最新高三计划表理科 高三数学一轮复习计划书(通用5篇)

时间:2024-11-27 作者:雁落霞

计划是提高工作与学习效率的一个前提。做好一个完整的工作计划,才能使工作与学习更加有效的快速的完成。计划为我们提供了一个清晰的方向,帮助我们更好地组织和管理时间、资源和任务。下面我帮大家找寻并整理了一些优秀的计划书范文,我们一起来了解一下吧。

高三计划表理科篇一

高三数学总复习是一项复杂的系统工程,它既要立足于巩固所学的基础知识、掌握基本方法和技能,又要着眼于提高能力、深化思维;既要在复习中学全题型,又要避免“题海战术”,因此复习的质量直接关系到高考的成败。通过近几年来我校高三工作的实践及我们学生的特点,我们从以下几个方面谈谈我们高三复习的一些打算。

一、研究《考试说明》及其变化,明确考查的重点、热点及其命题导向

xxx年我省数学自主命题,既继承全国试卷的优点,又具有安徽特色,真正做到了“稳中求变,变中求新”,出现不少好题,体现新课改理念,试题全面考查“双基”,在知识点交汇处命题,深化能力立意,突出考查数学能力,进一步加强对数学应用和创新意识的考查,同时适当减少了运算量,增加对理性思维的考查(多想少算)。而《考试说明》是高考命题的主要依据,因此作为一位一线的高三教师必须认真研读近两年的考试说明,进行对照,了解高考的命题重点、热点及方向。这样就能心中有数,目标明确,努力才有针对性,才有成效。具体来说:

(1)细心推敲对考试内容三个不同层次的要求,弄清哪些内容是了解,哪些内容是理解和掌握,哪些内容是灵活和综合运用。

(2)高考的宗旨是:立足于基础知识的前提下,以能力立意为原则。舍弃偏、难、怪的题目,淡化特殊技巧,思维方向多,解题途径多,方法活,注重发散思维的考查,复习过程中不要过多的玩技巧,否则会让成绩好的学生“走火入魔”,成绩差的学生“信心尽失”,因此需要加强“通性通法”的训练,综合提高解题能力,逐渐形成自觉应用数学思想方法解题的意识。

(3)认真研究、安徽及其它省市的高考试题.试卷考了什么,要嗅到它的通性,也要闻得到它的个性,从这些试题来验证自己对考试说明的把握准确程度及高考命题的导向。

二、切实抓好“双基”教学,夯实数学基础

数学的“双基”是指数学的基础知识、基本技能和数学思想方法。它是数学能力培养的重要载体与有效支撑,是学生数学素养的重要组成部分,也是高考数学的考查重点,因此在复习时应注重以下几点:

(一)基础复习,要“细”;力求主次分明,突出重点。

1、课本是一切知识的来源与基础,课本中结论,定理与性质,都是学习数学非常重要的环节;因此立足课本,迅速激活已学过的各个知识点,强调课本的重要性,不放过课本的每一个角落。

2、注意所做题目使用知识点覆盖范围的变化,有意识地思考、研究这些知识点在课本中所处的地位和相互之间的联系。

3、要重视数学概念的复习,深刻体会数学概念的本质特征.

如在函数的复习习过程中要重视函数概念的复习,深刻体会函数的本质特征,学会函数的思维方式。

(二)对核心的知识要概括,解题的方法要概括,对每一章节、每一单元的问题解决的思维方式做一概括!

在知识的复习过程中注意每一模块复习完要注意引导学生建立网络图,其目的是一方面,所学知识层次清晰,知识的逻辑关系清楚,更重要的是,这个知识结构图也体现了学生应掌握的数学思维的基本模式与方法。

将典型问题模型化,将通解通法固化在我们的解题思维中,能够有效地提高我们解决数学问题的'能力,有效地提高复习的质量,也是老师提高复习效率最应该做的事情。

(三)分层教学,教学内容要有针对性。

高三数学复习,绝不能等同高一,高二阶段,平铺直叙,对每章的知识结构,在复习开始与复习结束时都要能写出或说出各章节的知识结构与知识体系,特别要强调课本内涉及的内容与课外补充的内容,及高考考过的知识点,为此,师生要研究近三年的高考题目。例如:“函数”一章,课本目录:集合与函数、基本初等函数、函数方程与零点。因为函数是高考的重头戏,函数知识与函数思想地位,需让同学们下大力气掌握,扩充内容:求函数解析式,函数值域,求函数定义域,函数图像及变换,函数与不等式,函数思想的应用;重点知识重点掌握,重点训练,也是近几年高考的一个方向,而对于集合,因为高考要求降低,就适当减少课时,针对性处理数学知识点。减少盲目性,在高三能帮助同学们居高临下复习,提高复习效果。

(四)渗透数学思想,数学方法。

数学高三总复习要抓得住“魂”,要通过复习,确实把握学科的基本思想.

目前的高考,强调对数学基础知识考查,在知识交汇点设计试题。还考查中学数学知识中蕴涵的数学思想与方法,而函数与方程思想、分类讨论思想、数形结合思想、化归与转化思想是贯穿了整个中学数学的各个章节,比如方程有解,求的取值范围。就可以转化为求关于的函数的值域问题。并且很多问题的解决都是在寻找等量关系,建立方程或方程组,利用方程思想,同时还须注意通性通法的训练,淡化特殊的技巧;而作为数学知识更高层次的抽象与概括,需要分章节在知识的发生,发展和应用过程中,不断渗透与总结,暗线变明线,渗透变明确。先认识数学思想与方法的作用,以问题为载体,以方法为杠杆,再想办法应用于解题,例如在不等式的解法一章,首先强调化归思想,即大多数的不等式最终都转化为一元一次或一元二次不等式,再强调等价转化,即常说到的等价组,包括函数定义域,运算的等价性等等,这样将资料中的分式不等式,简单的指数不等式,对数不等式,三角不等式,一块学习统一在数学思想前提中,便于很好的掌握,此外,可以开展讲座,集中学习数学思想与方法,加强理性认识,提高对数学学习的兴趣。

三.不断提高数学能力,特别是创新意识和实践能力

20xx年《考试说明》中特别强调考查学生的创新意识和实践能力,要适应现在考题的发展要求,在这一问题上必须加强,我的体会是:在平时教学中,要注重教学方式的选择和运用,一方面要创设问题情境,使学生了解数学知识的现实背景,认识数学与实际的联系;另一方面,要结合学生的生活实际,引导学生关注社会生活和身边的数学问题,把现实问题“数学化”,并加以解决,而“研究性课题”的学习是培养学生创新意识和实践能力的重要载体,通过“研究性课题”的学习,能引导学生关注生活、社会、经济、环境等方面,从中提炼出有一定社会价值背景的应用问题,促进学生不断追求新知、独立思考和增强数学运用意识,学会将实际问题抽象为数学问题。同时有意识地把教学过程施行为数学思维活动的过程,把能力的培养贯穿于每一节课,每一道题之中,有意识加强不同知识点的联系,选择一些开放性试题供学生探索,以发展学生思维,培养创新精神.

四、注重良好习惯的培养,增强学生的应试技巧

(一)注意学生的解题习惯。高考最终要通过解题见分晓,因此高三复习过程中,注意培养学生的良好解题习惯是非常重要的。培养学生的良好解题习惯应从以下几个方面入手:

第一、审题要准。最好采取二次读题的方法,第一次为泛读,大致了解题目的条件和要求;第二次为精读,根据要求找出题目的关键词语并挖掘题目的隐含条件。

第二、算理要清。在解题过程中不仅要明确每一种运算的基本步骤和方法,还要明确这种运算的条件是否具备。

第三、跨度要小。解题过程(尤其是运算过程)的衔接要紧密,不要跳步骤。

第四:考虑要周。切忌思考问题丢三落四、想当然、麻痹大意,在平时训练时,出现此种情形,除性格因素外,要特别考虑一下在知识和方法上的缺陷。

同时高考是在单位时间内完成指定的题目,因此解题的速度显得尤为重要,所以解题一定要有速度意识,用时多了即使对了也是“潜在丢分”,要让学生在单位时间内拿到该拿的分数,不要把遗憾留在考试结束之后,在平常做题时则需按三个步骤完成,(1)先做容易题(捡着做),所谓容易题就是看了题目只须简单的运算就能得到结果的题目;这样学生对整张试卷的情况就会心中有数,此时已有五六十分的分数到手了,心中有底,可以消除一些紧张的心理。(2)再做中档题,所谓中档题就是需要认真思考,可能会有一定的运算量的题目,(3)最后在看难题能写多少就写多少。在一些中难度的解答题中还要注意解本题靠后面的小题时可能会用到前小题的结论,或前小题不会证也可以“跳步解法”

(二)注意学生的书面表达。高考最终的成绩是由各个阅卷老师给出的总和,学生与老师的交流是通过书面表达的形式进行的,因此书面表达又显得至关重要,(1)表述要全。到了高三,相当一部分学生考试时,非智力因素造成的失分非常严重,主要表现在表述上,导致79分的解答题中,几乎没有一个题能得满分,问题主要在于表述不够全面,术语不够准确,逻辑性不够严密,运算失误较多等。因此要避免出现“会而不对,对而不全”的现象。(2)突出得分点和踩分点。不会做不等于得不到分数,在平时的教学中尤其在高考前的这一阶段,对于解答题有必要向学生说明阅卷的评分情况是按步得分,按点得分,让学生知道一个题目中哪些是关键步骤,必不可少的。真正不会做也可以将一些条件进行一些简单的变形,或许也能得到一两分,不要小看它,可能是“万人之上”,同时书写要求做到简洁、明了。如果在高三总复习中注意解决这一问题,它必是高考中分值的一个增长点。

五、关注学生的心理状态,树立学生的自信心

到了高三,学生都有十七八岁了,高考的重要性不言而喻,如果说他们不紧张,那是不可能的。因此首先教育学生要用一颗“平常心”去面对高考,临考前只是一门心思充分做好各种准备就可以了,不要想得太多。同时我发现有些学生表现出自信心不足,考前忧郁症,尤其是临近高考时更为突出。究其原因:在学校,由于高三考试的密度比高一、高二有所增大,此时考试的结果会影响到孩子的情绪;在家里,又免不了父母经常唠叨,并且始终重复着同样的一个话题,这样会有意无意地给孩子造成了压力,使学生感到家庭压力大,烦躁苦恼,缺乏自信。美国作家爱默生说过:“自信是成功的第一秘诀”。作为老师应心平气和地与学生共同分析考试的结果,好的总结经验以防学生的骄傲情绪,差的吸取教训,指出错误的根源,及时补漏,对学生心中的烦恼应及时的疏导和消除,对每一个优点,每一次进步,都应给予鼓励和赞扬,以此增强学生的自信心,使学生有一个健康的心理进行复习备考。

不当之处望提出宝贵的建议,谢谢!

高三数学复习计划书精选【二】

在一轮复习中,数学科目当年的《考试说明》和《教学大纲》是非常重要的。这些材料你可以通过网络或者通过老师来获取。找到之后要好好研究,不能大致浏览,要了解每一部分要求学习到怎样的程度。虽然这些工作老师也会进行,但是由于你比较了解自己的优势和不足,所以研究起来更加有针对性。对于这两部分材料的研究,最终目的是时即使丢开课本,头脑中也能有考试所要求的数学知识体系。

数学知识之间都有着千丝万缕的联系,仅仅想凭着对章节的理解就能得到高分的时代已经远去了。第一轮复习时要尝试把相关的知识进行总结,方便自己联系思考,既能明白知识之间的区别,又能为后面的专题复习做好准备。

一轮复习的重点永远是基础。要通过对基础题的系统训练和规范训练,准确理解每一个概念,能从不同角度把握所学的每一个知识点、所有可能考查到的题型,熟练掌握各种典型问题的通性、通法。第一轮复习一定要做到细且实,切不可因轻重不分而出现“前紧后松,前松后紧”的现象,也不可因赶进度而出现“点到为止,草草了事”的情况,只有真正实现低起点、小坡度、严要求,实施自主学习,才能真正达到夯实“双基”的目的。

运算能力是学习数学的前提。因为高考并不要求你临场创新,事实上,那张考卷上的题目你都见过,只不过是换了数字,换了语句,所以能不能拿高分,运算能力占据半边天。而运算能力并不是靠难题练出来的,而是大量简单题目的积累。其次,强大地运算能力可以弥补解题技巧上的不足。我们都知道,很多数学题目往往都有巧妙地解决方法,不过很难掌握。可那些通用性的方法,每个人都能学会,缺点就是需要庞大的计算量。再者,运算迅速可以节省时间,也不会让你因为粗心而丢分。此外,复习数学也和其它科目一样,也不能忽视表达能力和阅读理解能力的运用。

再有,本阶段要避免特难题、怪题、偏题,而是抓住典型题,每道题都要反复想,反复结合考点琢磨,最好是一题多解,一题多变,借助典型题掌握方法。

高三计划表理科篇二

每次试卷发下来,要认真分析得失,总结经验教训,尤其是将试卷中出现的错误进行分类,可如下分类:

第一类问题——遗憾之错。就是分明会做,反而做错了的题。比如说,“审题之错”是由于审题出现失误,看错数字等造成的;“计算之错”是由于计算出现差错造成的;“抄写之错”是在草稿纸上做对了,往试卷上一抄就写错了、漏掉了;“表达之错”是自己答案正确但与题目要求的表达不一致,如角的单位混用等。出现这类问题是最后悔的事情。要消除遗憾必须弄清遗憾的原因,然后找出解决问题的办法,如“审题之错”,是否出在急于求成?可采取“一慢一快”战术,即审题要慢、答题要快。“计算错误”,是否由于草稿纸用得太乱等。建议将草稿纸对折分块,每一块上演算一道题,有序排列便于回头查找。“抄写之错”,可以用检查程序予以解决。“表达之错”,注意表达的规范性,平时作业就严格按照规范书写表达,学习高考评分标准写出必要的步骤,并严格按着题目要求规范回答问题。

第二类问题——似非之错。记忆不准确,理解不透彻,应用不自如;回答不严密、不完整;第一遍做对了,一改反而改错了,或第一遍做错了,后来又改对了;一道题做到一半做不下去了等等。“似是而非”,就是自己记忆不牢、理解不深、思路不清、运用不活的内容。这表明你的数学基础不牢固,一定要突出重点,夯实基础。你要建立各部分内容的知识网络;全面、准确地把握概念,在理解的基础上加强记忆;加强对易错、易混知识的梳理;要多角度、多方位地去理解问题的实质;体会数学思想和解题的方法;当然数学的学习要有一定题量的积累,才能达到举一反三、运用自如的水平。

第三类问题——无为之错。由于不会,因而答错了或猜的,或者根本没有答。这是无思路、不理解,更谈不上应用的问题。在高三复习的第一轮中,不要做太难的题和综合性很强的题目,因为综合题大多是由几道基础题组成的,只有夯实了基础,做熟了基础题目,掌握了基本思想和方法,综合题才能迎刃而解。在高三复习时间较紧的情况下,第一阶段要有所为,有所不为,但平时考试和老师留的经过筛选的题目要会做,要做好。

高三计划表理科篇三

一、进行方法探索,提高学习效益。

方法的不妥有时会阻碍人的进步,有时是劳而无功。比如,一个自行车运动员,不论怎样努力都不可能骑到月亮上去,因为方法不对。寒假期间可以进行大胆的尝试,寻求适合自己的最佳学习方法和考试技巧,这些在平时是很难做到的。但是需要注意劳逸结合,养精蓄锐,保持有效的生活和学习规律,不打乱已经形成的“生物钟”。开学时,既保证了知识上心中有效,方法上得心应手,又保证了身心上精力充沛。

二、清理“知识账本”,适时查漏补缺。

到了寒假,无论从知识还是方法上都已经进行了复习,但都是以知识为载体,以章节为线索进行的,难免有支离分散的感觉,哪些地方已经掌握牢固,哪些地方尚待加强,必须一目了然。

整理自己的“知识账本”,可以按已经复习的知识顺序,兼用“尝试回忆”的方法,看是否能把有关知识回忆起来,一旦回忆不出来,就立即查课本或笔记,看是否是被忽视的环节或学习中的死角,作好记录,以便专项突破。在检查知识库时,不能省略,应全面仔细,看是否达到对知识的整体把握,有的知识虽有印象,但理解不深刻也应作好记录。这项工作应是“地毯式轰炸”,拉网式清理。只有这样,才能对所复习的知识掌握情况有个全面的了解。知道哪些已驾轻就熟,哪些还模棱两可,使得后续工作有目的性、针对性、实效性。

三、整理错题笔记,及时亡羊补牢。

由于题海战术的影响,许多同学,拼命做题,期望以多取胜,但常常事与愿违,不见提高,走访了一些同学,普遍觉得困惑他们的是有些错误很顽固,订正过了,评讲过了,还是重蹈覆辙。原因是没有重视错误,或没有诊断出错因,没有收到纠错的效果。

首先要求大家建立错题集,特别是那些概念理解不深刻、知识记忆失误、思维不够严谨、方法使用不当等典型错误收集成册,并加以评注,指出错误原因,经常翻阅,常常提醒,警钟长鸣,以绝后患。注意收集错题也有个度的问题,对于那些一时粗心的偶然失误,或一时情绪波动而产生的失误应另作他论。

错题病例也是财富,它有时暴露我们的知识缺陷,有时暴露我们的思维不足,有时暴露我们方法的不当,毛病暴露出来了,也就有了治疗的方向,提供了纠错的机会。因此,我们要利用寒假这个时机,加强对以往错题的研究,找到错误的原因,对易错点进行列举、归纳、对症下药、治标治本,使犯过的错误不再重犯,会做的题目不会做错。

四、抓住典型问题,争取融会贯通。

由于题海战术的影响,同学们都以做多少套练习来衡量复习的投入度,殊不知有的练习属于同一层次上的重复劳动,有的还会形成负迁移,重点得不到强化。所以必须抓住典问题进行钻研的力度,扩大解题收益,提高能力层次。

关于例题的处理,不能停留在有方法、有思路、有结果就认为大功告成,草草收兵,曲终人散,就太可惜了。抓住一些典型问题,借题发挥,充分挖掘它的潜在功能。具体的就是解题后反思。反思题意,训练思维的严谨性;反思过程与策略,发展思维的灵活性;反思错误,激活思维的批判性;反思关系,促进知识串联和方法的升华。

另外,我们还要学会典型问题的引申变化:类比变化,有利于知识和方法的巩固,推广变化,有利于递进思维能力的发展;开放性变化,有利于创新能力的培养;应用性变化,有利于考生分析问题和解决问题能力的提高。

五、适量模拟练习,保持应试活力。

适当模拟非常必要,从中体验考试策略和方法,明确要求,发现存在问题,及时校正改进,保证战之必胜。

模拟考试需要高度重视,一方面,要营造仿真的考试环境,限时完成。另一方面,要先在正确率上下功夫,以稳取胜,当正确率得到保证以后,速度会自然而然地提上去的。还要调节考试策略,适当分配各部分试题的答题时间,并根据自己的具体情况进行调节,直至合理。同时要学会把握答题节奏,正确对待难题和容易题,把试卷内容分成三类,一是容易上手,运算量不大的先做,并确保正确;其二是有思路但运算或思维量较大,放在第二轮做;最后解答困难题,即使解不出也无怨无悔,所以合理分配,学会放弃很重要。

模拟时要重视检查,减少不必要的损失,检查时不仅要检查解题过程和结果,还要检查题意,防止答非所问。还要重视检验的方法,如概念检验、量纲检验、不变量检验、一题多解检验、逻辑检验、数形检验、重新验算检验等,多管齐下,提高正确率。

要在模拟考试中提高心理适应度,遇难不慌,遇易不骄,稳扎稳打,精益求精。需强调的是要控制模拟的量,不能漫无目的的天天考,否则会疲倦了,麻木了,效果不言自明。

时间上放假了,精神上不能放假,应该抓住这个契机,给自己充电,以崭新的面貌,迎接新的挑战。

高三计划表理科篇四

教学目标

解三角形及应用举例

教学重难点

解三角形及应用举例

教学过程

一.基础知识精讲

掌握三角形有关的定理

利用正弦定理,可以解决以下两类问题:

(1)已知两角和任一边,求其他两边和一角;

(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);

利用余弦定理,可以解决以下两类问题:

(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。

掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题.

二.问题讨论

思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论.

思维点拨::三角形中的三角变换,应灵活运用正、余弦定理.在求值时,要利用三角函数的有关性质.

例6:在某海滨城市附近海面有一台风,据检测,当前台

风中心位于城市o(如图)的东偏南方向

300km的海面p处,并以20km/h的速度向西偏北的

方向移动,台风侵袭的范围为圆形区域,当前半径为60km,

并以10km/h的速度不断增加,问几小时后该城市开始受到

台风的侵袭。

一.小结:

1.利用正弦定理,可以解决以下两类问题:

(1)已知两角和任一边,求其他两边和一角;

(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);2。利用余弦定理,可以解决以下两类问题:

(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。

3.边角互化是解三角形问题常用的手段.

三.作业:p80闯关训练

高三计划表理科篇五

高三的课一般有两种形式:复习课和评讲课,到高三所有课都进入复习阶段,通过高中数学复习,学生要能检测出知道什么,哪些还不知道,哪些还不会,因此在复习课之前一定要弄清那些已懂那些还不懂,增强听课的主动性。现在学生手中都会有一种高中数学复习资料,在老师讲课之前,要把例题做一遍,做题中发现的难点,就是听课的重点。

对高中数学预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;体会分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,提高思维和解决问题的能力。此外还要作好笔记,笔记不是记录而是将上述听课中的要点,思维方法等作出简单扼要的记录,以便复习,消化,思考。

高三数学选择题秒杀法

1.剔除法

利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

2.排除法

数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的选项,找到符合题意的正确结论.筛选法(又叫排除法)就是通过观察分析或推理运算各项提供的信息或通过特例,对于错误的选项,逐一剔除,从而获得正确的结论.

3.数形结合法

数形结合法是指在处理高考数学选择题问题时,能准确地将抽象的数学语言与直观的几何图形有机结合起来进行思考,通过“以形助数”、“以数辅形”,使抽象思维与形象思维相结合,从而实现化抽象为直观、化直观为精确,并达到简捷解决问题的方法。数形结合法在解决高考数学选择题问题中具有十分重要的意义。

4.综合法

当单一的解题方法不能使试题迅速获解时,我们可以将多种方法融为一体,交叉使用,试题便能迎刃而解.根据题干提供的信息,不易找到解题思路时,我们可以从选项里找解题灵感.

5.测量法

比如遇到几何选择题求角度的题,如果不会做,或者没时间做,只要你能根据标准图形进行用量角器测量,一般情况下也能做出正确答案,但这种方法一定要确定图示正确且为符合题设的标准图,否则量出来的答案就会出问题。

相关范文推荐