写心得体会是一种自我反省的机会,通过反思自己的行为和做事方式,可以发现自己的不足之处并加以改进。如果你正在写心得体会但遇到困难,不妨看看以下推荐的范文,或许能给你一些启发。
数学建模课程的心得体会(实用17篇)篇一
读数学建模是一项需要较高能力的学问,需要具备丰富的数学知识和逻辑思维能力。在我学习的过程中,我深刻认识到了数学建模的重要性以及在实际工作和生活中的应用价值。以下是我的读数学建模的心得体会。
作为一个计算机科班出身的学生,我很早就开始了接触数学建模。但在一开始的时候,我并没有真正理解什么是数学建模。直到在大学的选修课中系统地学习了一门《数学建模及应用》课程后,我才对数学建模有了更深入的认知和理解。
第二段:理解“建模”
“建模”的核心意思是将复杂的实际问题转化为数学模型,然后用数学语言描述该问题并进行数学分析。在实际的工作和生活中,我们要面对、研究的诸如市场营销、物流运输、气象环境、图像视频等不同领域的问题都可以通过“建模”的方式进行求解。
第三段:掌握数学和编程技能。
数学建模需要掌握扎实的数学功底,同时也要在编程技能上有所涉猎。这是因为数学建模过程中需要运用到很多数据分类和筛选、数据可视化、计算机程序的实现等技能。只有将数学和编程技能完美结合,才能为数学建模提供最有利的条件。
第四段:关注实际问题。
在理论知识的积累与技术能力的提升之外,数学建模中还需要关注实际问题。我们不能将理论和技术与实际问题划分开来。可行的“建模”问题是源于实际问题,因此,在发现实际问题的基础上,我们才能够有更清晰的目标和向实现目标的循序渐进的步骤。
第五段:学习和交流。
数学建模需要广泛学习和交流。我们要阅读相关领域的探讨和论文,获取更多的行业知识。同时,我们还要积极参加学术会议和交流活动,与其他学者和专家协同工作和深度探讨,交换经验和知识,并不断提升自己的建模能力。
在读数学建模的过程中,我也留下了许多经典案例和优秀论文,坚持探索科学问题的本质,发掘应用数学的潜力。数学建模是一个学习与实践并行、动态更新的过程,它将不断影响我们思考问题和解决问题的方式,让我们更好地懂得数学对人类社会发展的重要性。
数学建模课程的心得体会(实用17篇)篇二
数学建模是一种解决实际问题的方法。而实现数学建模需要用到建模算法。下面我将分享我的数学建模算法心得体会,这些体会是在建模过程中得出的。
数学建模算法是如何实现数学建模的技术手段。在实践中,数学建模算法是实现建模的关键手段。数学建模算法需要以系统的思维和熟练的数学运算能力为基础,结合实际问题的具体情况进行分析,运用计算机技术进行模拟验证和参数优化。在实现数学建模过程中,算法的选择、建模的过程和优化的方法都需要注意。
在数学建模算法的选择中,首先需要考虑实际问题的需求以及建模算法的可行性。在建模算法方面,常用的算法有多种类型,包括统计算法、优化算法、分类算法等。同时在实现数学建模过程中,需要充分考虑问题的特殊需求和计算效率的问题。在算法方面,实现数学建模的算法包括传统的数学统计方法、最优化方法和神经网络等。
在数学建模算法的建模过程中,需要深入掌握数学建模的基本思想和理论,以此做好建模的各项工作。针对不同的实际问题,建模的过程也是不同的。在建模过程中,需要对问题进行分析、数据收集、建立数学模型和模拟仿真等。在实现数学建模的过程中,建立数学模型的难度和复杂度也是需要注意的。此时,需要具有深入的学术背景,运用相关的数学方法,才能解决实际问题。
在数学建模算法的优化方面,需要结合实际问题情况和计算机技术,运用各种技术手段对算法进行调整和优化。从算法细节的操作上进行优化,需要考虑算法的效率、准确性和可靠性等方面。同时,在实现数学建模中,需要充分利用计算机的高速计算及其他技术手段,对算法进行实现、调试和优化。
第五段:结语。
数学建模算法是解决实际问题的重要技能。在实现数学建模中,需要充分发挥数学思维和技术手段的作用,结合具体问题,正确选取算法,做好建模的各项工作和优化的过程。此外,还需放眼未来,不断更新自己的算法知识、拓展解决实际问题的思维方式,将数学建模创新和应用推向更高的层次。
数学建模课程的心得体会(实用17篇)篇三
一年一度的全国数学建模大赛在今年的x月x日上午8点拉开战幕,各队将在3天72小时内对一个现实中的实际问题进行模型建立,求解和分析,确定题目后,我们队三人分头行动,一人去图书馆查阅资料,一人在网上搜索相关信息,一人建立模型,通过三人的努力,在前两天中建立出两个模型并编程求解,经过艰苦的奋斗,终于在第三天完成了论文的写作,在这三天里我感触很深,现将心得体会写出,希望与大家交流。
1.团队精神:团队精神是数学建模是否取得好成绩的最重要的因素,一队三个人要相互支持,相互鼓励。切勿自己只管自己的一部分(数学好的只管建模,计算机好的只管编程,写作好的只管论文写作),很多时候,一个人的思考是不全面的,只有大家一起讨论才有可能把问题搞清楚,因此无论做任何板块,三个人要一起齐心才行,只靠一个人的力量,要在三天之内写出一篇高水平的文章几乎是不可能的。
2.有影响力的leader:在比赛中,leader是很重要的,他的作用就相当与计算机中的cpu,是全队的核心,如果一个队的leader不得力,往往影响一个队的正常发挥,就拿选题来说,有人想做a题,有人想做b题,如果争论一天都未确定方案的话,可能就没有足够时间完成一篇论文了,又比如,当队中有人信心动摇时(特别是第三天,人可能已经心力交瘁了),leader应发挥其作用,让整个队伍重整信心,否则可能导致队伍的前功尽弃。
3.合理的时间安排:做任何事情,合理的时间安排非常重要,建模也是一样,事先要做好一个规划,建模一共分十个板块(摘要,问题提出,模型假设,问题分析,模型假设,模型建立,模型求解,结果分析,模型的评价与推广,参考文献,附录)。你每天要做完哪几个板块事先要确定好,这样做才会使自己游刃有余,保证在规定时间内完成论文,以避免由于时间上的不妥,以致于最后无法完成论文。
4.正确的论文格式:论文属于科学性的文章,它有严格的书写格式规范,因此一篇好的论文一定要有正确的格式,就拿摘要来说吧,它要包括6要素(问题,方法,模型,算法,结论,特色),它是一篇论文的概括,摘要的好坏将决定你的论文是否吸引评委的目光,但听阅卷老师说,这次有些论文的摘要里出现了大量的图表和程序,这都是不符合论文格式的,这种论文也不会取得好成绩,因此我们写论文时要端正态度,注意书写格式。
5.论文的写作:我个人认为论文的写作是至关重要的,其实大家最后的模型和结果都差不多,为什么有些队可以送全国,有些队可以拿省奖,而有些队却什么都拿不到,这关键在于论文的写作上面。一篇好的论文首先读上去便使人感到逻辑清晰,有条例性,能打动评委;其次,论文在语言上的表述也很重要,要注意用词的准确性;另外,一篇好的论文应有闪光点,有自己的特色,有自己的想法和思考在里面,总之,论文写作的好坏将直接影响到成绩的优劣。
6.算法的设计:算法的设计的好坏将直接影响运算速度的快慢,建议大家多用数学软件(mathematice,matlab,maple,mathcad,lindo,lingo,sas等),这里提供十种数学建模常用算法,仅供参考:
(1)蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)。
(2)数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用matlab作为工具)。
(3)线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用lindo、lingo软件实现)。
(4)图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)。
(5)动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)。
(6)最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)。
(7)网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)。
(8)一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)。
(9)数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)。
(10)图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用matlab进行处理)。
数学建模课程的心得体会(实用17篇)篇四
数学建模作为一种综合性的能力与技术,近年来深受大众的关注与推崇。作为一名数学爱好者,我对数学建模这个领域也产生了浓厚的兴趣。在阅读关于数学建模的相关书籍、学习课程与参加各类竞赛的过程中,我深刻地领悟到了数学建模的种种魅力,也汇总了一些读数学建模的心得与体会。
第二段:学习经验。
为了更好地理解数学建模,我通过网上课程等不断学习。由于数学建模这个领域广泛涉及到的知识面十分广泛,所以学习的内容也十分繁琐。在学习的过程中,我力求将各个专业领域的知识以及各种方法融合在一起,取长补短,做到融会贯通。同时,也需要不断地与比赛、挑战赛等交流中,去检验自己的知识水平,并不断地提高自己的学习能力。
第三段:实践体会。
学习归来,我开始了自己的实践之旅。在应对数学建模的挑战的过程中,我逐渐意识到模型的准确度与应用性是非常重要的。想要达到这点,必须不断地加强数学知识的学习,提高自己的实际操作能力。另外,更加注重分析真实场景与数据,了解不同数据之间的关系与差异,并运用不同的数据分析方法,以保证模型的精度与可靠性。
第四段:对未来的研究目标。
虽然我在数学建模的学习与实践中有了一定的收获,但我深知自己仍是一个初学者,未来的路还有很长。因此,我计划在未来的学习与实践中,更加注重对数学建模理论的深度探究,从更加基础的角度出发去分析模型,从而更好地将理论运用于实践。另外,我也将继续参加各种数学建模竞赛,不断挑战自己,提高自己的技能水平。
第五段:总结。
回首自己的数学建模之路,我深深体会到数学建模的魅力与难度。在实践过程中,我不断地学习、尝试与挑战自己,才有了今天的成果。未来,我会继续深入学习、实践,不断提升自己,让数学建模这个宝藏般的领域,能够不断地被挖掘、发现链梢,为人类社会提供更多的发展动力。
数学建模课程的心得体会(实用17篇)篇五
数学建模是现代科学的一项重要方法,通过运用数学工具和技巧去研究和解决现实生活中的问题。在学习和应用过程中,我逐渐体会到数学建模的奇妙之处。本文将介绍我在数学建模入门过程中的学习心得和体会。
第二段:培养分析问题和抽象思维能力。
在数学建模中,首先要学会分析问题。通过深入了解问题的背景和要求,把问题转化为数学形式。这个过程需要我们对问题进行细致准确的分析,找出问题的关键点和因素。同时,要培养抽象思维能力,将实际问题转化为适合数学工具和模型的形式。在这个过程中,我学会了独立思考和合理抽象,逐渐提升了自己的问题解决能力。
第三段:选择合适的数学模型和方法。
在解决实际问题时,选择合适的数学模型和方法很关键。不同的问题需要不同的数学模型去解决。我们需要学会对不同问题的特点和需求进行分析,选取适当的数学工具和模型。在刚开始学习的时候,我常常会迷失在选择合适模型的过程中。但是通过大量的练习和经验积累,我逐渐熟悉了各种常用的数学模型,并学会了运用它们解决实际问题。
第四段:计算和模拟结果的分析与验证。
在建立了数学模型之后,需要进行计算和模拟得出结果。这一步骤需要我们熟练掌握相关的计算工具和软件,并对结果进行分析和验证。在实际问题中,模型的结果是要用来指导实际操作的,因此,我们要对结果的可行性和合理性进行评估。有时候,结果并不尽如人意,这时候就需要对模型进行优化和改进。通过不断地对结果进行分析和验证,我学到了数据处理的技巧和方法,提高了自己的模型分析能力。
第五段:团队合作与沟通能力的培养。
在数学建模中,团队合作和沟通是非常重要的。因为正常的科学研究往往需要多个学科的知识来支撑。在团队合作中,我们需要互相协作、相互支持,共同解决问题。同时,我们还要学会用简洁清晰的语言来表达自己的观点和想法。通过和团队成员的沟通和交流,我们可以借鉴和吸收他人的观点和经验,提升自己的能力。在数学建模的过程中,我学到了团队合作和沟通的重要性,使自己的工作效率得到了很大的提升。
结尾:
通过数学建模的学习和实践,我深刻认识到数学建模的重要性和广泛应用性。数学建模不仅可以提高我们解决实际问题的能力,还可以培养我们的分析和抽象思维能力,提高我们的团队合作与沟通能力。数学建模是一门既有理论深度又有实践研究价值的学科,学习和应用数学建模是我们培养综合素质、提高综合能力的重要途径之一。相信通过不断地学习和实践,我在数学建模方面的能力会不断提升,为解决更加复杂的实际问题做出更大的贡献。
数学建模课程的心得体会(实用17篇)篇六
数学建模是一种将现实世界问题抽象为数学模型并解决的方法。在我学习数学建模的过程中,我深刻体会到了数学建模的重要性以及它对我的启发。以下是我对数学建模入门的心得体会。
首先,数学建模对培养解决问题的能力非常有帮助。在进行数学建模的过程中,我们需要将现实世界的问题进行抽象,并找到合适的数学模型来描述问题。这个过程需要我们运用数学知识,思考问题的本质以及可能的解决方法。通过数学建模,我学会了从一个更广阔的角度去看待问题,并且训练了提出合理问题的能力。这对我今后解决各种问题都大有帮助。
其次,数学建模的过程具有启发性。在进行数学建模的过程中,我们需要提出假设,并根据现有的数据或问题进行猜测和推论。这个过程让我意识到,数学不仅仅是学习和应用已经存在的知识,更是一种探索和发现新知识的工具。通过进行数学建模,我学会了怀疑和质疑已有的知识,思考问题的本质并追求更好的解决办法。
另外,数学建模也锻炼了我团队合作的能力。数学建模通常是一个集体的工作,需要团队成员之间的密切合作和有效的沟通。在我参与数学建模项目时,我和团队成员们一起分工合作,各自发挥所长,并共同完成了一个完整的数学建模项目。这个过程中我收获了很多宝贵的团队合作经验,学会了倾听他人的意见和协调各方面的资源。这对我今后的团队合作能力的培养起到了积极的影响。
此外,数学建模也体现了数学在现实生活中的广泛应用。通过数学建模,我们可以研究各种现实问题,从而为决策提供更加科学全面的依据。数学建模可以被应用在社会生活、经济管理、工程技术等各个领域。学习数学建模让我认识到数学的重要性,并发现数学在实际应用中的价值和意义。这激发了我更深入学习数学的热情,并为将来的职业规划提供了更多的可能性。
最后,数学建模的学习也让我对自己的未来有了更明确的规划。通过数学建模,我发现自己对于解决现实问题的兴趣和能力较强。我决定将来继续深入学习数学建模,并将其作为自己的职业发展方向。数学建模的学习经历让我对自己未来的方向和目标有了更深入的认识,并为我未来的职业发展提供了更清晰的指引。
总之,数学建模是一种非常有用并且有挑战性的学习方法。通过学习数学建模,我培养了解决问题的能力,锻炼了团队合作的技能,发现了数学在现实生活中的广泛应用,并且对自己的未来有了更明确的规划。我希望未来能够继续深入学习数学建模,并运用数学建模的方法去解决实际问题,为社会的发展做出一些贡献。
数学建模课程的心得体会(实用17篇)篇七
数学建模作为一门综合性学科,涉及多种学科交叉,对学子们的综合素质要求较高。通过参加数学建模竞赛,我深刻体会到了数学建模的重要性和意义。在数学建模中,我不仅获得了学科知识的拓展,还提高了解决实际问题的能力,培养了合作精神和创新思维。以下是我在学习和实践中的心得体会。
第二段:培养综合能力。
数学建模竞赛注重学生的综合能力培养,这对学子们来说是一个很好的锻炼机会。在这个过程中,我们不仅需要熟练掌握数学知识,还要懂得如何将这些知识应用到实际问题中,并用合适的模型进行建立和求解。数学建模要求我们运用数学的思维方式来分析和解决问题,这就要求我们培养逻辑思维能力和动手能力。同时,通过与队友合作,我们也能学到更多的知识,并且从中相互借鉴和学习。
第三段:拓宽学科知识。
在参加数学建模中,我不仅获得了对数学科学的更深入理解,还拓宽了自己的学科知识。数学建模研究的范围广泛,既有数学的运算和推理,又有物理、化学、经济等多个学科的交叉。在解决问题的过程中,我需要跨越学科的边界,通过多学科的知识来深入分析问题,从而提出合适的解决方案。这样的学习方式让我对多个学科的融会贯通有了更深的体会,也拓宽了我对知识的理解。
第四段:创新思维的培养。
数学建模要求我们用创新的思维来解决问题,这不仅仅是在求解过程中提出新颖的思路和方法,更是在问题的处理中能够独立思考和独到见解。在实际的建模过程中,我们需要不断地思考问题的本质和内在规律,突破常规的思维模式。通过不同的思维方式和方法,我们能够找到更好的解决方案,并对问题的本质进行更深入的理解。这样的思维方式也会培养学生的创新能力,使我们在解决实际问题时能够有更加独到的见解。
第五段:培养合作精神。
在数学建模竞赛中,合作精神是必不可少的。一个优秀的团队需要成员之间的合作和默契,只有通过相互合作才能达到更好的效果。在实际建模过程中,每个队员都需要充分发挥自己的优势和专长,合理分工合作,共同完成任务。通过合作解决问题,在互相交流和合作中我们能够学到更多的东西,并且能够借助队友的意见和建议来提高自己的能力。合作精神不仅帮助我们解决问题,还让我们懂得了团队合作的重要性,在今后的学习和工作中也会给予我们帮助和启示。
总结:
通过参加数学建模,我不仅提高了自己的学科知识水平,还培养了综合能力、创新思维和合作精神。数学建模的学习和实践过程中,我收获了很多,也深刻体会到了数学建模的重要性和意义。我相信,通过数学建模的学习,我们能够更好地运用所学的知识解决实际问题,也能够在实践中不断提升自己的能力和水平。
数学建模课程的心得体会(实用17篇)篇八
数学建模作为一种应用数学的方法,不仅有助于理论的发展,也能在现实问题中提供有效的解决方案。在学习数学建模的过程中,我深感数学建模思想的重要性和灵活性。以下是我对数学建模思想的心得体会。
首先,数学建模思想注重问题的抽象和简化。在现实生活中,问题往往非常复杂,涉及大量的变量和因素。而数学建模的目的是通过数学模型来描述和分析问题,因此必须对问题进行适当的抽象和简化。这需要我们深入理解问题的本质,找出其中的关键因素和规律,并将其转化为数学符号和方程。通过这种抽象和简化的过程,我们可以将复杂的问题变为具体的数学模型,从而更容易进行分析和求解。
其次,数学建模思想强调问题的实际性和可行性。数学建模不仅仅是一种理论研究的工具,更是为解决实际问题而服务的方法。因此,在建立数学模型的过程中,我们必须考虑问题的实际背景和约束条件,确保所建立的模型能够真实地反映问题的本质,并能给出可行的解决方案。这需要我们具备广泛的知识背景和实际问题解决的能力,能够从多个角度和层面分析问题,提出合理的建模思路和方法。
第三,数学建模思想强调定量分析和数值计算。数学建模不仅仅是对问题进行描述和分析,更重要的是能够给出定量的结果。这要求我们在建立数学模型的过程中,注重变量的量化和参数的确定,确保所得到的结果能够具有实际意义。同时,数学建模也需要运用数值计算的方法,以解决复杂的数学问题和模型求解。这需要我们熟悉数值计算的基本原理和方法,具备良好的编程和计算机应用能力。
第四,数学建模思想重视模型的验证和调整。建立数学模型只是解决问题的第一步,更重要的是能够对模型进行验证和调整。因为在现实问题中,模型往往只能近似地反映问题的本质,存在误差和不确定性。因此,我们需要通过实际数据的收集和对比,对模型进行验证和调整,以提高模型的准确性和可靠性。这也需要我们具备良好的数据处理和统计分析能力,能够将理论性的模型与实际性的数据相结合,使模型更加符合实际情况。
最后,数学建模思想强调多学科的综合应用。在现实世界中,问题往往是复杂的、综合的,涉及多个学科和领域。因此,数学建模需要我们综合运用数学、物理、化学、生物等多个学科的理论和方法,来解决复杂的实际问题。这要求我们具备广泛的学科知识和跨学科的应用能力,能够灵活运用各学科的理论和方法,形成综合性的数学建模思维。
总之,数学建模思想是一种创造性的、实用的思维方式,对于解决复杂的实际问题具有重要的意义。通过学习数学建模,我深感数学建模思想的重要性和灵活性,它不仅提高了我对数学的理解和应用能力,更拓宽了我的知识面和解决问题的能力。在今后的学习和工作中,我将继续发扬数学建模思想,努力运用数学建模的方法和技巧,为解决实际问题做出更多的贡献。
数学建模课程的心得体会(实用17篇)篇九
数学建模是当今社会中越来越受重视的一门学科,通过数学方法解决实际问题,对于培养学生的逻辑思维、创新能力和实践能力起着重要的作用。在我参与数学建模的过程中,我深刻地体会到,数学建模不仅需要良好的数学基础,还需要坚持、努力和合作的精神,以及对实际问题的敏感性和独立思考的能力。
首先,数学建模需要良好的数学基础。在解决实际问题的过程中,需要运用到多种数学方法和模型,如概率统计、线性规划、微分方程等。而这些都要求我们具备扎实的数学基础。因此,在参与数学建模之前,我们要加强对数学基础知识的学习,同时要注重数学的实际应用,培养数学思维和解决实际问题的能力。
其次,数学建模需要坚持、努力和合作的精神。数学建模不是一蹴而就的过程,需要耐心和毅力去面对问题和困难。在实际操作中,往往会遇到数据收集不全、模型构建不准确等问题,这时候我们要保持积极乐观的心态,不断尝试和改进。同时,在团队合作中,我们要尊重他人意见,共同努力,形成优势互补的合作关系,才能最终完成一个优秀的数学模型。
此外,数学建模需要对实际问题的敏感性和独立思考的能力。在解决实际问题时,我们要对问题本身有敏锐的触觉,能够发现问题背后的本质和规律。同时,我们也要具备独立思考的能力,不仅仅依靠他人的意见和经验,而是要从自己的角度去分析和解决问题。只有这样才能在数学建模中取得令人满意的结果。
最后,数学建模是一个不断学习和提高的过程。在每一次实践中,我们都可以从中汲取经验,了解到不同领域、不同问题的特点和要点。同时,我们也要关注前沿的数学建模成果和方法,及时补充自己的知识和技能。通过不断学习和提高,我们才能在数学建模的道路上越走越远,取得更出色的成就。
总之,数学建模是一门需要我们付出努力和智慧的学科。通过我自己的经历,我深刻地认识到数学建模不仅仅是一种学习方法,更是一种锻炼自己解决实际问题能力的机会。在今后的学习和实践中,我将继续努力,加强自己的数学基础,培养坚持、努力和合作的精神,提高对实际问题的敏感性和独立思考的能力,不断学习和提高,以更好地应对数学建模所带来的挑战。
数学建模课程的心得体会(实用17篇)篇十
数学建模是一种将实际问题抽象为数学模型,并利用数学的工具和方法进行分析、推理和求解的过程。数学建模不仅需要对数学知识的掌握,还需要具备创新思维和解决实际问题的能力。在学习和实践过程中,我深刻体会到数学建模思想的重要性和应用的广泛性,本文将从问题引入、模型建立、解决方法、实验验证和心得体会等五个方面,对数学建模思想进行探讨。
首先,数学建模从问题引入开始。数学建模的过程始于对实际问题的分析和理解。在实际问题中,我们要抓住问题的关键点,明确问题的目标和需求。以一道典型的数学建模问题为例,如何合理安排电动车充电桩的位置,我们需要考虑用户的需求、充电桩的容量、充电时间和距离等因素。通过对问题的充分了解和分析,我们可以逐步建立数学模型。
其次,数学建模的核心是模型的建立。根据问题的特点和要求,我们可以选择不同的数学工具和方法来建立模型。模型的建立需要依靠合理的假设和适当的简化,同时考虑问题的实际性和可解性。在电动车充电桩的位置安排问题中,我们可以采用数学规划方法来建立模型,将充电桩的位置作为决策变量,用户需求和距离等因素作为约束条件,通过目标函数求解最优的方案。
接下来,数学建模需要选择合适的解决方法。根据模型的特点和问题的要求,我们可以运用数学工具和算法来求解模型。在电动车充电桩的位置安排问题中,我们可以利用线性规划、整数规划等方法来求解最优的位置方案。同时,我们还可以运用图论、网络流和模拟等方法来优化电动车的充电效率和服务质量。选择合适的解决方法是解决实际问题的关键。
然后,数学建模需要进行实验验证。在模型的建立和解决过程中,我们需要对结果进行合理性检验和实际性验证。在电动车充电桩的位置安排问题中,我们可以通过实地调查和数据分析来验证模型的可行性和有效性。通过与实际情况的对比和分析,我们可以进一步优化模型和解决方案。实验验证是数学建模的重要环节,可以保证模型和方法的可靠性。
最后,我在数学建模过程中提出了一些心得体会。首先,数学建模需要灵活运用数学知识和方法,具备创新思维和实际解决问题的能力。其次,数学建模需要团队合作和沟通交流,不同专业的人才共同参与,可以为问题的分析和解决提供多方面的视角和思路。再次,数学建模需要不断学习和探索,尝试新的数学工具和方法,不断提高自己的建模能力和解决问题的能力。
总之,数学建模是一种创新性的思维方式和解决实际问题的方法。通过数学建模,我们可以理解和分析复杂的实际问题,从而提出有效的解决方案。数学建模不仅可以促进数学知识的应用,还可以培养学生的创新思维和实际解决问题的能力。在今后的学习和工作中,我将继续探索和应用数学建模思想,为解决实际问题做出更多的贡献。
数学建模课程的心得体会(实用17篇)篇十一
计算机学院、软件学院级学生范娜(保送为华东师大研究生)。
9月的“高教杯”全国大学生数学建模竞赛已经过去一周多了,但是在我心中,计算机学院、软件学院三楼机房的灯光依然明亮,与队友三天三夜一起奋战的记忆依然清晰。
大二下学期,我院开设了《数学建模》选修课,由于每周只有一大节《数学建模》课程,再加上大二专业主干课程很多,任务重,除了老师课上的讲解,平日我很少有时间去温习和预习,更别说去结合实例进行建模了。那时的数学建模对于我来说就是一项很重要的任务,想要参加但是又不知道如何去完成。但是我认为数学建模是要求把模型用在实例中进行求解,最重要的就是创建模型的思路以及用语言去描述建模的过程和结果。
暑假快要来临时,学院进行参赛队员的选拔。参赛的选手由老师选拔和笔试选拔两部分组成。我是在笔试中被选拔出来的,现在想想,可能差一点就失去了参加数学建模的资格。我认为选拔还是参照笔试的成绩确定人选,从全方位考察学生的综合素质以及写作素质,这样才能更好的遴选出参赛选手,真正的做到给有创新思维的选手机会。
随后遇到的问题就是如何组队。我们组是由两个计算机专业和一个通信工程专业的学生组成,现在看来我们的组合有一定的偶然性,但更多的是一种合理性。首先,我们组中有两位女生,都擅长文字处理工作。应该明确的是,数学建模比赛最后递交给组委会的是一篇论文,也就是三天三夜的成果是以文字的形式出现在专家面前,文章中的文字排版、遣词造句至关重要。女生的特点之一就是细心,我们平时很注意收集专业的描述性词汇,因此论文词汇丰富、生动;第二,我们三个的思维出发点不一样,各有擅长的数学模型和知识能力,这就使我们在分别思考后有更多的内容可以讨论,增加建模的创新点,弥补彼此的不足;第三,我们三个的团队意识很强,彼此相互鼓励相互扶持。
同时,我还发现这样一个现象。由于时间紧张的关系,我们在培训的时候还没有完整的做过一道题目。也就是说在赛前大家主要进行理论上的准备,很少进行实践,这样就不能预见和发现小组在未来要进行的三天三夜中,究竟会遇到什么问题。针对这样的现象,我们小组用了三天的时间来进行比赛的模拟,每天做一道题。我们严格按照比赛的标准来要求自己:早上开始审题,组员分别思考一小时进行个人建模,其次三人一起讨论,然后编写论文,尽量把论文详细的写出来一部分直到一天结束。在模拟的过程中我们遇到很多的问题,比如时常会忘记讨论的初步模型和一些思路,因此我们在真正比赛的时候会对小组的的讨论进行录音,这样可以随时查看建模的思路。像这样的细节问题只能是在模拟中才能发现的,因此我认为在赛前进行比赛的模拟也是十分重要的。
接下来的三天三夜让我很难忘,我也有很多的感想。数学建模不是一般意义的解题,它允许你使用任何已有的东西,包括别人的'研究成果、图书资料、网络资源等等,但抄袭是不允许的。这些东西都需要证明,但要结合实例进行求解。在赛前word文档要熟练掌握,如果熟练程度不够,那么在建模比赛中,在整理文档这一项上就会浪费大量的时间与精力。光有录入速度是不够的,还要注意符号的书写,页码的插入,公式编辑器的熟练运用。还要有热情,要有认真、严谨的科学精神。当我们遇到我们不会的问题,需要用到新的知识时,我们会毫不犹豫的去学习这些知识,热情使我们不惧怕任何困难。
总之,这次建模竞赛不论是在知识面上还是在动手能力上都是对我的一种挑战,尽管一路走来十分辛苦,但是却使我多了一种充实自我的经历,多了一份创造的经验,多了一份坦然面对的自信,从而在前进的道路上走的更顺畅。在这个过程中,指导老师和我们一起度过炎炎夏日,也陪我们熬夜修改论文,非常辛苦,也向给予我们指导的各位老师和建模过程中关心我们的院领导表示衷心的感谢!
数学建模课程的心得体会(实用17篇)篇十二
数学建模是一个经历观察、思考、归类、抽象与的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生与选择的过程。它给学生再现了一种“微型科研”的过程。数学建模教学有利于激发学生学习数学的兴趣,丰富学生数学探索的情感体验;有利于学生自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于学生体会和感悟数学思想方法。同时教师自身具备数学模型的构建意识与能力,才能指导和要求学生通过主动思维,自主构建有效的数学模型,从而使数学课堂彰显科学的魅力。
为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。1.只有经历这样的探索过程,数学的思想、方法才能沉积、凝聚,从而使知识具有更大的智慧价值。动手实践、自主探索与合作交流是学生学习数学的重要方式。学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。
教师不应只是“讲演者”,而应不时扮演下列角色:参谋——提一些求解的建议,提供可参考的信息,但并不代替学生做出决断。询问者——故作不知,问原因、找漏洞,督促学生弄清楚、说明白,完成进度。仲裁者和鉴赏者——评判学生工作成果的价值、意义、优劣,鼓励学生有创造性的想法和作法。
为了让更多的同学了解数学建模,以便于本协会其他活动的顺利开展,在新生报到后,我们以高教社杯全国大学生数学建模竞赛为契机,通过宣传和组织,展开数学建模推广活动,向广大同学介绍数学建模相关知识,推广月的主要内容有:数学建模竞赛的介绍,数学建模所涉及的数学知识的介绍,数学建模相关软件的推广等。推广月活动的主要形式是:横幅、宣传材料、人工咨询等。
二、组织学生参加每年高教社杯全国大学生数学建模竞赛。
一年一度的高教社杯大学生数学建模竞赛将于9月15日左右如期举行,届时本协会将在相关指导老师的统一安排下,组织参赛队伍参加此次大赛,力争为我校争取荣誉。
三、年度会员招收工作。
在校社团管理部统一安排的时间,展开新会员招收工作,主要针对大一新生,并适量吸收大二学生,为协会增加一些新鲜力量,为协会的长足发展注入新的活力,招新活动将持续两到三天,在两校区同时进行。
四、干事招聘会。
在招新活动结束后,我们将在全校范围内的,由协会内部主要负责人组成评审团,通过公开招聘的形式,招收一批具有突出能力的新干事,组成一支新的工作人员队伍,为更好的开展协会活动和服务会员打下基础。招收新干事部门有:办公室、外联部、实践部、宣传部、科研部、网络信息部。
邀请本协会指导老师廖虎教授、余庆红、吴文海等,举办三到四次数学建模专题讲座,为广大同学提供一个了解数学建模、学习建模知识的平台。
六、会员大会。
拟于每年10月下旬和12月上旬,召开两次西安电力高等专科学校数学建模协会会员大会;会间将有请协会的辅导老师:廖虎教授、余庆红、吴文海等和其他兄弟协会。届时几位辅导老师将介绍数学建模的意义和魅力,并讲述大学生数学建模大赛的来历、发展、参赛形式和我校每届参与大赛的获奖情况等,让新会员更快的认识数学建模,并激发其学习数学的积极性,让其更好的参与以后协会的活动。
七、西安电力高等专科学校第二届大学生数学建模竞赛。
为进一步提升我校学生参与数学建模的积极性,提高数学建模的广泛参与性,我们拟于每年11月中旬举办西安电力高等专科学校第二届大学生数学建模竞赛;大赛将分为4组,针对不同层次的大学生评选出获奖作品。比赛结束之后将举行颁奖大会,为各个参赛组获奖选手颁发奖品。
为加深我校学生对数学建模知识的了解,帮助同学们参与到数学建模事业中去,我们拟邀请全国大学生数学建模竞赛获奖选手与协会会员一起交流比赛经验,并由获奖选手回答提问。
九、大学生数学建模协会网站的建设与信息服务。
在有关领导的关心帮助下,本协会的网站本着服务会员、交流心得、学习经验、传播知识的原则,对各种数学建模相关知识(论文、软件)进行发布,对校园内各种相关新闻信息进行报道,对各种同学们关心的数学问题进行讨论。本学期,我们将利用网站这一优势,我们将充分利用网络信息传递速度快的特点,在发挥网站宣传平台这一作用的基础上,着手举办一些时代性强、参与性强、灵活生动的网络活动。
数学建模课程的心得体会(实用17篇)篇十三
数学建模作为一门综合性学科,具有广泛的应用领域和深远的影响,对于提高解决实际问题的能力和培养创新思维具有重要意义。通过参与数学建模比赛和项目,我深刻地认识到数学建模的重要性,也积累了一些心得体会。下面我将结合个人经历,谈谈我在数学建模过程中的心得体会。
一、明确问题与方法。
在进行数学建模之前,首先要明确问题的面貌和要解决的目标,然后选择适合的方法进行分析和求解。在这个过程中,我们要善于抓住问题的关键点,理清问题与已有知识的联系,避免偏离主题和走入死胡同。同时,我们也要善于借鉴已有的数学工具和模型,不断开拓创新。
在一次模拟城市交通拥堵的建模比赛中,我意识到对于这个复杂的问题,单纯的数学模型是远远不够的。所以,我结合地理信息系统(GIS)和传感器技术,将城市道路分隔成小区域,通过收集实时的交通数据,建立起更为精确和实用的交通拥堵模型。这一方法不仅使得模型具有了更高的可靠性和准确度,也增加了我们对解决问题的信心。
二、合理假设与模型构建。
在进行数学建模时,我们往往需要根据实际情况进行一些合理的假设,以简化复杂的问题和推动建模的进程。但是,这些假设必须是合理和可行的,不能过于片面或离实际太远。同时,在构建模型时,我们也要尽量选用简单而有力的数学工具,以便于计算和分析。
在解决一个涉及医学影像分析的问题时,我们需要对医学影像进行处理和分析,还要设计出一个能够自动识别和分析影像的数学模型。我所参与的团队深入了解医学影像学,分析了不同的影像特征,并基于传统的神经网络模型构建了一个高效的医学影像分析模型。在模型的构建过程中,我们注意了计算和实施的可行性,将模型的复杂度降低到合理的范围内,并采用了一些有效的算法来提高模型的精确性和准确度。
三、数据分析与结果验证。
在数学建模中,数据的分析和结果的验证是非常重要的环节。通过对数据的分析,我们可以揭示问题的本质和规律,进而得出解决问题的方法和结论。而结果的验证则是模型可靠性和精确性的检验,也是对我们解决问题的能力和方法的评判。
在一次银行信用评估的建模过程中,我们基于大量的历史交易数据,通过建立一套信用评估模型,对客户的信用情况进行分析和预测。在对模型进行验证时,我们通过对部分客户进行筛选和测试,对比模型预测的结果与实际情况,发现模型的准确度达到了90%以上。这使我们对模型的有效性和可靠性有了更加深刻的认识,并为进一步完善和推广模型提供了依据。
四、团队合作与学习。
数学建模不仅仅是一个人的事情,更是一个团队的合作。通过和其他队员的合作,我们可以相互学习和借鉴彼此的经验和思维模式,在解决实际问题的过程中形成协同效应。同时,团队合作也是一个学习的过程,通过和队友的交流和探讨,我们可以不断拓宽思维,并且从对方身上学到更多的知识和技能。
在一次研究森林生态系统的建模项目中,我和团队成员们共同制定了研究方案和实验设计,并分工协作。通过团队的合作,我们不断从实验数据中总结经验,进行模型验证和修正,并最终成功地建立了一个能够模拟和预测森林生态系统变化的多元模型。这个成功的案例不仅使我们对数学建模有了更深入的认识,也让我们领悟到团队合作的重要性和价值。
五、不断学习和总结。
在数学建模的过程中,我们要不断学习和总结,积累经验和提高能力。只有不断的学习和实践,我们才能够更好地适应和解决不同领域的实际问题,并在数学建模的道路上不断成长。
总的来说,参与数学建模是一次很有收获和意义的经历。通过这次经历,我不仅提高了数学建模的能力和素养,也深刻领悟到了科学研究的重要性和技术创新的意义。我相信,在未来的学习和工作中,我会更加努力地学习和实践,用数学的力量为解决实际问题做出更大的贡献。
数学建模课程的心得体会(实用17篇)篇十四
计算机学院、软件学院级学生吴瑞红(保送为我院研究生)。
大一时听学长们讲数学建模竞赛,对他们有一种敬佩,对数学建模竞赛有一种渴望。这种渴望不是一定要拿个什么奖项,而是想体验一下这三天三夜的竞赛,提高自身能力。意想不到的是,我们荣获了全国一等奖。我们心里充满惊喜的同时也充满了感激。感谢老师和同学对我们悉心指导和鼓励;感谢学院和学校给我们提供物质和精神的帮助和支持。
一直以来,我们都认为我们是很平凡的一组。第一,我们都没有深入学习过数学建模,短短的个把月的学习时间让我们始终有点怀疑自己能否真正了解它。尽管,我们不是信心十足地开始了,但我们却没有放弃。我们坚持着从最基本的开始,一点点攻破。我们抱着能提高自己,学习知识的想法去对待这场竞赛。或许,正是我们这种平常心让我们把自己发挥得淋漓尽致,才有了最后的结果。有心栽花花不开,无心插柳柳成荫,这让我们明白一个道理:遇事不可太急功近利,那样可能会适得其反。
第二,我想说的是我们的团队。我们其实仅仅是临时组的一个队,甚至我们之间有的几乎没说过几句话,但这并不影响我们的合作。我们在一开始便进行了分工:选组长也是一个很重要的问题:他的作用就相当于计算机中的cpu,是全队的核心,如果一个队的leader不得力,往往影响一个队的正常发挥。由于身为班长的我具备了一定组织、协调和较强的决策能力以及对matlab较浓厚的兴趣,决定由我担任小组组长并负责编程。我的队友中有对数学比较感兴趣的于是由她负责进行算法的分析,另外一个队友负责论文。组长应该有较强的决策能力,在大家出现分歧时能果断地拿出主意,当队中有人信心动摇时(特别是第三天,人可能已经心力交瘁了),组长应发挥其作用,让整个队伍重整信心,否则可能导致队伍的前功尽弃。注意有人说,团队需要磨合期,这是毋庸置疑的,但是如果你真的把自己当成其中的一员,努力融入其中,你会发现那原来是一件很简单的事情。记得,你们是一个团队,要相互支持,相互鼓励,要有相容的胸襟,要有合作的意识,要时刻记得你们是荣辱与共的,不要只注重个人得失。在比赛时,一个人的思考是不全面的,大家要一起讨论才有可能把问题搞清楚,因此无论做任何板块,三个人要齐心才行,只靠一个人的力量,要在三天之内写出一篇高水平的文章几乎是不可能的。
数学建模课程的心得体会(实用17篇)篇十五
计算机学院、软件学院级学生张可(保送为南京航天航空大学研究生)。
若能将痛苦变成快乐,这世上便不再有痛苦。
人们都羡慕象牙塔里的生活丰富多彩,其实置身其中的我们自己知道,终日为学业奔波并不是那么令人快乐,特别是一边翻看着古旧的被虫蛀过的书籍,一边为自己的所学能否用于日后的工作而忧虑的时候。
时下流行空虚和郁闷,是日无聊,我也空虚和郁闷一把。不经意间在网上发现了数学建模竞赛正在报名中,我想反正也不会影响学业,或许还会有促进,就决定试一试。也许就是这不经意的一次尝试,改变了我的一生。
我曾怀着对数学巨大的热情在知识的海洋遨游,但枯燥冗繁的计算令我心灰意冷,这些计算能有什么作用?令我耗费巨大精力的学习,究竟能给我带来什么?同学们有的做社会实践、有的参加学生会,而我为了学习每天往返于自习室和宿舍,难道就为学成一个百无一用的书呆子?不!我要抓住这次竞赛的机会,在自己的大学生活中有所展现。
直到暑期培训,我才对数学建模有了深入的了解。我被其中蕴含的丰富知识倾倒,从不曾想到小小的数字竟然能将纷繁的各种事物演绎的如此精彩,真是太奇妙了!这一次我是真正的投入了,不再有对未来的忧虑,不再有对枯燥计算的厌恶,不再有迷茫时的踌躇,我像一只看到灯塔的船,飞速驶向目的地。
暑期培训的是一些基础知识,我又自己学习了一个暑假,感觉脑子里像个杂货铺,乱乱的理不出头绪。开学后我们在老师的带领下开始了实战训练,渐渐的,我脑中的知识被“应用”这条主线项链般的穿了起来,我对自己所学的知识有了更系统的了解,有的知识联系起来想一想,还会有更多的收获,我对这种学习有了更深的兴趣,虽然即将参加保送生的复试,但现在我是欲罢不能了。每天我都忙忙碌碌,上课、自习、图书馆、微机室,虽然没空去逛街、买衣服,但我心里依然很高兴、很充实。
参加竞赛是一个很大的考验,我是个从来都按时作息的人,熬一夜下来还真是很难受。除了身体的不适,我还得应付心理的压力。随着复试的日益临近,我却无法复习,这可是很危险的,万一…我不敢想,但我知道:自古华山一条路!
呵呵,功夫不负有心人!有投入就有回报。回想以前与枯燥计算打的交道,此次不知复杂多少倍,然而我却毫不以为苦。是数学建模充实了我的生活,是数学建模帮我把痛苦变成了快乐,是数学建模让我的大学生活焕发光彩!真心感谢带我进入数学建模神圣殿堂的老师,是您让我发现了如此精彩的世界;感谢共同奋战的队友们,你们的友谊让我充满力量;感谢数学建模,你是我生活中新的起点,相信我会有更美好的明天!
数学建模课程的心得体会(实用17篇)篇十六
第一段:数学建模的意义和重要性(200字)。
数学建模是一种通过数学方法解决实际问题的学科,被广泛运用于科学研究和工程实践中。在我的学习和实践中,我深切体会到数学建模的重要性和应用广泛性。数学建模可以帮助我们认识到实际问题中的数学模式和规律,同时也为我们提供了有效的解决问题的方法和手段。因此,掌握数学建模技巧对于我们的学习和未来的发展非常关键。
第二段:数学建模的基本流程和方法(200字)。
数学建模的基本流程通常包括问题分析、模型建立、模型求解和模型验证四个步骤。首先,我们需要对问题进行全面的分析,了解问题背景、目标和约束条件。其次,我们需要根据问题的特点选择合适的模型进行建立,常用的模型包括线性规划模型、动力系统模型等。接着,我们可以通过数学方法对模型进行求解,如差分方程、微分方程、优化算法等。最后,我们需要对求解结果进行验证和分析,确保模型的有效性和可靠性。在这个过程中,数学建模者需要综合运用数学、计算机和其他学科的知识,具备抽象思维和逻辑推理能力。
第三段:数学建模的技巧和方法(200字)。
在数学建模过程中,我积累了一些有效的技巧和方法,能够帮助我更好地解决实际问题。首先,我发现对问题进行细致的分析和拆解,将问题转化为数学模型的过程非常关键。这需要我们对问题的本质有深刻的理解和洞察力。其次,我学会了充分利用数学工具和软件进行模型求解,如MATLAB、Python等。这些软件可以大大提高建模者的工作效率和准确性。此外,我还发现与他人的合作和讨论对于解决复杂问题非常有帮助,不仅可以提供不同的思路和角度,还可以互相纠正和补充。
第四段:数学建模的挑战和困难(300字)。
尽管数学建模具有广泛的应用前景和丰富的知识体系,但在实际操作中也面临一些挑战和困难。首先,数学建模需要我们掌握坚实的数学基础知识,如高等数学、概率论、统计学等。这些知识对于初学者来说可能存在困难,需要我们不断学习和提高。其次,数学建模需要我们具备良好的抽象思维和逻辑推理能力,这也是一个需要培养和提高的过程。另外,数学建模中的模型选择、参数设定和结果验证等问题也经常会遇到一些困难和挑战。因此,我们需要坚持不懈地努力学习和实践,不断提高自己的能力。
第五段:数学建模的应用前景和个人收获(300字)。
数学建模具有广泛的应用前景,可以应用于经济学、物理学、生物学等众多领域。通过数学建模,我们能够更好地增强解决实际问题的能力,培养创新思维和动手能力。我在数学建模的学习和实践中,不仅提升了自己的数学水平,还培养了自己的团队合作和沟通能力。同时,我也更深刻地认识到数学的普适性和重要性,为未来从事科研工作打下了坚实的基础。因此,数学建模不仅是一门学科,更是一种思维方式和方法论,对于我们的学习和发展具有重要的意义。
总结:
通过数学建模的学习和实践,我认识到了数学建模的意义和重要性,了解了数学建模的基本流程和方法,同时也积累了一些解决实际问题的技巧和方法。尽管数学建模面临一些困难和挑战,但通过不断学习和实践,我们可以不断提高自己的能力,应用数学建模解决更加复杂和实际的问题。数学建模具有广泛的应用前景,可以为我们的学习和未来的发展带来广阔的机遇和挑战。因此,我们应该加强数学建模的学习和实践,不断提高自己的能力,为解决实际问题做出更大的贡献。
数学建模课程的心得体会(实用17篇)篇十七
刚参加工作那阵子就接触到“建模”这个概念,也曾对之有过关注和尝试,但终因功力不济,未能持之以恒给力研究,也就一阵烟云飘过了一下罢了。
许校的讲座再次激起了我们对这个曾经的相识思考的热情。
同样一个名词,但在新的时代背景下许校赋予了其更多新的内涵。
首先是对“建模”的理解差异。那时更多的是一种短视或者说应试背景下的行为,“建模”的理解就是给学生一个固定的模式的东西,通过教学行为让学生接受而成为其解决问题的一种工具;而许校的“建模”更多的是一种动态的或者说是一种有型而又不可僵化定型的东西,应该是可以助力学生发展最终可以成为学生数学素养的一部分。
其次,对于如何建模我们可以看到更多不同。过去更多的是一种对数学模型简单重复的强化行为,显得单调而生硬;而许校的“建模”则更多的强调不同层面上引导学生通过“悟”、“辨”、“用”等环节,让学生立体式全方位的理解模型、建立模型,从而避免了过去那种“死模”而将学生“模死”的现象。
许校的“模”,强调应该是一个利于学生可发展的模,可以进入到无意识和骨子里,成为学生真正的数学素养,最终能够跳出模,从而达到模而不模的去形式化境界。
数学建模是一个经历观察、思考、归类、抽象与的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生与选择的过程。它给学生再现了一种“微型科研”的过程。数学建模教学有利于激发学生学习数学的兴趣,丰富学生数学探索的情感体验;有利于学生自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于学生体会和感悟数学思想方法。同时教师自身具备数学模型的构建意识与能力,才能指导和要求学生通过主动思维,自主构建有效的数学模型,从而使数学课堂彰显科学的魅力。
为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。 1.只有经历这样的探索过程,数学的思想、方法才能沉积、凝聚,从而使知识具有更大的智慧价值。动手实践、自主探索与合作交流是学生学习数学的重要方式。学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。
教师不应只是“讲演者”,而应不时扮演下列角色:参谋提一些求解的建议,提供可参考的信息,但并不代替学生做出决断。询问者故作不知,问原因、找漏洞,督促学生弄清楚、说明白,完成进度。仲裁者和鉴赏者评判学生工作成果的价值、意义、优劣,鼓励学生有创造性的想法和作法。