教学工作计划的落实需要教师不断进行教学反思和教学改进。接下来是一些教学工作计划的常见问题与解决方法,希望能对大家的教学工作有所帮助。
绝对值专题课教案(汇总20篇)篇一
(一) 教学内容:
《绝对值》是七年级数学教材上册1.2.4节内容,此前,学生已经学习了有理数的分类,数轴与相反数等基础知识,为本课学习的基础。绝对值不仅可以使学生加深对有理数的认识,还会为以后学习两个负数的大小比较以及有理数的运算做准备。所以本课在有理数一章起到承上启下的作用。
(二)教学目标:
根据数学课程内容标准要求及教学内容的特点,以及学生的认知水平,确定本节课的教学目标如下:
1,理解、掌握绝对值概念.体会绝对值的作用与意义;
2,能正确求出一个数的绝对值;
(三)教学重、难点分析:
教学重点:掌握绝对值的概念会求已知数的绝对值.
教学难点:掌握有理数的概念及分类。
(四)教学辅助手段。
利用多媒体(实物投影)、学案进行辅助教学。
第二部分:教学设计。
教学过程。
师生互动。
设计意图。
一、创设情境、引入新课。
二、合作交流、探索新知。
问题1:什么叫做绝对值?
怎么用数学符号表示一个数的绝对值?
问题2:互为相反数的绝对值的关系怎样?
问题3:正数的绝对值是什么数?零的绝对值是什么数?负数的绝对值是什么数?
问题4:设 a表示一个数, |a|等于什么?
三、拓展提高、应用巩固。
1.判断下列说法是否正确:
(1)符号相反的数互为相反数( ).
(2)符号相反且绝对值相等的数互为相反数( )。
(3)一个数的绝对值越大,表示它的点在数轴上越靠右.( )。
(4)一个数的绝对值越大,表示它的点在数轴上离远点越远.( )。
2. 求下列各数的绝对值: ,,0,,.
四、 概括总结、布置作业。
课堂小结:
1、 本节课收获:由学生进行总结,其他同学帮忙补充,教师提示。
2、 对于本节课的知识,如果还有不明白的地方请提出来,同学和老师共同帮助解决。
布置作业:
课本p11第1,2,3, 。
教师展示投影,甲乙两车相向而行问题 ,学生在学案上画出数轴,并根据学案的要求,思考甲乙两车行驶的距离引出的三个问题。
本环节教师关注重点:
学生能否区分方向和距离的不同。
学生能够理解从距离角度看数即绝对值的意义。
学生口头回答老师的问题。
对绝对值意义理解后教师让学生用自己的语言概括绝对值的定义?
学生相互讨论发言,教师进行补充并板书在黑板上,给出绝对值的数学符号书写规范。
学生巩固练习。
本环节教师关注重点:
学生是否正确理解了绝对值的概念并自己概括出来。
通过以下表格内容:
数值。
-3。
-2。
2
3
绝对值。
让学生填写表格后并通过表格小组讨论这些数能发现哪些规律?
学生进行小组讨论共同分析总结,得出组内结论。
本环节教师关注重点:
学生能否从正负数的角度看数的绝对值。
组织好小组讨论,使小组能真正发挥作用。
教师根据小组结论内容进行提问,得出绝对值的规律。
教师提醒和引导从正负数零的角度来思考。
学生小组讨论后教师进行补充。
给学生2分钟时间完成习题。
学生完成后,教师在黑板上进行板演写出完整的解题过程。
学生独立完成,找两名学生到黑板进行板演,对比过程的书写并由学生进行纠错,总结出完成的解题过程。
计算结果正确的学生举手示意教师;
本环节教师关注重点:
(1) 学生对于绝对值概念的掌握及灵活应用。
(2) 培养学生的分类的数学思维。
有本题引出下节课所要研究的重点内容。
本环节教师关注重点:
(1) 注重学生数学思维的形成。
(2) 提高学生的解题能力。
学生总结本节课内容后,小组间互相提问,看哪组将问题处理的正确、清晰。
用一个小情境让学生在兴趣中体验绝对值所代表的距离的意义,有实际问题引出绝对值的概念。
让学生通过实际的意义来正确的了解绝对值的概念,并通过讨论自己发表对绝对值概念的理解,发散学生的思维。
让学生通过自主学习找答案,观察数的规律自己总结不同数的绝对值的规律,提高学生的观察力和思考能力。
让学生自己总结,既锻炼学生的语言表达能力,又能加深学生对知识的掌握和理解。培养学生的数学语言及分类的数学思维。
通过习题加深学生的记忆和对绝对值的概念的掌握。
通过总结和提问帮助学生记忆本节课知识点,并加深理解,进行实际运用。
绝对值专题课教案(汇总20篇)篇二
苏轼,北宋大文学家、书画家。字子瞻,号东坡居士,眉山(今属四川)人。苏洵子,苏辙兄。嘉佑进士。北宋中期的文坛领袖,文学巨匠,唐宋八大家之一。其文纵横恣肆,其诗题材广阔,清新豪健,善用夸张、比喻,独具风格。词开豪放一派,与辛弃疾并称“苏辛”,有《东坡全集》、《东坡乐府》。
3、《浣溪沙》上阙写景,描绘了哪三幅画面?画面有何特点?山下小溪边,长着矮小娇嫩的兰草,山上松间沙路洁净无尘,黄昏时潇潇细雨中杜鹃在啼叫。画面清新优美,淡雅宁静。
4、下阙转入抒怀,抒发了怎样的情怀?由西流的溪水,想到青春可以永驻,大可不必为日月变迁、人生衰老而叹息。表现了积极进取的人生态度。
5、作者写此词时,正是在政治上失意,生活处于逆境之时,能有如此积极的人生观,豁达的胸怀,实在难能可贵。
6、齐读并背诵这首词。
学习《赤壁》。
1、教师范读,学生跟读。
2、简介作者并解题。
杜牧(803-852)唐代诗人。字牧之,京兆万年人。太和进士,和李商隐并称“小李杜”。赤壁是东汉末年周瑜大败曹操的地方,但杜牧所咏赤壁并非此处,而是湖北黄冈的赤鼻矶,所以说此诗虽为咏史诗,其实也是借题发挥。
3、《赤壁》开头为什么从一把不起眼的折戟写起,这样写有何作用?
与古代战争联系起来,很自然的引起后文对历史的咏叹。但是,这两句的作用主要不在于作为诗的引导,它本身也蕴涵着强烈的意念活动。沙里沉埋着铁戟,点出此地曾有过历史风云。折戟沉沙而仍未销蚀,又暗寓岁月流逝而物存人非之慨。凡是在历史上留下踪迹地人物、事件,常会被无情地时光销蚀掉,也易从人们的记忆中消逝,就像这铁戟一样沉沦埋没,但又常因偶然的'机会被人记起,或引起怀念,或勾起深思。正由于发现了这片折戟,使诗人心绪无法平静,因此他要磨洗并辨认一番,发现原来是“前朝”三国赤壁之战时的遗物。因此,“认前朝”又进一步勃发了作者浮想联翩的思绪,为后二句论史抒怀做了铺垫。
4、全诗最精彩的是久为人们传诵的末二句,这两句议论感慨抒发了作者怎样的思想感情?
这两句诗人发表议论,“东风”不仅仅指的是自然界的风,而是含有建功立业各种条件和因素。曲折的反映出诗人的抑郁不平和豪爽胸襟。慨叹历史上英雄成名的机遇,是因为他自己生不逢时,有政治军事才能而不得一展。似乎又有另一层意思:只要有机遇,相信自己总会有所作为,显示出一种逼人的英气。
5、齐读、背诵。
四、课堂练习。
课后练习:对对子。
出:白对:黑出:来对:去出:美对:丑出:是对:非出:蓝天对:白云。
五、布置作业。
1、背诵并默写五首诗词。
2、完成课后练习四作者邮箱:xxx。
绝对值专题课教案(汇总20篇)篇三
(1)掌握与()型的绝对值不等式的解法。
(2)掌握与()型的绝对值不等式的解法。
(3)通过用数轴来表示含绝对值不等式的解集,培养学生数形结合的能力;
设计。
在将看成一个整体的关键处点拨、启发,使学生主动地进行练习。
继续强化将看成一个整体继续强化解不等式时不要犯丢掉这部分解的错误。
三、课堂练习。
解下列不等式:
(1);
笔答。
(1);
检查落实情况。
四、小结。
的解集是;的解集是。
解绝对值不等式注意不要丢掉这部分解集。
或型的绝对值不等式,若把看成一个整体一个字母,就可以归结为或型绝对值不等式的解法。
五、作业。
1、阅读课本含绝对值不等式解法。
2、习题2、3、4。
1、抓住解型绝对值不等式的关键是绝对值的意义,为此首先通过复习让学生掌握好绝对值的意义,为解绝对值不等式打下牢固的基础。
2、在解与绝对值不等式中的关键处设问、质疑、点拨,让学生融会贯通的掌握它们解法之间的内在联系,以达到提高学生解题能力的目的。
3、针对学生解()绝对值不等式容易出现丢掉这部分解集的错误,在教学中应根据绝对值的意义从数轴进行突破,并在练习中纠正这个错误,以提高学生的运算能力。
绝对值专题课教案(汇总20篇)篇四
1.使学生理解相反数的意义;。
2.给出一个数,能求出它的相反数;。
3.理解绝对值的意义,熟悉绝对值符号;。
4.给一个数,能求它的绝对值。
教学重点、难点:
1.理解掌握双重符号的化简法则。
2.能正确理解绝对值在数轴上表示的意义。
教学过程。
一、交流与发现:
1.相反数的概念:
同学们通过观察思考可以总结出以下几点:
(1)上面的这两对数中,每一对数,只有符号不同。
(2)这两对数所对应的点中每一组中的两个点,一个在原点的左边,一个在原点的右边,而且离开原点的距离相同。
练一练:请同学们举出几个相反数的例子。
(强调)我们还规定:0的相反数是0。
说明:
(1)注意理解相反数定义中“只有”的含义。
(2)相反数是相对而言的,即如果6是-6的相反数,则-6也是6的相反数,因而相反数全是成对出现的。
(3)两个互为相反数的数在数轴上的对应点(除0外),在原点的两旁,并且距离原点距离相等的两个点,至于0的相反数是0的`几何意义,可理解为这两点距离原点都是零。
二、典型例题。
例(1)分别指出9和-7的相反数;。
解:由相反数的定义可知:
(1)9的相反数是-9,-7的相反数是7;。
(2)-2.4是2.4的相反数,
同学们思考交流,老师最后讲解,学生交流得出:一个正数的相反数是一个负数,而一个负数的相反数是一个正数。
三、实验与探究。
同学们观察数轴比思考下列问题。
(1)数轴上表示有理数5,2,0.5的点到原点的距离各是多少?
(2)数轴上表示有理数-5,-2,-0.5的点到原点的距离各是多少?
(3)数轴上表示0的点到原点的距离是多少?
学生思考回答,老师引导总结出绝对值的定义:
在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值。通常把有理数a的绝对值,记作|a|。
如下图所示:在数轴上表示-5的点与原点的距离是5,即-5的绝对值是5,记作|-5|=5。
下面咱们根据绝对值的定义,来看一组题目:
同学们观察,完成题目然后总结规律:
(老师板书,总结归纳)。
(1)一个正数的绝对值是它本身。
(2)一个负数的绝对值是它的相反数。
因为正数可用a0来表示,负数可用a0来表示,所以上述三条可改写成:
(1)如果a0,那么|a|=a,
(2)如果a0,那么|a|=-a,
(3)如果a=0,那么|a|=0,
上面这几个式子可合并写成:
由上面的几个式子可以看出,不论a取何值,它的绝对值总是正数或0(通常也称为非负数)。
练一练。
(1)先分别求出它们的绝对值。
(2)得到结论:
交流总结:两个负数,绝对值大的负数反而小。
四、课后总结:
1.通过学习,了解相反数的意义及找到一个数的相反数的方法。
2.了解绝对值的代数意义和它在数轴上表示的意思。
3.理解两个有理数大小比较的方法。
五:课后作业。
课本练习1、2、3。
将本文的word文档下载到电脑,方便收藏和打印。
绝对值专题课教案(汇总20篇)篇五
(总结:)。
3.(1)若,则;
(2)若,则.。
八、随堂练习。
1.判断题。
(1)数的绝对值就是数轴上表示数的点与原点的距离()。
(4)如果甲数的绝对值比乙数的绝对值大,那么甲数一定比乙数大()。
(5)如果数的绝对值等于,那么一定是正数。
2.填表。
原数。
3
相反数。
绝对值专题课教案(汇总20篇)篇六
(1)、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。
(2)、通过应用绝对值解决实际问题,体会绝对值的意义和作用。
2、过程与方法目标:
(3)、通过对“做一做”“议一议”“试一试”的交流和讨论,培养学生有条理地用语言表达解决问题的方法;通过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。
3、情感态度与价值观:
借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想。通过“做一做“议一议”“试一试”问题的思考及回答,培养学生积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生合作探索、合作交流、合作学习的新型学习方式。
理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。
1、教师检查组长学案学习情况,组长检查组员学案学习情况。(约5分钟)。
2、在组长的组织下进行讨论、交流。(约5分钟)。
3、小组分任务展示。(约25分钟)。
4、达标检测。(约5分钟)。
5、总结(约5分钟)。
(一)、温故知新:。
(二)小组合作交流,探究新知。
1、观察下图,回答问题:(五组完成)。
大象距原点多远?两只小狗分别距原点多远?
归纳:在数轴上,一个数所对应的点与原点的距离叫做这个数的。一个数a的绝对值记作:4的绝对值记作,它表示在上与的距离,所以|4|=。
2、做一做:
(1)、求下列各数的绝对值:(四组完成)-1.5,0,-7,2。
(2)、求下列各组数的绝对值:(一组完成)。
(1)4,-4;。
(2)0.8,-0.8;。
从上面的结果你发现了什么?
3、议一议:(八组完成)。
你能从中发现什么规律?
小结:正数的绝对值是它,负数的绝对值是它的,0的绝对值是。
4、试一试:(二组完成)。
若字母a表示一个有理数,你知道a的绝对值等于什么吗?
(通过上题例子,学生归纳总结出一个数的绝对值与这个数的关系。)。
5:做一做:(三组完成)。
1、
(1)在数轴上表示下列各数,并比较它们的大小:
-3,-1。
(2)求出(1)中各数的绝对值,并比较它们的大小。
(3)你发现了什么?
2、比较下列每组数的大小。
(1)-1和–5;(五组完成)。
(2)-8和-3(七组完成)。
5和-2.7(六组完成)。
1、填空:
|+15|=()|–4|=()。
|0|=()|4|=()。
2、判断。
(2)、一个数的绝对值一定是正数。()。
(3)、一个数的绝对值不可能是负数。()。
(4)、互为相反数的两个数,它们的绝对值一定相等。()。
(5)、一个数的绝对值越大,表示它的点在数轴上离原点越近。()。
1绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
2绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
3、会利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小。
p50页,知识技能第1,2题。
绝对值专题课教案(汇总20篇)篇七
1、能借助数轴初步理解绝对值的概念,会求一个数的绝对值。
2、正确理解绝对值的代数意义和几何意义,渗透数形结合与分类讨论思想。重点和难点:理解绝对值的概念,能求一个数的绝对值。
任务一、复习旧知:
1、什么叫互为相反数?在数轴上表示互为相反数的两点和原点的位置关系怎样?
2、数轴上与原点的距离是2的点表示的数有_____个,他们表示的数是_____;与原点的距离是5的点有____个、任务二、新知理解:
1、自读课本p11-p12,体会绝对值的意义。
a的绝对值记作_______,如5的绝对值记作______,结果是_____、
(2)|0|=_______;
绝对值的代数意义:(1)一个正数的绝对值是__________;。
(2)一个负数的绝对值是___________(3)0的绝对值是___________。
上述可以用式子表示为:(1)当a是正数时,|a|=_______,
任务三:巩固练习。
1、求下列各数的绝对值:?7。
12,?
110。
4、7510、5。
2.计算|-2|+|+8||34|?|?815。
||-20|?|?45|。
(2)如果一个数是正数,那么这个数的绝对值是它本身;(3)如果一个数的绝对值是它本身,那么这个数是正数(4)一个数的绝对值越大,表示它的'点在数轴上越靠右。归纳:(1)不论有理数a取何值,它的绝对值总是______。
(2)两个互为相反数的绝对值____。能力提升:
4)若|a-2|=3,则a=______。
略
绝对值专题课教案(汇总20篇)篇八
一教材分析:
教材所处的地位及作用:
本节课选自新人教版七年级数学上册§1.2节,是学生进入初中阶段后,在学习了正、负数、数轴以及相反数的基础上,对绝对值进行探究、学习的一个课题。绝对值是本章的一个重点,是比较有理数大小的又一工具,也是以后学习有理数混和运算的基础。另外,这一节课与前面所学的知识有千丝万缕的联系:绝对值的几何意义是在数轴的基础上得出的,代数意义又是运用前面所学的相反数知识来解决的。因此,这节课是一节承上启下的课。
二学情分析:
七年级学生刚刚跨入少年期,他们在身体发育、知识经验、心理品质方面,依然保留这小学生的天真活泼、对新生事物很感兴趣,求知欲望强、具有强烈的好奇心与求知欲,直观思维已比较成熟,但理性思维的发展还很有限,于是我用学生常见的行程问题导入这节课。
三教学目标:
知识目标:
(1)是学生掌握有理数的绝对值概念及表示方法。
(2)使学生熟练掌握有理数绝对值的求法和有关计算问题。
能力目标:
(1)在绝对值概念形成的过程中,渗透数形结合等思想方法,并注意培养学生的概括能力(2)能根据一个数的绝对值表示“距离”,初步理解绝对值的概念。
(3)给出一个数,能求出它的绝对值。
情感态度与价值观:
从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性。
四教学重点、难点:
根据学生的实际和本节课的要求,确定以下重、难点:
重点:给出一个数会求它的绝对值。
难点:绝对值的几何意义,代数意义的导出;负数的绝对值是它的相反数。
五教学方法与教学手段:
教法分析:
基于本节课内容的特点和七年级学生的心理特征,我在我在教学中选择互动是学习模式,与学生建立平等融洽的关系,营造自主探究与合作交流的氛围,共同演示、操作、观察、练习等活动中运用多媒体来提高教学效果,验证结论,激发学生学习兴趣。
学法分析:
教学过程是师生互相交流的过程,教师起引导作用,学生在教师的启发下充分发挥主体性作用。结合七年级学生的特点,让学生自己通过观察、类比、猜想、归纳,共同探讨交流,利用课件和图片自主探索等方式,激发学习兴趣,培养应用意识和发散思维。
六教学过程:
创设情境。
2)它们行驶的路程的远近相同吗?
思考:-8与8是相反数,把它们在数轴上表示出来,它们有什么相同之处和不同之处?(让学生充分发挥主体作用,()从自己的视点去观察、归纳、总结得出绝对值的几何意义。)2、形成概念:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值(absoutevalue),记作:|a|.
3、例题讲解。
例1求下列各数的绝对值。
-19,0,-2.3,+0.56,-6,+6,。
练习:求下列各数的绝对值。
|9||-2.5||-9||2.5||0|议一议:上述各数的绝对值与这些数本身有什么关系?(通过练习求三种类型数的绝对值,得出绝对值的代数意义。)4、引出法则:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.
议一议:
(1)当a是正数(a0)时,|a|=____;。
(2)当a是负数(a0)时,|a|=__;。
(3)当a=0时,(a=0)时|a|=__.
想一想:
(1)绝对值是3的数有几个?各是什么?
(2)绝对值是0的数有几个?各是什么?
(3)绝对值是-2的数是否存在?若存在,请说出来?
判断。
(1)+7的绝对值与-7的绝对值互为相反数。()(2)既不是正数也不是负数的有理数的绝对值是零。()(3)数a的绝对值就是数轴上表示数a的点与原点的距离。()(4)绝对值最小的数是0.()。
如何求一个数的绝对值。
作业布置。
必做题:
写出下列各数的绝对值:
-125,+23,-3.5,0,-0.05。
上面的数中那个数的绝对值最大?那个数的绝对值最小?
选做题:(通过这一活动可以拓宽学生的知识视野,1、让学生了解一点分类讨论的思想;2、把所学应用于生活)1、已知|x|=3,|y|=4,求x+y的值。
2、正式排球比赛对所用的排球重量是有严格规定的,现检查5个排球的重量,超过规定重量的克数记作正数,不足规定重量的克数记作负数,检查结果如下表:
+15。
-10。
+30。
-20。
-40。
问题:
(1)指出哪个排球的质量好一些(即重量最接近规定质量)?
绝对值专题课教案(汇总20篇)篇九
《绝对值》是选自人教版初一数学第一章第二节第四部分的内容。这部分内容之前已经学习了有理数、数轴、相反数的内容,这是本节课学习的基础。绝对值的内容主要包括含义及有理数之间的大小比较,这也为后面学习有理数的加减法奠定了基础。
(六)教学目标。
根据对教材内容的分析,以及在新课改理念的指导下,制定了如下三维目标:
(一)知识与技能。
理解、掌握绝对值的含义,并且会比较有理数之间的大小。
(二)过程与方法。
运用数轴来推理数的绝对值,并在推理的过程中清晰的阐述自己的观点,从而逐步发展发生的抽象思维。
(三)情感态度与价值观。
体验数学活动的探索性和创造性,感受数学的严谨性以及数学结论的确定性。
教学重难点。
通过以上对教材内容及教学目标的分析,以及学生已有的知识水平,本节课的教学重难点如下:
重点:绝对值的理解以及有理数的比较。
难点:负数的绝对值的理解及比较。
二、说学情。
以上就是我对教材的分析,由于教学目标及重难点的确定也是在学生情况的基础上进行的,所以下面我对学情进行分析。
初一学生的抽象思维开始有了一定的发展,但还需一定的感性材料作支撑,同时思维比较活跃和积极,所以教学过程中会注重直观材料的运用,然后引导学生自主思考并理解知识,以激发学生的学习兴趣,调动学生的积极性和主动性。
三、说教材。
基于以上对教材、学情的分析,以及新课改的要求,我在本课中采用的教法有:讲授法、演示法和引导归纳法。演示法中需要的教具有多媒体和温度计。
四、说教法。
新课改理念告诉我们,学生不仅要学到具体的知识,更重要的是学生要学会怎样自己学习,为终身学习奠定扎实的基础。所以本课中我将引导学生通过自主探究、合作交流的学法来更好的掌握本节课的内容。
五、说教学程序。
为了更好的实现三维目标、突破重难点,我将本课的教学程序设计为以下五个环节:
(一)情境导入。
出示温度计,"北方某一城市的温度是零下15摄氏度,南方某一城市的温度是15摄氏度",学生在稿纸上画一条数轴,标出这两个温度,并请一位学生画在黑板上。
(二)新授。
1、从上面的问题中,我引出今天的"绝对值"概念,然后和学生一起从数轴上推导出绝对值。
2、使用多媒体呈现一组数字,包括几个正数,几个负数。让大家在数轴上画出,并写出每个数字的绝对值。然后学生来依次说出每个绝对值,以巩固概念的掌握。
3、和大家一起写出这些绝对值,把负数、正数、0的绝对值分别写在三个地方,引导学生观察这些绝对值,并思考其中的规律,然后和学生一起得出结论,即正数的绝对值是本身,负数的绝对值是它的相反数,0的绝对值的0、得出这个结论后顺势提问:数a的绝对值是多少?进行分组讨论,在讨论一段时间后提醒学生刚刚的结论。
4、在每组的回答后,和学生一起总结出数a的绝对值,分三种情况,当a大于0,绝对值为a;等于0时,为0;小于0时,为-a、这三种情况的分析后,学生就充分理解了绝对值的含义。
5、回到大家画的数轴,大家很容易比较出原点0右边的正数的大小,那么左边的.负数的大小怎么比较呢?提出这个问题后不急于让学生回答,而是把学生引入一个情境,即把数轴上的数都看成是温度,比较温度的大小就比较容易,然后回到数的比较。在这个引导后,得出的结论是:离0越远的数,越小;也可以说绝对值越大的负数越小。
(三)巩固练习。
在ppt上呈现一些数的绝对值,以及一些负数、正数、绝对值之间的比较的题。
(四)小结。
引导学生总结出今天的学习内容,培养学生的归纳以及逻辑思维能力。
(五)布置作业。
布置作业不是目的,目的是学生能够更好的掌握并运用本节课的内容。所以我会布置这样一个作业:请学生回家可以在父母的帮助下,找出南方和北方分别三个城市的温度,比较这些温度的大小,并写出每个温度的绝对值并进行比较。
(六)说板书设计。
为了学生能够更清晰的掌握内容,我用写关键词的方式来有逻辑性的呈现我的板书。
以上就是我说课的全部内容,谢谢!
绝对值专题课教案(汇总20篇)篇十
借助于数轴理解相反数和绝对值的概念,会求一个数的绝对值,能借助绝对值比较两个负数的大小。
【过程与方法】。
通过自主探索、小组讨论、合作交流探索得到绝对值的过程,培养学生发现和解决问题的能力,锻炼学生合作交流的意识。
【情感态度与价值观】。
体会到数学和生活之间的联系,提升学生学习数学的自信心和乐趣。
二、教学重难点。
【教学重点】。
【教学难点】。
求一个数的绝对值和相反数;借助绝对值比较负数间的大小。
三、教学过程。
(一)引入新课。
教师回顾旧知并提问:上节课学习了哪些知识?
预设:学习了数轴,知道了有理数都可以用数轴上的点来表示。
多媒体出示,3与-3,5和-5等数字,再次提出问题:这些数有什么相同点,你能找到这些数在数轴上的位置吗?引出新课。
(二)探索新知。
学生自主观察,并写出几组类似的数字。
绝对值专题课教案(汇总20篇)篇十一
一、学习与导学目标:
情感态度:通过创设情境,初步感悟学习绝对值的必要性,促进责任心的形成。
二、学程与导程活动:
a、创设情境(幻灯片或挂图)。
1、两辆汽车,其一向东行驶10km,另一向西行驶8km。为了区别,可规定向东行驶为正,则分别记作+10km和-8km。但在计算出租车收费,汽车行驶所耗的汽油,起主要作用的是汽车行驶的路程,而不是行驶的方向。此时,行驶路程则分别记作10km和8km。
再如测量误差问题、排球重量谁更接近标准问题……。
2、在讨论数轴上的点与原点的距离时,只需要观察它与原点相隔多少个单位长度,与位于原点何方无关。
b、学习概念:
1、我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue),记作︱a︱(幻灯片)。因此,上述+10,-8的绝对值分别是10,8。
如在数轴上表示数-6的点和表示数6的点与原点的距离都是6,所以,-6和6的绝对值都是6,记作︱-6︱=6,︱6︱=6。(互为相反数的两个数的绝对值相同)。
2、尝试回答(1)︱+2︱=,︱1/5︱=,︱+8.2︱=;。
(2)︱-3︱=,︱-0.2︱=,︱-8.2︱=;。
(3)︱0︱=。(幻灯片)。
思考:你能从中发现什么规律?引导学生得出:(幻灯片)。
性质:一个正数的绝对值是它本身;。
如果用字母a表示有理数,上述性质可表述为:
当a是正数时,︱a︱=a;。
当a是负数时,︱a︱=-a;。
当a=0时,︱a︱=0。
解答课本p19/7及p15练习,由p19/7体会绝对值在实际中的应用,由练习1体会上面的三个等式,由练习2中提到的绝对值大小、数轴,引出问题:
在引入负数以后,如何比较两个数的大小,尤其是两个负数的大小?
3、让我们仍然回到实际中去看看有怎样的启发,引导阅读p16(幻灯片)。
显然,结合问题的实际意义不难得到:-4-3-2-1012……。
因此,在数轴上你有何发现?生讨论后发现:从左往右表示的数越来越大。
再找几个量试试是否如此?这些数的绝对值的大小如何?(可利用p19/6,8为素材)。
通过以上探究活动得到:正数大于0,0大于负数,正数大于负数;。
4、师生活动比较下列各对数的大小:p17例,p18练习。
5、师生小结归纳(幻灯片)。
三、笔记与板书提纲:
1、幻灯片。
2、师生板演练习p15/1。
四、练习与拓展选题:
p19/4,5,9,10。
绝对值专题课教案(汇总20篇)篇十二
本节课我首先复习相反数的知识,从一对相反数在数轴上的位置,自然引出它们距离原点相等。接着举例:出租车从车站出发,向南行了10千米,又从车站出发向北行了5千米。如果用正负数表示两次运行的情况,需要先规定一个正方向,假设向北为正,则分别是-10千米和+5千米。可是要想知道这两次运行中,出租车一共用了多少油,与方向还有关系吗?该与什么有关呢?面对这些问题,学生纷纷说出,只与从出发点到目的地的距离有关。
我及时给予鼓励,并在黑板上板书“距离”二字。
(1)3到原点的距离是3个单位长度。
(2)-3到原点的距离是3个单位长度。
这时,我问学生,“这句话文字太多,想不想简化一下?”
学生齐答“想”!
“好,那么用三个字就可以代替这句话。”有的学生已经小声说出了,是“绝对值”。
于是板书课题――绝对值。
接下来又问,“写这三个字也有点麻烦,想不想再简化一下?”
“想”,我看到学生已经笑了,好像这是很好玩的事,越来越简单了。于是我又及时给出符号“||”的写法。
到此时,学生已经明白“绝对值”就是“一个数到原点的距离”。学生自己总结出来了。
为了讲清绝对值的意义,我设计了循序渐进的几个例子。
(1)|-5|=(2)|7|=(3)|-1/3|=(4)|0|=。
当学生说出以上四个式子的结果后,又出示了第五个(5)|a|=。
很多学生没有思考马上就答出“等于a"。
针对学生的回答,我问“上节课,在学习相反数的时候,我告诉大家,字母可以表示哪些数?”
学生立即回答,“任意有理数”。那么这里的a也应该是任意有理数。
在此基础上,我引导学生得出|a|的.三种情况。尤其当a0时,|a|=-a,让学生明白,字母a中包含着一个看不见的“-”号。-a实际上是a的相反数,也是一个正数。
就这样,在我的预谋中,学生自然的明白了绝对值的意义,并学会了化简绝对值的符号,也理解了非负数的含义。
再次面对初一的新生,我觉得很多非常熟悉的知识,可以用不同的说法让学生理解,而且,教师一定要思路清晰。整个新知识的处理,要一气呵成,让学生在环环相扣的紧张状态中,形成知识系统,直到讲完新课.
当所有的内容已经胸有成竹的时候,再来教给学生,竟然可以深入浅出,四两拔千斤,尤其当你启发点拨的到位,学生水到渠成的自己得出你想要讲解的新课时,心里会有一种成就感,当然学生在不知不觉中自己掌握了新知识的主要内容,他们也不会觉得难以接受。
绝对值专题课教案(汇总20篇)篇十三
一、教学目标:
1、掌握绝对值的概念,有理数大小比较法则。
2、学会绝对值的计算,会比较两个或多个有理数的大小。
3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想。
二、教学难点:
两个负数大小的比较。
三、知识重点:
绝对值的概念。
四、教学过程:
(一)设置情境。
1、引入课题。
星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正:
(1)用有理数表示黄老师两次所行的路程。
(2)如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?
2、学生思考后,教师作如下说明:
实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关。
3、观察并思考:
画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离。
4、学生回答后,教师说明如下:
数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。
例如,上面的问题中|20|=20,|―10|=10显然,|0|=0这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义。为引入绝对值概念做准备。使学生体验数学知识与生活实际的联系。因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备。
(二)合作交流。
1、探究规律例1求下列各数的绝对值,并归纳求有理数a的绝对有什么规律?
―3,5,0,+58,0.6。
2、要求小组讨论,合作学习。
3、教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则。
(三)巩固练习。
1、其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别。求一个数的绝时值的法则,可看做是绝对值概念的一个应用,所以安排此例。学生能做的尽量让学生完成,教师在教学过程中只是组织者。本着这个理念,设计这个讨论。
2、结合实际发现新知引导学生看教科书第16页的图,并回答相关问题:
(1)把14个气温从低到高排列。
(2)把这14个数用数轴上的点表示出来。
3、观察并思考:
(2)学生交流后,教师总结:
14个数从左到右的顺序就是温度从低到高的顺序:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则。
4、想象练习:
想象头脑中有一条数轴,其上有两个点,分别表示数―100和―90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系。要求学生在头脑中有清晰的图形。让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性。
数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的.数左小右大这方面结合起来来了解,所以配置想象练习,加强数与形的想象。
5、课堂练习例2,比较下列各数的大小。
比较大小的过程要紧扣法则进行,注意书写格式。
6、练习:第18页练习。
(三)小结与作业。
课堂小结怎样求一个数的绝对值,怎样比较有理数的大小?
(四)本课作业。
1、必做题:教产书第19页习题1,2,第4,5,6,10。
2、选做题:教师自行安排。
五、本课教育评注。
1、情景的创设出于如下考虑:
(1)体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣。
(2)教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受。
2、一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。
3、有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学中要结合绝对值的意义和规定:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,帮助学生建立数轴上越左边的点到原点的距离越大,所以表示的数越小这个数形结合的模型。为此设置了想象练习。
4、本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。
文档为doc格式。
绝对值专题课教案(汇总20篇)篇十四
1、先画一条数轴,在数轴上表示下列各数的点,并比较它们的大小:
―4,2.4,0,―,―3,1.
2、一天,汽车司机张师傅从车站出发,沿东西方向行驶,规定向东为正,若向东行驶3千米,记作_____;若向西行驶2千米,记作_____.
3、数轴上表示数―3的点a到原点的距离是,表示数5的点b到原点的距离是,a、b两点之间的距离是.
4、数轴上到原点的距离是2的点有个,表示的数是.
【课堂重点】。
1、小明的家在学校西边3km处,小丽的家在学校东边2km处.
(2)从数轴上看,哪家离学校较近?哪家离学校较远?
2、数轴上表示一个数的点与原点的距离,叫做这个数的.用符号“”表示.
3、如图,你能说出数轴上a、b、c、d、e、f各点所表示的数的`绝对值吗?
4、学习教材21页例题,完成“练一练”.
5、想一想:。
(2)绝对值最小的数是.
6、例3:某厂生产闹钟,从中抽取5件检验时,比标准时间多的记为正数,比标准时间少的记为负数,请根据下表,选出最准确的闹钟.
12345。
+2s-3.5s6s+7s-4s。
误差不超过5秒的为合格品,否则为次品,问有几台合格?
7、练习:某车间生产一批圆形零件,从中抽取8件进行检验,比规定直径长的毫米数记为正数,比规定直径短的毫米数记为负数,检查记录如下:。
12345678。
+0.3-0.2-0.3+0.40-0.1-0.5+0.3。
指出第几个零件最标准?最接近标准的是哪个零件?误差最大的是哪个零件?
8、通过本节课的学习,你有什么收获?
【课后巩固】。
|0|=_____,|9|=______,|-2|=________;。
(3)若|x|=6,则x=__________;。
(4)在数轴上点a表示-,点b表示,则点___________离原点的距离近些.
2、计算:
(1)|―3|×|―6.2|(2)|―5|+|―2.49|。
(3)―|―|(4)|―|÷||。
绝对值专题课教案(汇总20篇)篇十五
1、化简:
2、若一个数的相反数是2,则这个数是_____,若一个数的相反数是-3,则这个数是___,若一个数的相反数是它本身,则这个数是______.
3、的绝对值的相反数是_______,0.7的相反数的绝对值是_______.
4、绝对值最小的数是____,绝对值不小于3的整数有个,分别是.
【课堂重点】。
1、完成教材23页填空.
2、观察教材上填空的结果思考:一个数的绝对值与这个数本身或它的相反数有什么关系?与同学交流.
正数的绝对值是_______;负数的绝对值是_______;零的绝对值是_______.
3、学习教材23页例5,完成教材24页“练一练”第一题.思考:
4、想一想:两个数比较大小,绝对值大的那个一定大吗?
结论:
5、学习教材23页例6,完成教材24页“练一练’第二题.
6、练习:
|0|=_______;|-1|=_______;|2|=_______;。
+|-1.5|=_______;-|-2|=_______;。
+(-5)=_______;―(-4)=_______;-(+5)=_______.
(2)若|x|=x,则x_______0;。
若|x|=-x,则x_______0.
(3)绝对值等于5的数是______.
(4)绝对值小于5的负整数是______.
(5)绝对值不大于5而又不小于2的整数是______.
(6)绝对值不大于5.3而又不小于2的整数是______.
(7)已知ab0,-a_____-b.
7、这节课主要学习了什么?你有什么收获?
【课后巩固】。
1、用“”“=”或“”号填空。
+|-5|___-|-4|;-(+5)___-[-|-5|]。
2、|x|=3,则x=_____;|-x|=|-2|,则x=______.
3、相反数大于-2而又小于3的整数有__________;-(+7)的相反数是________.
4、比-3大且比4小的整数有_______个,分别是__________.
5、绝对值大于1且不大于4的负整数有__________个,分别为__________.
6、若分别求x,y的值.
绝对值专题课教案(汇总20篇)篇十六
绝对值概念既【】是本节的又是。关于绝对值的概念,需要明确的是无论是绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说,任何一个有理数的绝对值都是非负数,即无论a取任意有理数,都有。
教材上绝对值的定义是从几何角度给出的,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及绝对值,通过数轴,这些知识都联系在一起了。此外,0的绝对值是0,从几何定义出发,就十分容易理解了。
绝对值的定义绝对值的表示方法用绝对值比较有理数的大小。
1.绝对值的代数定义。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零.。
2.绝对值的几何定义。
在数轴上表示一个数的点离开原点的距离,叫做这个数的绝对值.。
3.绝对值的主要性质。
(4)两个相反数的绝对值相等.。
1.两个负数大小的比较,因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负数左边,所以,两个负数,绝对值大的反而小。
比较两个负数的方法步骤是:
(1)先分别求出两个负数的绝对值;
(2)比较这两个绝对值的大小;
(3)根据“两个负数,绝对值大的反而小”作出正确的判断.。
绝对值专题课教案(汇总20篇)篇十七
各位专家领导:
你们好!
首先,我对本节教材进行一些分析:
一、教材分析(说教材):
(一)、教材所处的地位与作用:
本节内容在全书及章节的地位是:《绝对值》是七年级数学教材上册1、2、4节内容。在此之前,学生已学习了有理数,数轴与相反数等基础内容,这为过渡到本节的学习起着铺垫作用。绝对值不仅可以使学生加深对有理数的认识,还为以后学习两个负数的比较大小以及有理数的运算作好必要的准备!所以说本讲内容在有理数这一节中,占据了一个承上启下的位置。
(二)、教育教学目标:
根据新课标的要求及七年级学生的认知水平我特制定的本节课的教学目标如下:
1、知识目标:。
1)使学生了解绝对值的表示法,会计算有理数的绝对值。
2)能利用数形结合思想来理解绝对值的几何定义;理解绝对值非负的意义。
3)能利用分类讨论思想来理解绝对值的代数定义;理解字母a的任意性。
2、能力目标:
通过教学初步培养学生分析问题,解决实际问题,读图分析、收集处理信息、团结协作、语言表达的能力,以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力。
3、思想目标:。
通过对绝对值的教学,让学生初步认识到数学知识来源于实践,引导学生从现实生活的经历与体验出发,激发学生对数学问题的兴趣,使学生了解数学知识的功能与价值,形成主动学习的态度。
(三):重点,难点以及确定的依据:
本课中绝对值的两种定义是重点,绝对值的代数定义是本课的难点,其理论依据是如何突破绝对值符号里字母a的任意性这一难点,由于学生年龄小,解决实际问题能力弱,对数学分类讨论思想理解难度大。
下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法与学法上谈谈:
二、教学策略(说教法)。
(一)、教学手段:
由于七年级学生的理解能力与思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,以及七年级学生刚刚学习有理数中的正负数,相反数,对正负数,相反数的概念理解不一定非常深刻,许多学生容易造成知识遗忘,也为使课堂生动、有趣、高效,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,采用启发式教学法与师生互动式教学模式,注意师生之间的情感交流,并教给学生“多观察、动脑想、大胆猜、勤钻研”的研讨式学习方法。
教学中积极利用多媒体课件,向学生提供更多的活动机会和空间,使学生在动脑、动手的过程中获得充足的体验与发展,从而培养学生的数形结合的思想。
为充分发挥学生的主体性与教师的主导辅助作用,教学过程中我设计了七个教学环节:
1、温故知新,激发情趣。
2、得出定义,揭示内涵。
3、手脑并用,深入理解。
4、启发诱导,初步运用。
5、反馈矫正,注重参与。
6、归纳小结,强化思想。
7、布置作业,引导预习。
(二)、教学方法及其理论依据:
坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,根据七年级学生的心理发展规律,联系实际安排教学内容。采用学生参与程度高的学导式讨论教学法。在学生看书、讨论基础上,在教师启发引导下,运用问题解决式教学法,师生交谈法、问答法、课堂讨论法,引导学生来理解教材中的理论知识。
在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践,学以致用,落实教学目标。
三:学情分析:(说学法)。
1、知识掌握上,七年级学生刚刚学习有理数中的相反数,对相反数的概念理解不一定非常深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述。
2、学生学习本节课的知识障碍。学生对绝对值两种概念,不易理解,容易出错,所以教学中教师应予以简单明白、深入浅出的分析。
3、由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用多媒体课件,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
4、心理上,学生对数学课的重视与兴趣,老师应抓住这有利因素,引导学生认识到数学课的科学性,学好数学有利于其他学科的学习以及学科知识的渗透性。
最后我来具体谈一谈这一堂课的教学过程:
四、教学程序设计。
(一)、温故知新,激发情趣:
首先打出第一张幻灯片复习提问:什么叫做相反数?学生回答后让大家讨论:你能找出互为相反数的两个数在数轴上表示的点的共同特点吗?学生会积极回答第一个问题,但第二个问题学生可能难以准确回答,于是打出第二张幻灯片引导学生仔细观察,认真思考。从而引出课题:绝对值。结合实例使学生以轻松愉快的心情进入了本节课的学习,也使学生体会到数学来源于实践,同时对新知识的学习有了期待,为顺利完成教学任务作了思想上的准备。
(二)、得出定义,揭示内涵:
由于学生是第一次接触绝对值这样比较深奥的数学名词,所以我利用数轴在第三张幻灯片里直接给出绝对值的几何定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,(absolutevalue)这个定义学生接受起来比较容易。
给出定义后引导学生讨论:“定义里的数a可以表示什么样的数?
(通过教师亲切的语言启发学生,以培养师生间的默契)通过讨论由师生共同得到绝对值定义里的数a可以是正数,负数和0。
然后再回到第一张幻灯片里提出的问题:互为相反数的两个数的绝对值有什么关系?
(三)、手脑并用,深入理解:
1、在上一环节与学生一起理解了绝对值的定义后,我再提出问题:如何由文字语言向数学符号语言的转化,即如何简单地标记绝对值,而不用汉字?在此不用提问学生,采取自问自答形式给出绝对值的记法。
2、为进一步强化概念,在对绝对值有了正确认识的基础上,请学生做教材的课堂练习第一题,写出一些数的绝对值。可以请学生起立回答。我就学生的回答情况给出评价,如“非常好”“非常规范”“老师相信你,你一定行”等语言来激励学生,以促进学生的发展;并再次强调绝对值的定义。
3、在完成第一题的练习后,我又给出一新的幻灯片,并提出问题:议一议一个数的绝对值与这个数有什么关系?启发学生举一些实际的例子来发现规律,并总结规律。从而引出绝对值的第二个定义。
(四)、启发诱导,初步运用:
有了绝对值的两个定义后,我安排了10道不同层次的判断题让学生思考。特别注重对于不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。
(五)、反馈矫正,注重参与:
为巩固本节的教学重点我再次给出三道问题:
1)绝对值是7的数有几个?各是什么?有没有绝对值是-2的数?
2)绝对值是0的数有几个?各是什么?
3)绝对值小于3的整数一共有多少个?
先让学生通过小组讨论得出结果,通过以上练习使学生在掌握知识的基础上达到灵活运用,形成一定的能力。
视学生的反馈情况以及剩余时间的多少我还预备了五道课堂升华的思考题,再次强化训练,启发学生的思维。
(六)、归纳小结,强化思想:
(七)、布置作业,引导预习:
1、全体学生必做课本习题1、23,4,5,10。
2、选作两道思考题:
总之,在教学过程中,我始终注意发挥学生的主体作用,让学生通过自主、探究、合作学习来主动发现结论,实现师生互动,通过这样的教学实践取得了良好的教学效果,我认识到教师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯,让学生学会学习,才能使自己真正成为一名受学生欢迎的好教师。
以上是我对本节课的设想,不足之处请老师们多多批评、指正,谢谢!
绝对值专题课教案(汇总20篇)篇十八
表达解决问题的方法;通过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。
3、情感态度与价值观:
借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想。通过“做一做“议一议”“试一试”问题的思考及回答,培养学生积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生合作探索、合作交流、合作学习的新型学习方式。
理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。
1、教师检查组长学案学习情况,组长检查组员学案学习情况。(约5分钟)2.在组长的组织下进行讨论、交流。(约5分钟)3、小组分任务展示。(约25分钟)4、达标检测。(约5分钟)5、总结(约5分钟)。
(一)、温故知新:。
(二)小组合作交流,探究新知。
1、观察下图,回答问题:(五组完成)。
大象距原点多远?两只小狗分别距原点多远?
归纳:在数轴上,一个数所对应的点与原点的距离叫做这个数的。一个数a的绝对值记作:.
4的绝对值记作,它表示在上与的距离,所以|4|=。
2、做一做:
(1)、求下列各数的绝对值:(四组完成)-1.5,0,-7,2(2)、求下列各组数的绝对值:(一组完成)。
(1)4,-4;(2)0.8,-0.8;。
从上面的结果你发现了什么?
3、议一议:(八组完成)。
(1)|+2|=,
你能从中发现什么规律?
小结:正数的绝对值是它,负数的绝对值是它的,0的绝对值是。
4、试一试:(二组完成)。
若字母a表示一个有理数,你知道a的绝对值等于什么吗?
(通过上题例子,学生归纳总结出一个数的绝对值与这个数的关系。)。
5:做一做:(三组完成)。
1、(1)在数轴上表示下列各数,并比较它们的大小:
-3,-1。
(2)求出(1)中各数的绝对值,并比较它们的大小。
(3)你发现了什么?
2、比较下列每组数的大小。
(1)-1和–5;(五组完成)(2)?
(3)-8和-3(七组完成)。
5和-2.7(六组完成)6五、达标检测:
1:填空:
|+15|=()|–4|=()。
|0|=()|4|=()2:判断(1)、绝对值最小的数是0。()(2)、一个数的绝对值一定是正数。()(3)、一个数的绝对值不可能是负数。()。
(4)、互为相反数的两个数,它们的绝对值一定相等。()(5)、一个数的绝对值越大,表示它的点在数轴上离原点越近。()。
1绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.
2.绝对值的性质:正数的绝对值是它本身;。
负数的绝对值是它的相反数;0的绝对值是0.
3、会利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小.
p50页,知识技能第1,2题.
绝对值专题课教案(汇总20篇)篇十九
3,体验分类是数学上的常用处理问题的方法。
教学难点正确理解分类的标准和按照一定的标准进行分类。
知识重点正确理解有理数的概念。
教学过程(师生活动)设计理念。
探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).
问题1:观察黑板上的9个数,并给它们进行分类。
学生思考讨论和交流分类的情况。
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励。
例如,
对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数,,.••…(由于小数可化为分数,以后把小数和分数都称为分数)。
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.
按照书本的说法,得出“整数”“分数”和“有理数”的概念。
看书了解有理数名称的由来。
“统称”是指“合起来总的名称”的意思。
学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会。
练一练1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流。
2,教科书第10页练习。
此练习中出现了集合的概念,可向学生作如下的说明。
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号。
思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
也可以教师说出一些数,让学生进行判断。
集合的概念不必深入展开。
创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。
有理数这个分类可视学生的程度确定是否有必要教学。
小结与作业。
课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
本课作业1,必做题:教科书第18页习题1.2第1题。
2,教师自行准备。
本课教育评注(课堂设计理念,实际教学效果及改进设想)。
1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概。
念。分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进。
行简单的分类是数学能力的体现,教师在教学中应引起足够的重视。关于分类标准与分。
类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。
2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。
3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。
课题:1.2.2数轴。
教学目标1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;
3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。
教学难点数轴的概念和用数轴上的点表示有理数。
知识重点。
教学过程(师生活动)设计理念。
设置情境。
引入课题教师通过实例、课件演示得到温度计读数。
(多媒体出示3幅图,三个温度分别为零上、零度和零下)。
问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境。
点表示数的感性认识。
点表示数的理性认识。
合作交流。
探究新知教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?
从而得出数轴的三要素:原点、正方向、单位长度体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。
寻找规律。
归纳结论问题3:
1,你能举出一些在现实生活中用直线表示数的实际例子吗?
3,哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?
4,每个数到原点的距离是多少?由此你会发现了什么规律?
(小组讨论,交流归纳)。
归纳出一般结论,教科书第12的归纳。这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。
巩固练习。
教科书第12页练习。
小结与作业。
课堂小结请学生总结:
1,数轴的三个要素;
2,数轴的作以及数与点的转化方法。
本课作业1,必做题:教科书第18页习题1.2第2题。
2,选做题:教师自行安排。
本课教育评注(课堂设计理念,实际教学效果及改进设想)。
1,数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。
2,教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。
3,注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。
绝对值专题课教案(汇总20篇)篇二十
1、略2、+3千米,-2千米3、3,5,8;4、2,±2.
【课堂重点】。
5、(1)非负(2)06、3。
7、第5个最标准,第6个误差最小,第7个误差最大.
【课后巩固】。
2、(1)18.6(2)7.49(3)-(4)3、8.