高中数学教案必修一学习笔记(优秀14篇)

时间:2024-11-22 作者:BW笔侠

编写高中教案需要考虑学科特点和学生认知特点,注重培养学生的学习兴趣和自主学习能力。高中教案范文的分享和交流可以促进教师的互相学习和共同进步。

高中数学教案必修一学习笔记(优秀14篇)篇一

初中新课程中数学知识点删了很多要求,如“立方和、立方差”公式,“韦达定理”,“十字相乘法分解因式”等。虽然初中新课程对这些知识点不作要求,但是从高中数学教学的实践来看,学生掌握了这些知识点对学习新的知识有一定的促进作用,因此,建议教师可根据学生和教学的实际情况,做适当的补充,同时,初中学习的有理数乘方及运算性质和二次函数,这些知识也要进行必要的复习等,这样有利于后期的教学。

2、思维能力和运算能力的进一步强化。

初中新课程的内容倾向于基础性、普及性、应用性和直观性,学生的实践能力很强,但学生的数学思维能力有所欠缺,尤其是抽象思维能力较弱,这对高中数学学习的影响很大。因此,教师要逐渐培养学生的抽象思维能力。同时,由于初中大量使用计算器,学生的计算能力很弱,这与高中数学要求学生要有较强的化简、变形、推理及运算能力有一定的差距,从教学的实践来看,学生作业中出现的大量错误与计算能力较弱有很大关系。因此,建议教师可根据学生的实际情况,从高一开始就要切实提高学生的运算能力。

3、抓住学科特点,做好顺利过渡。

高中数学知识量大,理论性、综合性强,同时高中课时少,学生基础差等,知识的难度和对学生能力的要求和初中相比都有较大的提高(如“集合”、“映射”、“函数”等都比较抽象,难度大,“函数”等知识综合性较强)。学好高中数学需要学生具有较强的阅读能力、运算能力、逻辑推理能力、抽象思维能力及分析问题、解决问题的综合能力,这与初中数学知识点较少,难度较低,形成较大的差距。因此,教师要能够根据实际情况及时调整教学方法和教学过程,使学生能顺利进入高中并能尽快适应高中的数学学习。

高中数学教案必修一学习笔记(优秀14篇)篇二

曾经有同学问我,你是怎么学数学的,也没见你做多少的练习题,可数学的成绩不错。我觉得课堂的学习是关键,要紧紧抓住课堂的45分钟的时间。在这有限的时间内,是教师与学生的交流,这时候,作为学生你的思维要跟得上老师的变化,这个知识点的关键点在那儿,前后的联系是什么,在听课的过程中不能分心、走神,提高听课的效率。为此,在每一堂课前,我都要做好以下几项工作。

1、课前预习是关键。

相信我们学生都听到过老师对我们的要求,要进行课前预习,不论什么课,这是所有的老师都会提的一个要求,可真正进行课前预习的学生有多少呢,班里面我们也没有统计过,不过我觉得有一半的学生预习了,就是不错的了,另外,既使有的学生也预习了,只是走马观花的看一下书,那效果可想而知。

预习也要讲究方法,在预习中发现了难点,出现了自己解决不了的问题,这个就是听课中的重点,要做好标记;通过预习还能发现自己没有掌握住的旧知识,起到温故而知新的作用,可以对知识起到查漏补缺的效果;另外,预习的过程也是一个自学的过程,有助于提高自己分析问题、解决问题的能力,将自己在预习中的理解和老师讲解的进行对照,不断进行改进,可以起到提高自己思维水平的作用。

2、科学听课是保障。

所谓科学听课也就是说在教师授课的过程中学生的表现,是不是为这节课做好了准备工作。在听课的过程中要调动眼、耳、心、口、手等各个器官,全身心的投入到课堂学习中去,在听课的过程中遇到重要的知识点同时又要做好笔记,但是不能因为笔记的原因而影响到听课,所以,这里面有一个科学合理安排听课时间的问题。听课的过程中是一个高度集中注意力的过程,但同时也是有张有弛;听课的过程中也的听的技巧,听教师如何分析?如何归纳总结?如何突破难点,结合自己在预习时又是如何理解的,相互比较,同时要用心思考,跟上教师的教学思路,能在教师的启发和点拨下有所得,这是这一堂课最根本的关节所在。

3、做一定量的习题。

在数学的学习过程中,对于做多少习题并没有确切的数据,但有两种倾向:一种是做大量的习题;另一种是做适当的习题。做大量的习题的做法来源于题海战术,曾经有一种说法,做题吧,在做题的过程中你就掌握了知识点,诚然,多做题对于掌握知识是有好处的,但并不是题做的越多越好。在高中的学习过程中,时间非常紧,在有限的时间内要学习好几门知识,你数学题做的多了,难免会在其他科目上用时不够,会对其他科目的学习造成影响。因此,大量的做题是不可取的。

在学习的过程中,我崇尚做适当的习题,而且在实际的学习过程中我也是这样做的。做题的过程中是一个举一反三的过程,做会这一道题就掌握了这一类题目的做法,关键的问题是在做完这道题后的分析总结,数学的题目太多了,你是不可能做完所有的题的,因此,我们在掌握知识点的时候是一类一类的掌握,所谓的举一反三,触类旁通。每当做完一道题后尤其是难度大的题目,我会静下心来再从头看一遍,把其中的关键点再熟悉一遍,虽然当时看起来是费了一点时间,但那收获是很大的。以后再遇到这类题目的时候,解决起来就相对容易的多。

高中数学教案必修一学习笔记(优秀14篇)篇三

(二)倍角公式。

2cos2α=1+cos2α2sin2α=1-cos2α。

注意:倍角公式揭示了具有倍数关系的两个角的三角函数的运算规律,可实现函数式的降幂的变化。

注:(1)两角和与差的三角函数公式能够解答的三类基本题型:求值题,化简题,证明题。

(2)对公式会“正用”,“逆用”,“变形使用”;。

(3)掌握“角的演变”规律,

(4)将公式和其它知识衔接起来使用。

重点难点。

重点:几组三角恒等式的应用。

难点:灵活应用和、差、倍角等公式进行三角式化简、求值、证明恒等式。

高中数学教案必修一学习笔记(优秀14篇)篇四

根据德国心理学家艾宾浩斯绘制的遗忘曲线,学生对知识的遗忘遵从先快后慢的规律,有效的回忆可以加深对知识的理解,掌握知识的内在联系,延缓知识的遗忘。教师要采用不同的形式,整理阶段的基础知识,使内容条理化、清晰化地呈现在同学的面前,从而完成由厚到薄的过程,对重难点和关键点,进行重点的、有针对性的讲解。配以适当的练习,提高学生对基本知识和基本方法的深刻性和准确性的理解掌握。促进学生科学合理的知识结构的形成,使知识系统化和网络化。

旧知检测。

要想有效的提高课堂的复习效率,就须克服“眼高手低”的毛病。很多同学上课时处于一种混沌的状态,一听就懂,一做就错;一听就会,一到自己做就不会了。为避免这样的情况,就必须让学生更好地了解自己知识的掌握情况。可以设置几个基础的填空和一个左右的解答题,通过解答的过程让学生“自知自明”。激发起兴趣,有效地提高复习的效率。

精选精讲。

精心的选择适量的典型例题,分析解决这些问题应该是一堂复习课的核心内容。解题的目的绝不是仅仅解决这个问题本身,而是要给出通性通法,揭示解决问题的一般规律,熟练掌握数学思想方法,提高学生分析问题、解决问题的能力。

高中数学教案必修一学习笔记(优秀14篇)篇五

在复习时,由于解题的量很大,就更要求我们将解题活动组织得生动活泼、情趣盎然。让学生领略到数学的优美、奇异和魅力,这样才能变苦役为享受,有效地防止智力疲劳,保持解题的“好胃口”。一道好的数学题,即便具有相当的难度,它却像一段引人入胜的故事,又像一部情节曲折的电视剧,那迭起的悬念、丛生的疑窦正是它的诱人之处。

“山重水复”的困惑被“柳暗花明”的喜悦取代之后,学生又怎能不赞叹自己智能的威力?我们要使学生由“要我学”转化为“我要学”,课堂上要想方设法调动学生的学习积极性,创设情境,激发热情,有这样一些比较成功的做法:一是运用情感原理,唤起学生学习数学的热情;二是运用成功原理,变苦学为乐学;三是在学法上教给学生“点金术”,等等。

在课堂教学结构上,更新教育观念,始终坚持以学生为主体,以教师为主导的教学原则。

教育家苏霍姆林斯基曾经告诫我们:“希望你们要警惕,在课堂上不要总是教师在讲,这种做法不好……让学生通过自己的努力去理解的东西,才能成为自己的东西,才是他真正掌握的东西。”按我们的说法就是:师傅的任务在于度,徒弟的任务在于悟。数学课堂教学必须废除“注入式”“满堂灌”的教法。复习课也不能由教师包讲,更不能成为教师展示自己解题“高难动作”的“绝活表演”,而要让学生成为学习的主人,让他们在主动积极的探索活动中实现创新、突破,展示自己的才华智慧,提高数学素养和悟性。

作为教学活动的组织者,教师的任务是点拨、启发、诱导、调控,而这些都应以学生为中心。复习课上有一个突出的矛盾,就是时间太紧,既要处理足量的题目,又要充分展示学生的思维过程,二者似乎是很难兼顾。我们可采用“焦点访谈”法较好地解决这个问题,因大多数题目是“入口宽,上手易”,但在连续探究的过程中,常在某一点或某几点上搁浅受阻,这些点被称为“焦点”,其余的则被称为“外围”。我们大可不必在外围处花精力去进行浅表性的启发诱导,好钢要用在刀刃上,而只要在焦点处发动学生探寻突破口,通过访谈,集中学生的智慧,让学生的思维在关键处闪光,能力在要害处增长,弱点在隐蔽处暴露,意志在细微处磨砺。通过访谈实现学生间、师生间智慧和能力的互补,促进相互的心灵和感情的沟通。

高中数学教案必修一学习笔记(优秀14篇)篇六

掌握三角函数模型应用基本步骤:。

(1)根据图象建立解析式;。

(2)根据解析式作出图象;。

(3)将实际问题抽象为与三角函数有关的简单函数模型.

教学重难点。

利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型。

教学过程。

一、练习讲解:《习案》作业十三的第3、4题。

(精确到0.001).

米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?

本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。

练习:教材p65面3题。

三、小结:1、三角函数模型应用基本步骤:。

(1)根据图象建立解析式;。

(2)根据解析式作出图象;。

(3)将实际问题抽象为与三角函数有关的简单函数模型.

2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.

四、作业《习案》作业十四及十五。

高中数学教案必修一学习笔记(优秀14篇)篇七

一、教学目标:

知识与技能:了解直线参数方程的条件及参数的意义。

过程与方法:能根据直线的几何条件,写出直线的参数方程及参数的意义。

情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。

二、重难点:

教学重点:曲线参数方程的定义及方法。

教学难点:选择适当的参数写出曲线的参数方程.

三、教学方法:

启发、诱导发现教学.

四、教学过程。

(一)、复习引入:

1.写出圆方程的标准式和对应的参数方程。

圆参数方程(为参数)。

(2)圆参数方程为:(为参数)。

2.写出椭圆参数方程.

(二)、讲解新课:

如果已知直线l经过两个定点q(1,1),p(4,3),

那么又如何描述直线l上任意点的位置呢?

2、教师引导学生推导直线的参数方程:

(1)过定点倾斜角为的直线的。

参数方程。

(为参数)。

【辨析直线的参数方程】:设m(x,y)为直线上的任意一点,参数t的几何意义是指从点p到点m的位移,可以用有向线段数量来表示。带符号.

(2)、经过两个定点q,p(其中)的'直线的参数方程为。其中点m(x,y)为直线上的任意一点。这里参数的几何意义与参数方程(1)中的t显然不同,它所反映的是动点m分有向线段的数量比。当时,m为内分点;当且时,m为外分点;当时,点m与q重合。

(三)、直线的参数方程应用,强化理解。

1、例题:

学生练习,教师准对问题讲评。反思归纳:

1)求直线参数方程的方法;。

2)利用直线参数方程求交点。

2、巩固导练:

补充:

1)直线与圆相切,那么直线的倾斜角为(a)。

a.或b.或c.或d.或。

2)(坐标系与参数方程选做题)若直线与直线(为参数)垂直,则.

解:直线化为普通方程是,

该直线的斜率为,

直线(为参数)化为普通方程是,

该直线的斜率为,

则由两直线垂直的充要条件,得,。

(四)、小结:

(1)直线参数方程求法;。

(2)直线参数方程的特点;。

(3)根据已知条件和图形的几何性质,注意参数的意义。

(五)、作业:

补充:设直线的参数方程为(t为参数),直线的方程为y=3x+4则与的距离为。

【考点定位】本小题考查参数方程化为普通方程、两条平行线间的距离,基础题。

解析:由题直线的普通方程为,故它与与的距离为。

五、教学反思:

高中数学教案必修一学习笔记(优秀14篇)篇八

一)、课内重视听讲,课后及时复习。

新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,应尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

二)、适当多做题,养成良好的解题习惯。

要想学好数学,多做题是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

三)、调整心态,正确对待考试。

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

高中数学教案必修一学习笔记(优秀14篇)篇九

一)、培养良好的学习兴趣。

1、课前预习,对所学知识产生疑问,产生好奇心。

2、听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。

3、思考问题注意归纳,挖掘你学习的潜力。

5、把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、直角坐标系的产生、极坐标系的产生都是从实际生活中抽象出来的。只有回归现实才能对概念的理解切实可靠,在应用概念判断、推理时会准确。

二)、建立良好的学习数学习惯。

习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。良好的学习数学习惯还包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。

三)、有意识培养自己的各方面能力。

数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。这些能力是在不同的数学学习环境中得到培养的。在平时学习中要注意开发不同的学习场所,参与一切有益的学习实践活动,如数学第二课堂、数学竞赛、智力竞赛等活动。平时注意观察,比如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。其它能力的培养都必须学习、理解、训练、应用中得到发展。特别是,教师为了培养这些能力,会精心设计“智力课”和“智力问题”比如对习题的解答时的一题多解、举一反三的训练归类,应用模型、电脑等多媒体教学等,都是为数学能力的培养开设的好课型,在这些课型中,学生务必要用全身心投入、全方位智力参与,最终达到自己各方面能力的全面发展。

高中数学教案必修一学习笔记(优秀14篇)篇十

各位老师大家好!

我说课的内容是人教版a版必修2第三章第一节直线的倾斜角与斜率第一课时。

(一)教材分析。

本节课选自必修2第三章(解析几何的第一章)第一节直线的倾斜角与斜率第一课时,直线的倾斜角和斜率解析几何的重要概念;是刻画直线倾斜程度的几何要素与代数表示;学生在原有的对直线的有关性质及平面向量的相关知识理解的基础上,重新以解析法的方式来研究直线相关性质,而本节课直线的倾斜角与斜率,是直线的重要的几何性质,是研究直线的方程形式,直线的位置关系等的思维的起点;另外,本节课也初步向学生渗透解析几何的基本思想和基本方法。因此,本课有着开启全章、渗透方法,承前启后的作用。

(二)学情分析。

本节课的教学对象是高二学生,这个年龄段的学生天性活泼,求知欲强,并且学习主动,在知识储备上知道两点确定一条直线,知道点与坐标的关系,实现了最简单的形与数的转化;了解刻画倾斜程度可用角和正切值;具备了一定的数形结合的能力和分类讨论的思想。但根据学生的认知规律,还没有形成自觉地把数学问题抽象化的能力。所以在教学设计时需从学生的最近发展区进行探究学习,尽量让不同层次的学生都经历概念的形成、巩固和应用过程。

(三)教学目标。

1.理解直线的倾斜角和斜率的概念,理解直线的倾斜角的唯一性和斜率的存在性;。

2.掌握过两点的直线斜率的计算公式;。

3.通过经历从具体实例抽象出数学概念的过程,培养学生观察、分析和概括能力;。

生严谨求简的数学精神。

重点:斜率的概念,用代数方法刻画直线斜率的过程,过两点的直线斜率的计算公式。

难点:直线的倾斜角与斜率的概念的形成,斜率公式的构建。

(四)教法和学法。

课堂教学应有利于学生的数学素质的形成与发展,即在课堂教学过程中,创设问题的情景,激发学生主动的发现问题解决问题,充分调动学生学习的主动性、积极性;有效的渗透数学思想方法,发展学生个性思维品质,这是本节课的教学原则。根据这样的教学原则,考虑到学生首次接触解析几何的内容及研究方法,所以我采用设置问题串的形式,启发引导学生类比、联想,产生知识迁移;通过几何画板演示实验、探索交流相结合的教学方法激发学生观察、实验,体验知识的形成过程;由此循序渐进,使学生很自然达到本节课的学习目标。

(五)教学过程。

环节1.指明研究方向(3min)。

简介17世纪法国数学家笛卡尔和费马的数学史。

高中数学教案必修一学习笔记(优秀14篇)篇十一

了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.

(2)一元二次不等式。

会从实际情境中抽象出一元二次不等式模型.

通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.

会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.

(3)二元一次不等式组与简单线性规划问题。

会从实际情境中抽象出二元一次不等式组.

了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.

会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.

(4)基本不等式:

了解基本不等式的证明过程.

高中数学教案必修一学习笔记(优秀14篇)篇十二

引用:本文《高中化学必修二教案(人教版)》来源于师库网,由师库网博客摘录整理,以下是的详细内容:开发利用金属矿物和海水...《基本营养物质》教案化学反应的速率和限度化学能与热能化学与资源综合利用、环...最简单的有机化合物dd...《生活中两种常见的'有机...来自石油和煤的两种基本...引用:师库网温馨提示本篇内容来源于师库网,旨在用于课件制作交流,非盈利性质,仅供参考,针对本文的问题如需了解更详细,可留言或者联系客服tags:教案、课件、师库网、教案网、课件网

高中数学教案必修一学习笔记(优秀14篇)篇十三

立体几何的证明是数学学科中任一分之也替代不了的。因此,历年高考中都有立体几何论证的考察。论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法(“推出法”)形式写出。

二、立足课本,夯实基础。

学习立体几何的一个捷径就是认真学习课本中定理的证明,尤其是一些很关键的定理的证明。定理的内容都很简单,就是线与线,线与面,面与面之间的联系的阐述。但定理的证明在初学的时候一般都很复杂,甚至很抽象。深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。

三、培养空间想象力。

为了培养空间想象力,可以在刚开始学习时,动手制作一些简单的模型用以帮助想象。例如:正方体或长方体。在正方体中寻找线与线、线与面、面与面之间的关系。通过模型中的点、线、面之间的位置关系的观察,逐步培养自己对空间图形的想象能力和识别能力。其次,要培养自己的画图能力。可以从简单的图形(如:直线和平面)、简单的几何体(如:正方体)开始画起。最后要做的就是树立起立体观念,做到能想象出空间图形并把它画在一个平面(如:纸、黑板)上,还要能根据画在平面上的“立体”图形,想象出原来空间图形的真实形状。空间想象力并不是漫无边际的胡思乱想,而是以提设为根据,以几何体为依托,这样就会给空间想象力插上翱翔的翅膀。

四、“转化”思想的应用。

解立体几何的问题,主要是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如:

(1)两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的平行线。斜线与平面所成的角转化为直线与直线所成的角即斜线与斜线在该平面内的射影所成的角。

(2)异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。而面面距离可以转化为线面距离,再转化为点面距离,点面距离又可转化为点线距离。

(3)面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。

五、建立数学模型。

新课程标准中多次提到“数学模型”一词,目的是进一步加强数学与现实世界的联系。数学模型是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时,所得出的关于实际问题的描述。数学模型的形式是多样的,它们可以是几何图形,也可以是方程式,函数解析式等等。实际问题越复杂,相应的数学模型也越复杂。

从形状的角度反映现实世界的物体时,经过抽象得到的空间几何体就是现实世界物体的几何模型。由于立体几何学习的知识内容与学生的联系非常密切,空间几何体是很多物体的几何模型,这些模型可以描述现实世界中的许多物体。他们直观、具体、对培养大家的几何直观能力有很大的帮助。空间几何体,特别是长方体,其中的棱与棱、棱与面、面与面之间的位置关系,是研究直线与直线、直线与平面、平面与平面位置关系的直观载体。学习时,一方面要注意从实际出发,把学习的知识与周围的实物联系起来,另一方面,也要注意经历从现实的生活抽象空间图形的过程,注重探索空间图形的位置关系,归纳、概括它们的判定定理和性质定理。

高中数学教案必修一学习笔记(优秀14篇)篇十四

本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。通过本章学习,学生应当达到以下学习目标:

(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。

(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。

数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。

本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。

教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”设置这些问题,都是为了加强数学思想方法的教学。

加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。

本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”这样,从联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构。

《课程标准》和教科书把“解三角形”这部分内容安排在数学五的第一部分内容,

位置相对靠后,在此内容之前学生已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,这使这部分内容的处理有了比较多的工具,某些内容可以处理得更加简洁。比如对于余弦定理的证明,常用的方法是借助于三角的方法,需要对于三角形进行讨论,方法不够简洁,教科书则用了向量的方法,发挥了向量方法在解决问题中的威力。

在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中,提出了一个思考问题“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的'关系?”,并进而指出,“从余弦定理以及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理是勾股定理的推广.”

学数学的最终目的是应用数学,而如今比较突出的两个问题是,学生应用数学的意识不强,创造能力较弱。学生往往不能把实际问题抽象成数学问题,不能把所学的数学知识应用到实际问题中去,对所学数学知识的实际背景了解不多,虽然学生机械地模仿一些常见数学问题解法的能力较强,但当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的科学思维方法了解不够。针对这些实际情况,本章重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。

1.1正弦定理和余弦定理(约3课时)

1.2应用举例(约4课时)

1.3实习作业(约1课时)

1.要在本章的教学中,应该根据教学实际,启发学生不断提出问题,研究问题。在对于正弦定理和余弦定理的证明的探究过程中,应该因势利导,根据具体教学过程中学生思考问题的方向来启发学生得到自己对于定理的证明。如对于正弦定理,可以启发得到有应用向量方法的证明,对于余弦定理则可以启发得到三角方法和解析的方法。在应用两个定理解决有关的解三角形和测量问题的过程中,一个问题也常常有多种不同的解决方案,应该鼓励学生提出自己的解决办法,并对于不同的方法进行必要的分析和比较。对于一些常见的测量问题甚至可以鼓励学生设计应用的程序,得到在实际中可以直接应用的算法。

2.适当安排一些实习作业,目的是让学生进一步巩固所学的知识,提高学生分析问题的解决实际问题的能力、动手操作的能力以及用数学语言表达实习过程和实习结果能力,增强学生应用数学的意识和数学实践能力。教师要注意对于学生实习作业的指导,包括对于实际测量问题的选择,及时纠正实际操作中的错误,解决测量中出现的一些问题。

相关范文推荐

    大学生职业生涯发展与规划书封面(专业13篇)

    我本身学的不是教育专业,但是我很向往教师这份事业。大学期间我通过自己的努力考到了中学教师资格证,但是由于一些原因,今年毕业之后没有办法直接去应聘教师,所以刚毕业

    幼儿园班主任工作计划及教学管理(实用15篇)

    班主任工作计划需要进行定期的评估和调整,以保证其持续有效性。附上了一些优秀的班主任工作计划样本,供大家参考和学习。新的'学期开始了,我们按园工作计划,根据本班的

    图书管理员角色: 保障图书馆正常运行的重要工作范文(19篇)

    通过阅读和模仿范文范本,我们可以更好地理解和运用一些常用的修辞手法和写作技巧。范文九:关于自我认知的范文,让我们反思自己的优点和不足。开学了,我们班成立了一个图

    提升销售业绩的管理培训(精选18篇)

    范文范本是在某个具体主题或领域下,总结和概括相关内容的一种文本形式。小编为大家整理了一些范文范本,希望能给大家带来一些写作的灵感和启发。实情是:销售人员都不得不

    难忘的母亲节活动(实用15篇)

    范文范本能够为我们提供示范性的写作思路和技巧,帮助我们更好地完成自己的作文。范文范本7:下面是一篇探讨人生意义的范文范本,希望可以帮助大家思考和理解人生的意义和

    安全主管的职责和工作内容(通用18篇)

    范文范本是指一类具有指导性和示范作用的文本,可以用来帮助写作者更好地掌握和运用相关写作技巧。5.以下是小编为大家整理的范文范本,希望能为大家提供一些写作的素材和

    冬至活动总结语(实用18篇)

    活动总结是一个促进沟通和交流的机会,可以让参与者和观众更好地了解活动的内容。以下是小编为大家收集的活动总结范文,供大家参考和借鉴。在20xx年12月20日经过伙

    探索自然美景(优质20篇)

    范文范本是写作比赛的参考资料,通过研究和借鉴范文,我们可以提高我们的写作竞争力。为了帮助大家更好地学习和掌握写作技巧,以下是小编整理的一些范文范本,供大家参考使

    学生校园旅游指南(热门21篇)

    范文是学习写作的有力助手,通过模仿范文,我们可以更好地培养自己的写作技巧和表达能力。小编为大家带来了一些优秀总结范文,希望能给大家提供一些写作思路和参考。

    推广合作协议书范本范文(20篇)

    有时候我们会遇到写作难题,范文可以给我们提供思路和启发。接下来是小编为大家推荐的一些范文范本,希望能够给大家带来一些灵感和启示。乙方:________。甲乙双方