇)篇七
所谓三维目标是是指:“知识与技能”,“过程和方法”、“情感、态度、价值观”。
知识与技能:既是课堂教学的出发点,又是课堂教学的归宿。我们在教学过程中,需要学生掌握什么,哪些些问题需要重点掌握,哪些只需简单理解;技能是会与不会的问题。属显性范畴,具有可测性,大都采用定量分析与评价、知识与技能是传统教学合理的内核,是我国传统教育教学的优势,应该从传统教学中继承与发扬。新课改不是不要双基,而是不要过度的强调双基,而舍弃弱化其它有价值的东西,导致非全面、不和蔼的发展。
过程与方法:既是课堂教学的目标之一,又是课堂教学的操作系统。“过程和方法”维度的目标立足于让学生会学,新课程倡导对学与教的过程的体验、方法的选择,是在知识与能力目标基础上对教学目标的进一步开发。过程与方法是一个体验的过程、发现的过程,不但可以让学生体验到科学发展的过程,我们更多地要让学生掌握过程,不一定要统一的结果。
情感、态度与价值观:既是课堂教学的目标之一,又是课堂教学的动力系统。“情感、态度和价值观”,目标立足于让学生乐学,新课程倡导对学与教的情感体验、态度形成、价值观的体现,是在知识与能力、过程与方法目标基础上对教学目标深层次的开拓,只有学生充分的认识到他们肩负的责任,就能够激发起他们的学习热情,他们才会有浓厚的学习兴趣,才能学有所成,将来回报社会。
三维目标不是三个目标,也不是三种目标,是一个问题的三个方面。三维目标是三位一体不可分割的,他们是相辅相成的,相互促进的。
高一数学学习指南(优秀17篇)篇八
高一阶段是学习高中数学的转折点。除了学习环境,教学内容和教学方法等外部因素外,同学们应该转变观念,提高认识和改进学法,本文就此问题谈点看法,以帮助同学们顺利度过转折期,学好高中数学。
高中数学内容难度增大,并增加数学知识的应用,要求学生会使用文字、符号和图形等数学语言表达问题进行交流,数学思想方法贯穿教材始终,对能力提出更高的要求。
2.正确对待学习中遇到的新困难和新问题。
数学内容的巨变和学习方法的落后,在学习高中数学的过程中,肯定会遇到不少困难和问题,同学们要有克服困难的勇气和信心,胜不骄,败不馁,千万不能让问题堆积如山,形成恶性循环,而是要在老师的引导下,寻求解决问题的办法,培养分析问题,解决问题的能力。
3.要将被动学习模式转变为主动学习模式。
高中数学不是靠老师教会的,而是在老师引导下,靠自己主动思考去获取的,学习数学的最佳状态就是积极主动地,参考教学过程,对数学活动持一定的主动权,并经常能发现和推出问题。
4.要养成良好的个性品质。
要树立正确的学习目的,培养浓厚的学习兴趣和顽强的学习毅力,要有足够的学习信心,实事求是的科学态度,以及独立思考,勇于探索的创新精神。
5.要养成良好的预习习惯,提高自学能力。
预习也叫课前自学,预习得越充分,听课效果就越好,听课效果越好,就能更好地预习下节内容,形成良性循环,预习中存在问题就会减少,自学能力就会逐步提高。
6.要养成良好的审题习惯,提高阅读能力。
审题是解题的关键,数学题是由文字语言、符号语言和图形语言构成的,要逐字逐句仔细审题,细心推敲,切忌题意不清,仓促上阵。审数学题有时须对题意逐句“翻译”,将隐含条件转化为明显条件,有时须联系题设与结论,前呼后应,挖掘构建题设与目标的桥梁,寻找突破点,从而形成解题思路。
7.要养成良好的演算、验算习惯,提高运算能力。
学习数学离不开运算,高中老师常把计算留给学生,这就是要同学们多动脑,勤动手,不仅能笔算,而且也能口算和心算,对复杂运算,要有耐心,掌握算理,注重简便方法。
高一数学学习指南(优秀17篇)篇九
本节的重点是二次根式的化简.本章自始至终围绕着二次根式的化简与计算进行,而二次根式的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论.
本节的难点是正确理解与应用公式.这个公式的表达形式对学生来说,比较生疏,而实际运用时,则要牵涉到对字母取值范围的讨论,学生往往容易出现错误.
教法建议
1.性质的引入方法很多,以下2种比较常用:
(1)设计问题引导启发:由设计的问题
1)、、各等于什么?
2)、、各等于什么?
启发、引导学生猜想出
(2)从算术平方根的意义引入.
2.性质的巩固有两个方面需要注意:
(1)注意与性质进行对比,可出几道类型不同的题进行比较;
(2)学生初次接触这种形式的表示方式,在教学时要注意细分层次加以巩固,如单个数字,单个字母,单项式,可进行因式分解的多项式,等等.
(第1课时)
1.掌握二次根式的性质
2.能够利用二次根式的性质化简二次根式
3.通过本节的学习渗透分类讨论的数学思想和方法
对比、归纳、总结
1.重点:理解并掌握二次根式的性质
2.难点:理解式子中的可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.
1课时
五、教b具学具准备
投影仪、胶片、多媒体
复习对比,归纳整理,应用提高,以学生活动为主
一、导入新课
我们知道,式子()表示非负数的算术平方根.
问:式子的意义是什么?被开方数中的表示的是什么数?
答:式子表示非负数的算术平方根,即,且,从而可以取任意实数.
二、新课
计算下列各题,并回答以下问题:
(1);(2);(3);
1.各小题中被开方数的幂的底数都是什么数?
2.各小题的结果和相应的被开方数的幂的底数有什么关系?
3.用字母表示被开方数的幂的底数,将有怎样的结论?并用语言叙述你的结论.
高一数学学习指南(优秀17篇)篇十
初中生对数学问题感兴趣。复习初中老师拓展的数学知识,享受克服困难的乐趣,感受数学的魅力,没有任何压力。
高中数学对运算速度、准确性、精细度的要求比初中高得多,也是高考重点培养的一种能力。有必要通过强化训练来提高操作能力。
高中学习的常识,如因式分解、二次函数、一元二次方程、平面几何等。,力求在数学知识、方法和思想等方面把初中和高中恰当地联系起来。学生要独立学习和思考,做好相关的练习,打好基础,才能让你在高中起点上取得胜利。
类比——引导我们探索新知识;
归纳猜想——我们创新的基石;
分类讨论——化难为易的突破口:
等效变换-解决问题的桥梁。
如果你在这方面做得好,你将从一开始就领先。成功是成功之母。如果你比其他同学适应得更快,你的进步无疑会比别人更快,从而形成一个良性的成长循环。
从整体上把握教材内容,仔细揣摩教材字里行间的奥秘,课后完成习题,争取带着问题入校,激发入校后的求知欲,让数学早日成为你的知音。
初中和高中最大的区别在于自主学习的能力。提前适应自主学习可以更快地适应高中的学习生活。
提醒对数学特别是数学竞赛感兴趣的同学,充分利用开学前的时间,多学习竞赛方面的书籍,积累更多竞赛基础知识,为高中数学竞赛的学习打好基础。
高一数学学习指南(优秀17篇)篇十一
学习是一个潜移默化、厚积薄发的过程。编辑老师编辑了:数列,希望对您有所帮助!
1.使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.
(1)理解数列是按一定顺序排成的一列数,其每一项是由其项数唯一确定的.
(2)了解数列的各种表示方法,理解通项公式是数列第项与项数的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式.
(3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的前几项.
2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.
3.通过由求的过程,培养学生严谨的科学态度及良好的思维习惯.
(1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的.计算等.
(2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系.在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列.函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法.由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法.
(3)由数列的通项公式写出数列的前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助.
(4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用来调整等.如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系.
(5)对每个数列都有求和问题,所以在本节课应补充数列前项和的概念,用表示的问题是重点问题,可先提出一个具体问题让学生分析与的关系,再由特殊到一般,研究其一般规律,并给出严格的推理证明(强调的表达式是分段的);之后再到特殊问题的解决,举例时要兼顾结果可合并及不可合并的情况.
(6)给出一些简单数列的通项公式,可以求其最大项或最小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的.
上述提供的:数列希望能够符合大家的实际需要!
高一数学学习指南(优秀17篇)篇十二
第一条:为加强班级建设,创设一个良好的学习环境,形成健康向上的班级风貌。特制定本班级量化管理条例。
第二条:本条例对本班有效,所有班级成员都必须遵守。
第一章班级精神。
第三条:自信、自立、励志、合作、竞争是本班的班级精神。
自信:自信是成功的前提,所有的同学都应该树立坚定的自信心。
自立:自立是成功的基础,每一个班级成员都要锻炼自己的独立生活能力,坚持自己的事情自己要独立的完成。尽量的不依赖家长。
励志:要磨练自己的意志,形成良好的意志品质。
合作:班级是个大家庭,需要全体成员团结协作,要认识到集体的力量和团结的重要性。竞争:树立竞争意识,在人格上、学习上、纪律上展开竞争,竞争必须是公平的、公正的。
第二章扣分细则。
一、出勤方面。
1、迟到扣5分(含上课,出操,升旗,集会等集体活动)。
2、旷课1节扣30分,通知家长。累计旷课24节直接上报学校处理。
3、实行请假制度,有事要提前请假,离校及外宿请假需家长电话,经班主任和年级主任或值日领导批准方生效,请假以假条为准,交纪律部否则算旷课。
4、早退一次扣4分。(早退:未下课而提前离开教室的)。
二、纪律方面。
1、进出校门要插卡,严禁不插卡混出入校门,扣2分。
2、抽烟、划拳、喝酒每人次扣5分。
3、乱扔垃圾扣2~5分。
4、不遵守作息制度,中午13:00及晚上11:10分后大声喧哗、冲凉的扣5分。
5、星期六晚超过10:00回校的,每人次扣5分。
6、带早餐、饭菜等到教室吃的每人次扣3分,仪表仪容不合格,每人次扣3分。
7、上课、集会、午休、晚休玩手机、mp3的每人次扣5分。并没收相关物品。
8、同学间要互相团结,骂人者扣8分/次。
9、不服从班干部管理扣3分。
10、损坏班级、学校公物、践踏草坪,照价赔偿,扣3~10分.11、班干部或课代表、宿舍长不负责任、敷衍了事,没完成任务的,扣5-10分。
12、不准在教室及宿舍充电,违反者没收充电器或手机,扣20分。
学籍扣50分。
15、打架斗殴者视情节严重性,扣30至50分,并双方由家长协调解决伤患问题。
16、其他违纪视情节扣5~50分。
三、学习方面。
1、上课不认真听讲、走神、睡觉、做与学习无关的事情,被老师点名批评的扣5分。
2、不按时独立完成作业,考试作弊,扣5分。超过两次者,写500字检讨,并与家长联系。
3、自习课吵闹,随便走过位置,妨碍他人学习,扣5分。
四、劳动卫生。
1、不参加班级组织的劳动,扣5分。
2、清洁教室、包干区的同学请在早上7点和14:30前完成清洁任务,必须保证清洁质量,否则再扫一次,每人扣5分。
四、宿舍方面。
1、宿舍舍长负责全面工作,做好本宿舍各方面工作,实行舍长问责制。
2、值日生要按时清洁宿舍(含扫地、拖地和倒垃圾),违者扣5分。
3、寝室熄灯后讲话、唱歌、吵闹、打电筒看书,扣3分,造成寝室积分受影响的,依据情节轻重,扣3到10分。
4、熄灯后外出者扣3分,午休后外出者扣3分。
5、个人做好自己的内务,值日生和舍长负责提醒舍员。
五、个人素养。
1、尊敬老师,团结同学。
2、注意个人仪表,男生不留长发和怪发,不剃光头,女生不得烫发,不准带首饰,违者扣3分。
(长发:前不盖眉毛,侧不盖耳朵,后不能盖衣领。)。
3、穿拖鞋进入班级,违者扣2分并没收拖鞋。
六、被德育处扣分的,两倍扣分。
七、违反以上班级管理细则,除扣相应的分数外,每次违反背语文课文一篇,或者背一道政治问答题(次日检查),背不得者抄写10遍,或者抄写一个单元的英语单词10遍(三选一),同时首次违反的写说明书500字,再次违反的写说明书800字,第三次违反的写1000字说明书,四次以后在第三次的基础上每次加写100字的说明书。情节严重的电话联系家长或者请家长到校协助教育同时上报学校处理。
第三章奖分制度。
1、积极参加各项活动,为班级争光的加10分(获校一、二、三等奖的,分别加30分、20分和10分)。
2、好人好事(含拾金不昧)在校安稳办记载的,加5至20分,受学校各部门公开表扬的加20分,受校级以上部门表扬的,直定“优秀团员”或“三好学生”。
3、认真做好本职工作,一周内没有任何违纪行为(未被扣分)者加3分,连续一个月未。
被扣分者加20分,连续二个月未被扣分者再加50分。
4、期中、期末考试排年级前300名者,加20分.5、月考、期中考和期末考试在班里单科第一名加5分。在年级里单科第一名加20分。
6、由于某生给班级加分,每加1分给该生加3分。
7、参加学校组织的活动,如运动会、歌唱赛、书画赛及各科竞赛等,获各人一、二、三。
等奖的分别加10、8、6分,获集体奖的加6分。
8、班委,小组长,科代表在期中、期末考试中评审过关加2分。
9、宿舍在一周内全部达标者,分别给该宿舍成员加5分。在一周内全部基本达标者,分。
别给该宿舍成员加3分。该周舍长再加2分。
10、未尽事宜,视情况加分。
第四章、补充说明。
1、每人底分100分,期末思想鉴定操行总评以个人得分高低划分为优秀(20%)、良好(50%)、及格(20%)和不及格(10%)。
2、本细则经全体班委会讨论通过,在实施过程中将根据同学意见不断修正,以期达到更好地管理班级的目的。
3、加分、扣分由负责人负责,负责人应本着为班级负责,为同学负责的精神,立足于事实,认真作好记录。
4、任何人不得涂改值日班干的记录,有问题应向班主任提出。
5、值日班干的记录每两周交班长过目、公布、上墙,有问题及时解决。
6、本班规最终解释权归班主任。制定班规的目的不是处罚,而是最大限度的发挥每个人的潜能,为班级争光,让我们携手共创高一(6)班,共创美好明天!
高一数学学习指南(优秀17篇)篇十三
(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。难点:柱、锥、台、球的结构特征的概括。
(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪四、教学思路。
1、教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。
2、所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
1、引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
3、组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;
(2)其余各面都是平行四边形;
(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。
4、教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
5、提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?
6、以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
7、让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。
8、引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
9、教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)。
2、棱柱的何两个平面都可以作为棱柱的底面吗?
3、课本p8,习题1.1a组第1题。
5、棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
由学生整理学习了哪些内容六、布置作业。
课本p8练习题1.1b组第1题。
课外练习课本p8习题1.1b组第2题。
高一数学学习指南(优秀17篇)篇十四
1.要知道物体的长度,可以用()来量。
2.量比较短的物体,通常用()作单位,量比较长的物体或距离,通常用()作单位。
3.回形针的长大约是3()。
4.1米=()厘米,操场跑道的长是250()。
5.量一个物体时,米尺的()刻度要对准这物体的左端。
6.一张床的长度大约是2(),手指的宽大约是()厘米。
7.你的尺子上,从0到1是()厘米,从0到8是()厘米,从6到13是()厘米。
10.三角形是由()条线段围成的,正方形是由()条线段围成的。
11.一条线段长是100个1厘米,这条线段长()米。
12.小红今年上二年级,她的身高大约是125()。
将本文的word文档下载到电脑,方便收藏和打印。
高一数学学习指南(优秀17篇)篇十五
[教学方法]:讲练结合法
[授课类型]:复习课
[课时安排]:1课时
[教学过程]:集合部分汇总
本单元主要介绍了以下三个问题:
1,集合的含义与特征
2,集合的表示与转化
3,集合的基本运算
一,集合的含义与表示(含分类)
1,具有共同特征的对象的全体,称一个集合
2,集合按元素的个数分为:有限集和无穷集两类
高一数学学习指南(优秀17篇)篇十六
3.能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题。
一、预习检查。
1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程为.
2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为.
3、双曲线的渐进线方程为.
4、设分别是双曲线的半焦距和离心率,则双曲线的一个顶点到它的一条渐近线的距离是.
二、问题探究。
探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同.
探究2、双曲线与其渐近线具有怎样的关系.
练习:已知双曲线经过,且与另一双曲线,有共同的渐近线,则此双曲线的标准方程是.
例1根据以下条件,分别求出双曲线的标准方程.
(1)过点,离心率.
(2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为.
例2已知双曲线,直线过点,左焦点到直线的距离等于该双曲线的虚轴长的,求双曲线的离心率.
例3(理)求离心率为,且过点的双曲线标准方程.
三、思维训练。
1、已知双曲线方程为,经过它的右焦点,作一条直线,使直线与双曲线恰好有一个交点,则设直线的斜率是.
2、椭圆的离心率为,则双曲线的离心率为.
3、双曲线的渐进线方程是,则双曲线的离心率等于=.
4、(理)设是双曲线上一点,双曲线的一条渐近线方程为、分别是双曲线的左、右焦点,若,则.
四、知识巩固。
1、已知双曲线方程为,过一点(0,1),作一直线,使与双曲线无交点,则直线的斜率的集合是.
2、设双曲线的一条准线与两条渐近线交于两点,相应的焦点为,若以为直径的圆恰好过点,则离心率为.
3、已知双曲线的左,右焦点分别为,点在双曲线的右支上,且,则双曲线的离心率的值为.
4、设双曲线的半焦距为,直线过、两点,且原点到直线的距离为,求双曲线的离心率.
5、(理)双曲线的焦距为,直线过点和,且点(1,0)到直线的距离与点(-1,0)到直线的距离之和.求双曲线的离心率的取值范围.
高一数学学习指南(优秀17篇)篇十七
2、掌握标准方程中的几何意义。
3、能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题。
1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程为、
2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为、
3、双曲线的渐进线方程为、
4、设分别是双曲线的半焦距和离心率,则双曲线的一个顶点到它的一条渐近线的距离是、
探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同、
探究2、双曲线与其渐近线具有怎样的关系、
练习:已知双曲线经过,且与另一双曲线,有共同的渐近线,则此双曲线的标准方程是、
例1根据以下条件,分别求出双曲线的标准方程、
(1)过点,离心率、
(2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为、
例3(理)求离心率为,且过点的双曲线标准方程、
2、椭圆的离心率为,则双曲线的离心率为、
3、双曲线的渐进线方程是,则双曲线的离心率等于=、
4、设双曲线的半焦距为,直线过、两点,且原点到直线的距离为,求双曲线的离心率、
将本文的word文档下载到电脑,方便收藏和打印。