最新数学建模心得体会论文大全(20篇)

时间:2024-11-12 作者:雁落霞

写心得体会可以帮助我们更好地评估和提升自己的工作表现。以下是小编为大家精心收集的心得体会范文,欢迎大家参考阅读。

最新数学建模心得体会论文大全(20篇)篇一

数学建模是当今社会中越来越受重视的一门学科,通过数学方法解决实际问题,对于培养学生的逻辑思维、创新能力和实践能力起着重要的作用。在我参与数学建模的过程中,我深刻地体会到,数学建模不仅需要良好的数学基础,还需要坚持、努力和合作的精神,以及对实际问题的敏感性和独立思考的能力。

首先,数学建模需要良好的数学基础。在解决实际问题的过程中,需要运用到多种数学方法和模型,如概率统计、线性规划、微分方程等。而这些都要求我们具备扎实的数学基础。因此,在参与数学建模之前,我们要加强对数学基础知识的学习,同时要注重数学的实际应用,培养数学思维和解决实际问题的能力。

其次,数学建模需要坚持、努力和合作的精神。数学建模不是一蹴而就的过程,需要耐心和毅力去面对问题和困难。在实际操作中,往往会遇到数据收集不全、模型构建不准确等问题,这时候我们要保持积极乐观的心态,不断尝试和改进。同时,在团队合作中,我们要尊重他人意见,共同努力,形成优势互补的合作关系,才能最终完成一个优秀的数学模型。

此外,数学建模需要对实际问题的敏感性和独立思考的能力。在解决实际问题时,我们要对问题本身有敏锐的触觉,能够发现问题背后的本质和规律。同时,我们也要具备独立思考的能力,不仅仅依靠他人的意见和经验,而是要从自己的角度去分析和解决问题。只有这样才能在数学建模中取得令人满意的结果。

最后,数学建模是一个不断学习和提高的过程。在每一次实践中,我们都可以从中汲取经验,了解到不同领域、不同问题的特点和要点。同时,我们也要关注前沿的数学建模成果和方法,及时补充自己的知识和技能。通过不断学习和提高,我们才能在数学建模的道路上越走越远,取得更出色的成就。

总之,数学建模是一门需要我们付出努力和智慧的学科。通过我自己的经历,我深刻地认识到数学建模不仅仅是一种学习方法,更是一种锻炼自己解决实际问题能力的机会。在今后的学习和实践中,我将继续努力,加强自己的数学基础,培养坚持、努力和合作的精神,提高对实际问题的敏感性和独立思考的能力,不断学习和提高,以更好地应对数学建模所带来的挑战。

最新数学建模心得体会论文大全(20篇)篇二

数学建模作为一门综合性学科,具有广泛的应用领域和深远的影响,对于提高解决实际问题的能力和培养创新思维具有重要意义。通过参与数学建模比赛和项目,我深刻地认识到数学建模的重要性,也积累了一些心得体会。下面我将结合个人经历,谈谈我在数学建模过程中的心得体会。

一、明确问题与方法。

在进行数学建模之前,首先要明确问题的面貌和要解决的目标,然后选择适合的方法进行分析和求解。在这个过程中,我们要善于抓住问题的关键点,理清问题与已有知识的联系,避免偏离主题和走入死胡同。同时,我们也要善于借鉴已有的数学工具和模型,不断开拓创新。

在一次模拟城市交通拥堵的建模比赛中,我意识到对于这个复杂的问题,单纯的数学模型是远远不够的。所以,我结合地理信息系统(GIS)和传感器技术,将城市道路分隔成小区域,通过收集实时的交通数据,建立起更为精确和实用的交通拥堵模型。这一方法不仅使得模型具有了更高的可靠性和准确度,也增加了我们对解决问题的信心。

二、合理假设与模型构建。

在进行数学建模时,我们往往需要根据实际情况进行一些合理的假设,以简化复杂的问题和推动建模的进程。但是,这些假设必须是合理和可行的,不能过于片面或离实际太远。同时,在构建模型时,我们也要尽量选用简单而有力的数学工具,以便于计算和分析。

在解决一个涉及医学影像分析的问题时,我们需要对医学影像进行处理和分析,还要设计出一个能够自动识别和分析影像的数学模型。我所参与的团队深入了解医学影像学,分析了不同的影像特征,并基于传统的神经网络模型构建了一个高效的医学影像分析模型。在模型的构建过程中,我们注意了计算和实施的可行性,将模型的复杂度降低到合理的范围内,并采用了一些有效的算法来提高模型的精确性和准确度。

三、数据分析与结果验证。

在数学建模中,数据的分析和结果的验证是非常重要的环节。通过对数据的分析,我们可以揭示问题的本质和规律,进而得出解决问题的方法和结论。而结果的验证则是模型可靠性和精确性的检验,也是对我们解决问题的能力和方法的评判。

在一次银行信用评估的建模过程中,我们基于大量的历史交易数据,通过建立一套信用评估模型,对客户的信用情况进行分析和预测。在对模型进行验证时,我们通过对部分客户进行筛选和测试,对比模型预测的结果与实际情况,发现模型的准确度达到了90%以上。这使我们对模型的有效性和可靠性有了更加深刻的认识,并为进一步完善和推广模型提供了依据。

四、团队合作与学习。

数学建模不仅仅是一个人的事情,更是一个团队的合作。通过和其他队员的合作,我们可以相互学习和借鉴彼此的经验和思维模式,在解决实际问题的过程中形成协同效应。同时,团队合作也是一个学习的过程,通过和队友的交流和探讨,我们可以不断拓宽思维,并且从对方身上学到更多的知识和技能。

在一次研究森林生态系统的建模项目中,我和团队成员们共同制定了研究方案和实验设计,并分工协作。通过团队的合作,我们不断从实验数据中总结经验,进行模型验证和修正,并最终成功地建立了一个能够模拟和预测森林生态系统变化的多元模型。这个成功的案例不仅使我们对数学建模有了更深入的认识,也让我们领悟到团队合作的重要性和价值。

五、不断学习和总结。

在数学建模的过程中,我们要不断学习和总结,积累经验和提高能力。只有不断的学习和实践,我们才能够更好地适应和解决不同领域的实际问题,并在数学建模的道路上不断成长。

总的来说,参与数学建模是一次很有收获和意义的经历。通过这次经历,我不仅提高了数学建模的能力和素养,也深刻领悟到了科学研究的重要性和技术创新的意义。我相信,在未来的学习和工作中,我会更加努力地学习和实践,用数学的力量为解决实际问题做出更大的贡献。

最新数学建模心得体会论文大全(20篇)篇三

计算机学院、软件学院级学生范娜(保送为华东师大研究生)。

9月的“高教杯”全国大学生数学建模竞赛已经过去一周多了,但是在我心中,计算机学院、软件学院三楼机房的灯光依然明亮,与队友三天三夜一起奋战的记忆依然清晰。

大二下学期,我院开设了《数学建模》选修课,由于每周只有一大节《数学建模》课程,再加上大二专业主干课程很多,任务重,除了老师课上的讲解,平日我很少有时间去温习和预习,更别说去结合实例进行建模了。那时的数学建模对于我来说就是一项很重要的任务,想要参加但是又不知道如何去完成。但是我认为数学建模是要求把模型用在实例中进行求解,最重要的就是创建模型的思路以及用语言去描述建模的过程和结果。

暑假快要来临时,学院进行参赛队员的选拔。参赛的选手由老师选拔和笔试选拔两部分组成。我是在笔试中被选拔出来的,现在想想,可能差一点就失去了参加数学建模的资格。我认为选拔还是参照笔试的成绩确定人选,从全方位考察学生的综合素质以及写作素质,这样才能更好的遴选出参赛选手,真正的做到给有创新思维的选手机会。

随后遇到的问题就是如何组队。我们组是由两个计算机专业和一个通信工程专业的学生组成,现在看来我们的组合有一定的偶然性,但更多的是一种合理性。首先,我们组中有两位女生,都擅长文字处理工作。应该明确的是,数学建模比赛最后递交给组委会的是一篇论文,也就是三天三夜的成果是以文字的形式出现在专家面前,文章中的文字排版、遣词造句至关重要。女生的特点之一就是细心,我们平时很注意收集专业的描述性词汇,因此论文词汇丰富、生动;第二,我们三个的思维出发点不一样,各有擅长的数学模型和知识能力,这就使我们在分别思考后有更多的内容可以讨论,增加建模的创新点,弥补彼此的不足;第三,我们三个的团队意识很强,彼此相互鼓励相互扶持。

同时,我还发现这样一个现象。由于时间紧张的关系,我们在培训的时候还没有完整的做过一道题目。也就是说在赛前大家主要进行理论上的准备,很少进行实践,这样就不能预见和发现小组在未来要进行的三天三夜中,究竟会遇到什么问题。针对这样的现象,我们小组用了三天的时间来进行比赛的模拟,每天做一道题。我们严格按照比赛的标准来要求自己:早上开始审题,组员分别思考一小时进行个人建模,其次三人一起讨论,然后编写论文,尽量把论文详细的写出来一部分直到一天结束。在模拟的过程中我们遇到很多的问题,比如时常会忘记讨论的初步模型和一些思路,因此我们在真正比赛的时候会对小组的的讨论进行录音,这样可以随时查看建模的思路。像这样的细节问题只能是在模拟中才能发现的,因此我认为在赛前进行比赛的模拟也是十分重要的。

接下来的三天三夜让我很难忘,我也有很多的感想。数学建模不是一般意义的解题,它允许你使用任何已有的东西,包括别人的'研究成果、图书资料、网络资源等等,但抄袭是不允许的。这些东西都需要证明,但要结合实例进行求解。在赛前word文档要熟练掌握,如果熟练程度不够,那么在建模比赛中,在整理文档这一项上就会浪费大量的时间与精力。光有录入速度是不够的,还要注意符号的书写,页码的插入,公式编辑器的熟练运用。还要有热情,要有认真、严谨的科学精神。当我们遇到我们不会的问题,需要用到新的知识时,我们会毫不犹豫的去学习这些知识,热情使我们不惧怕任何困难。

总之,这次建模竞赛不论是在知识面上还是在动手能力上都是对我的一种挑战,尽管一路走来十分辛苦,但是却使我多了一种充实自我的经历,多了一份创造的经验,多了一份坦然面对的自信,从而在前进的道路上走的更顺畅。在这个过程中,指导老师和我们一起度过炎炎夏日,也陪我们熬夜修改论文,非常辛苦,也向给予我们指导的各位老师和建模过程中关心我们的院领导表示衷心的感谢!

最新数学建模心得体会论文大全(20篇)篇四

读数学建模课程是我大学三年级的必修课程,这门课程让我感受到了数学的实用性和严谨性,也让我深刻理解到数学在现实生活中的重要性。在这门课程中,我学习了数学模型的构建、求解和分析方法,我认为,这些知识对于我以后的学习和工作都有很大的帮助。

第二段:探究。

在学习数学建模的过程中,我发现,一个好的数学模型不仅要符合现实,还要有严谨的数学证明。因此,我学习了多种数学知识,包括微积分、线性代数、概率论与数理统计等,这些知识让我能够更好地构建数学模型,同时也能够更好地验证和分析结果。

第三段:发挥。

在实践建模的过程中,我发现,一个好的数学模型不仅需要有合适的数学公式,还需要有合理的数据支持。因此,我学习了如何获取和分析数据,并学会了使用MATLAB等计算工具对数据进行分析和可视化。这些工具不仅方便了我对数据的理解,还能够帮助我更好地展示数学模型的结果。

第四段:总结。

通过学习数学建模,我发现成功的模型需要具备以下特点:1、模型要符合现实;2、模型的数学表达式要严谨;3、模型需要有合理的数据支持;4、模型的结果需要有实际意义。这些特点相互为依存,缺一不可。同时,我也认识到,在数学建模中,灵活性和创新性同样重要,只有掌握了严谨的数学知识,才能更好地发挥个人思维的特点,构建出更为优秀的数学模型。

第五段:启示。

学习数学建模的过程中,我不仅学到了严谨的数学知识,还学会了如何分析和解决实际问题。在以后的学习和工作中,我将不断运用这些知识和技能,以更好地解决实际问题,为社会做出自己的贡献。同时,我也希望更多的人能够认识到数学的实用性和重要性,从而更好地学习和应用数学。

最新数学建模心得体会论文大全(20篇)篇五

通过一个月的集训,我受益匪浅。我进一步的认识到数学建模的实质和对参赛队员的要求。数学建模就是培养学生运用数学知识解决实际问题的能力。它要求参赛队员有较强的创新精神,有较大的灵活性和随机应变能力,要求参赛队员之间有良好的团队精神和相互协作意识。在一个月里,我们学了许多知识放方法,可以说数学建模需要的`知识我们都了解了一点,关键在于如何应用这些知识。这种即学即用的能力是我们以后学习、工作所必须的能力。在此我对建模是出现的一些现象发表一些看法。

随着信息的高速化,我们很容易找到和建模有关的资料,这对我们理解题目意思和促发新思路、新想法是有帮助的。但是有的集训小组或集训队员他们建模完全依靠找资料,建出来的模型就是几本参考书的综合,他们所用的方法完全是别人研究过的东西,连一点改进也没有。如果这样的话,数学建模就失去了意义。我始终坚持一个观点:数学建模最重要的是创新。无论是你创造一种新方法还是创造性的运用一种方法,还是改进别人的方法都是很重要的。没有创新,模型就失去了灵魂;没有创新,模型就不是你的模型。

我们队配合不是很理想。主要是有个队员他总认为自己是正确的,别人找到的资料不如他好,别人提出的观点、思想思想无论正确与否,他总是会反对一下。他总是十分注重小的方面,不从大局考虑。由于这些原因,我们建的模型总是不好。

文档为doc格式。

最新数学建模心得体会论文大全(20篇)篇六

读数学建模是一项需要较高能力的学问,需要具备丰富的数学知识和逻辑思维能力。在我学习的过程中,我深刻认识到了数学建模的重要性以及在实际工作和生活中的应用价值。以下是我的读数学建模的心得体会。

作为一个计算机科班出身的学生,我很早就开始了接触数学建模。但在一开始的时候,我并没有真正理解什么是数学建模。直到在大学的选修课中系统地学习了一门《数学建模及应用》课程后,我才对数学建模有了更深入的认知和理解。

第二段:理解“建模”

“建模”的核心意思是将复杂的实际问题转化为数学模型,然后用数学语言描述该问题并进行数学分析。在实际的工作和生活中,我们要面对、研究的诸如市场营销、物流运输、气象环境、图像视频等不同领域的问题都可以通过“建模”的方式进行求解。

第三段:掌握数学和编程技能。

数学建模需要掌握扎实的数学功底,同时也要在编程技能上有所涉猎。这是因为数学建模过程中需要运用到很多数据分类和筛选、数据可视化、计算机程序的实现等技能。只有将数学和编程技能完美结合,才能为数学建模提供最有利的条件。

第四段:关注实际问题。

在理论知识的积累与技术能力的提升之外,数学建模中还需要关注实际问题。我们不能将理论和技术与实际问题划分开来。可行的“建模”问题是源于实际问题,因此,在发现实际问题的基础上,我们才能够有更清晰的目标和向实现目标的循序渐进的步骤。

第五段:学习和交流。

数学建模需要广泛学习和交流。我们要阅读相关领域的探讨和论文,获取更多的行业知识。同时,我们还要积极参加学术会议和交流活动,与其他学者和专家协同工作和深度探讨,交换经验和知识,并不断提升自己的建模能力。

在读数学建模的过程中,我也留下了许多经典案例和优秀论文,坚持探索科学问题的本质,发掘应用数学的潜力。数学建模是一个学习与实践并行、动态更新的过程,它将不断影响我们思考问题和解决问题的方式,让我们更好地懂得数学对人类社会发展的重要性。

最新数学建模心得体会论文大全(20篇)篇七

通过一个月的集训,我受益匪浅。我进一步的认识到数学建模的实质和对参赛队员的要求。数学建模就是培养学生运用数学知识解决实际问题的能力。它要求参赛队员有较强的创新精神,有较大的'灵活性和随机应变能力,要求参赛队员之间有良好的团队精神和相互协作意识。在一个月里,我们学了许多知识放方法,可以说数学建模需要的知识我们都了解了一点,关键在于如何应用这些知识。这种即学即用的能力是我们以后学习、工作所必须的能力。在此我对建模是出现的一些现象发表一些看法。

随着信息的高速化,我们很容易找到和建模有关的资料,这对我们理解题目意思和促发新思路、新想法是有帮助的。但是有的集训小组或集训队员他们建模完全依靠找资料,建出来的模型就是几本参考书的综合,他们所用的方法完全是别人研究过的东西,连一点改进也没有。如果这样的话,数学建模就失去了意义。我始终坚持一个观点:数学建模最重要的是创新。无论是你创造一种新方法还是创造性的运用一种方法,还是改进别人的方法都是很重要的。没有创新,模型就失去了灵魂;没有创新,模型就不是你的模型。

我们队配合不是很理想。主要是有个队员他总认为自己是正确的,别人找到的资料不如他好,别人提出的观点、思想思想无论正确与否,他总是会反对一下。他总是十分注重小的方面,不从大局考虑。由于这些原因,我们建的模型总是不好。

最新数学建模心得体会论文大全(20篇)篇八

数学建模作为一种综合性的能力与技术,近年来深受大众的关注与推崇。作为一名数学爱好者,我对数学建模这个领域也产生了浓厚的兴趣。在阅读关于数学建模的相关书籍、学习课程与参加各类竞赛的过程中,我深刻地领悟到了数学建模的种种魅力,也汇总了一些读数学建模的心得与体会。

第二段:学习经验。

为了更好地理解数学建模,我通过网上课程等不断学习。由于数学建模这个领域广泛涉及到的知识面十分广泛,所以学习的内容也十分繁琐。在学习的过程中,我力求将各个专业领域的知识以及各种方法融合在一起,取长补短,做到融会贯通。同时,也需要不断地与比赛、挑战赛等交流中,去检验自己的知识水平,并不断地提高自己的学习能力。

第三段:实践体会。

学习归来,我开始了自己的实践之旅。在应对数学建模的挑战的过程中,我逐渐意识到模型的准确度与应用性是非常重要的。想要达到这点,必须不断地加强数学知识的学习,提高自己的实际操作能力。另外,更加注重分析真实场景与数据,了解不同数据之间的关系与差异,并运用不同的数据分析方法,以保证模型的精度与可靠性。

第四段:对未来的研究目标。

虽然我在数学建模的学习与实践中有了一定的收获,但我深知自己仍是一个初学者,未来的路还有很长。因此,我计划在未来的学习与实践中,更加注重对数学建模理论的深度探究,从更加基础的角度出发去分析模型,从而更好地将理论运用于实践。另外,我也将继续参加各种数学建模竞赛,不断挑战自己,提高自己的技能水平。

第五段:总结。

回首自己的数学建模之路,我深深体会到数学建模的魅力与难度。在实践过程中,我不断地学习、尝试与挑战自己,才有了今天的成果。未来,我会继续深入学习、实践,不断提升自己,让数学建模这个宝藏般的领域,能够不断地被挖掘、发现链梢,为人类社会提供更多的发展动力。

最新数学建模心得体会论文大全(20篇)篇九

走美杯”是“走进美妙的数学花园”的简称。

“走进美妙的数学花园”中国青少年数学论坛是中国少年科学院创新素质教育的品牌活动。20xx年,由国际数学家大会组委会、中国数学会、中国教育学会、中国少年科学院成功举办了首届“走进美妙的数学花园”中国少年数学论坛,至今已连续举办七届,全国三十多个城市近三十万人参与了此项活动,在全国青少年中产生了巨大的影响。“走进美妙的数学花园”中国青少年数学论坛活动是一项面对小学三年级至初中二年级学生的综合性数学活动。通过“趣味数学解题技能展示”、“数学建模小论文答辩”、“数学益智游戏”、“团体对抗赛”等一系列内容丰富的活动提高广大中小学生的数学建模意识和数学应用能力,培养他们一种正确的思想方法。著名数学家陈省身先生两次为同学们亲笔题词“数学好玩”和“走进美妙的数学花园”,大大鼓舞了广大青少年攀登数学高峰的热情和信心,使同学们自觉地成为学习的主人,实现从“学数学”到“用数学”过程的转变,从而进一步推动我国数学文化的传播与普及。

“走美”活动已连续举办七届,近30万青少年踊跃参与,已取得良好社会效果,并被写入全国少工委《少先队辅导员工作纲要(试行)》,向全国少年儿童推广。

“走美”作为数学竞赛中的后起之秀,凭借其新颖的考试形式以及较高的竞赛难度取得了非常迅速的发展,近年来在重点中学选拔中引起了广泛的关注。客观地说“走美”一、二等奖对小升初作用非常大,三等奖作用不大。

1、活动对象。

全国各地小学三年级至初中二年级学生。

2、总成绩计算。

笔试获奖率:

一等奖5%,二等奖10%,三等奖15%。

3、笔试时间。

每年3月上、中旬。

报名截止时间:每年12月底。

走美杯比赛流程。

1、全国组委会下发通知,各地组委会开始组织工作。

2、学生到当地组委会报名,填写《报名表》。

3、各地组委会将报名学生名单全部汇总至全国组委会。

4、全国“走进美妙的数学花园”趣味数学解题技能展示初赛(全国统一笔试)。

6、全国组委会公布初赛获奖名单并颁发获奖证书。

7、获得初赛一、二、三等奖选手有资格报名参加暑期赴英国剑桥大学数学交流活动。

8、各地按照组委会要求提交数学建模小论文。

9、前各地组委会上报参加全国总论坛学生名单。

10、全国总论坛和表彰活动。

最新数学建模心得体会论文大全(20篇)篇十

为了培养小学生良好的数学学习兴趣,激发他们的数学潜能,教师需要采取必要的措施注重数学建模思想的有效培养,促进学生的全面发展。在制定相关培养策略的过程中,教师应充分考虑小学生的性格特点,提高数学建模思想培养的有效性。基于此,文章将从不同的方面对小学生数学建模思想的培养策略进行初步的探讨。

作为小学数学教学中的重要组成部分,数学建模思想的渗透及相关教学活动的顺利开展,有利于提高复杂数学问题的处理效率,保持数学课堂教学的高效性。要实现这样的发展目标,增强小学生数学建模思想的实际培养效果,需要加强对学生动手实践能力的培养,激发学生的更高兴趣。建模的过程涉及问题表述、求解、必要解释及有效验证,在这四个环节中,可能会存在一定的问题,影响着数学教学计划的实施。因此,教师需要利用学生动手实践能力的作用,实现数学建模思想的有效培养,促使小学生能够在数学建模过程中享受到更多的快乐。比如,在讲解“认识角”知识的过程中,某些学生认为边越长角度也越大。为了使学生能够对其中的知识点有更加正确而全面的认识,教师可以通过在黑板上设置一些能够活动的三角板,让学生亲自动手操作,以此得出角与边长的正确关系,为后续教学计划的实施打下坚实的基础。通过这种教学方法的合理运用,可以激发出学生们在数学建模学习中的更高兴趣,丰富他们的想象力,从而使他们对数学建模思想有一定的了解,在未来学习过程中能够保持良好的`数学建模能力。

通过对小学阶段各种数学实践教学活动实际概况的深入分析,可知构建良好的数学模型有利于加深学生对各知识(福建省莆田市秀屿区东峤前江小学,福建莆田351164)点的深入理解,增强其主动参与数学建模教学活动的积极性。因此,为了使小学生数学建模思想培养能够达到预期的效果,教师需要结合实际的教学内容,建立必要的数学参考模型,提升学生对数学建模思想的整体认知水平。比如,在讲授“异分母分数加减法”这部分知识的过程中,可以设置“0.8千克+300克”“1.6千克-400克”等问题,向学生提问是否可以直接计算,并说出原因。当学生通过对问题的深入思考,总结出“单位不同不能直接计算”的结论后,继续向学生提问小数计算中为什么每一位都要对齐,实现“计数单位统一后才能计算”这一数学模型的构建。在这样的教学过程中,学生可以加深对知识点的理解,实现数学建模思想的有效培养。

加强小学生数学建模思想的有效培养,需要在具体的教学活动开展中注重对数学思想的灵活运用,增强相关模型构建的可靠性,促使学生在长期的数学学习中能够不断提高自身的数学能力,运用各种数学知识处理实际问题。比如,在“角的度量”这部分内容讲解的过程中,为了提高学生对角的分类及画角相关知识点的深入理解,教师可以将所有的学生分为不同的小组,让学生们通过小组讨论的方式,对角的正确分类及如何画角有一定的了解,并让每个小组代表在讲台上演示画角的过程。此时,教师可以通过对多媒体教学设备的合理运用,利用动态化的文字与图片对其中的知识要点进行展示,确保学生们能够在良好的教学模式中提升自身的认知水平,并在不断的思考过程中逐渐形成良好的创造性思维,强化自身的创新意识。比如,在讲解“图形变换”中的轴对称、旋转知识点的过程中,教师应通过对学生的正确引导,运用三角板、圆柱等教学辅助工具,让学生从不同的角度对各种轴对称图形、旋转后得到的图形进行深入思考,提高自身数学建模过程中的创新能力,从不同的角度深入理解图像变换过程,对这部分内容有更多的了解。因此,教师应注重小学生数学建模思想培养中多方位思考方式的针对性培养,提高学生的创新能力,优化学生的思维方式,全面提升小学数学建模教学水平。

总之,加强小学生数学建模思想培养策略的制定与实施,有利于满足素质教育的更高要求,实现对小学生数学能力的有效锻炼,确保相关的教学计划能够在规定的时间内顺利地完成。与此同时,结合当前小学数学教育教学的实际发展概况,可知灵活运用各种科学的数学建模思想培养策略,有利于满足学生数学建模学习中的多样化需求,为相关教学目标的顺利实现提供可靠的保障。

[1]童小艳.小学数学教学中培养学生建模思想的策略[j].学子(教育新理念),20xx(6).

[2]白宁.先学而后教——小学生数学建模思想培养的捷径[j].数学学习与研究,20xx(16).

最新数学建模心得体会论文大全(20篇)篇十一

摘要:数学作为很多学科的计算工具,可以说是现代科学的基础,要想利用数学来解决实际问题,首先要建立相应的数学模型,本文在数学建模思想概念和特点的基础上,从计算机软件、实际生活中的应用等方面,对其应用的发展进行了分析,最后从分析问题、建立模型、校验模型三个阶段,对数学建模的方法,进行了深入的研究。

引言。

随着自然科学的发展,利用数学等思想来解决实际问题,越来越受到人们的重视,数学作为一门历史悠久的自然科学,是在实际应用的基础上发展起来,但是随着理论研究的深入,现在数学理论已经非常先进,很多理论都无法付诸实践,在这种背景下,如何利用现有的数学理论来解决实际问题,成为了很多专家和学者研究的问题。通过实际的调查发现,要想利用数学来解决实际问题,首先要建立相应的数学模型,将实际的问题转化成数学符号的表达方式,这样才能够通过数学计算,来解决一些实际问题,从某种意义上来说,计算机就是由若干个数学模型组成的,计算机软件之所以能够解决实际问题,就是根据实际应用的需要,建立了一个相应的数学模型,这样才能够让计算机来解决。

数学是一门历史悠久的自然科学,在古时候,由于实际应用的需要,人们就已经开始使用数学来解决实际问题,但是受到当时技术条件的限制,数学理论的水平比较低,只是利用数学来进行计数等,随着经济和科技水平的提高,尤其是在工业革命之后,自然科学得到了极大的发展,对于利用自然科学来解决实际问题,也成为了人们研究的重点,在市场经济的推动下,人们将这些理论知识转化成为产品。计算机就是在这种背景下产生的,在数学理论的基础上,将电路的通和不通两种状态,与数学的二进制相结合,这样就能够让计算机来处理实际问题,从本质上来说,这就是数学建模思想的范畴,但是在计算机出现的早期,数学建模的理论还没有形成,随着计算机软件技术的发展,人们逐渐的意识到数学建模的重要性,发现利用数学建模思想,可以解决很多实际的问题,而数学建模的概念,就是将遇到的实际问题,利用特定的数学符号进行描述,这样实际问题就转化为数学问题,可以利用数学的计算方法来解决。

如何解决实际问题,从有人类文明开始,就成为了人们研究的重点,随着自然科学的发展,出现了很多具体的学科,利用这些不同的学科,可以解决不同的实际问题,而数学就是其中最重要的一门学科,而且是其他学科的基础,如物理学科中,数学就是一个计算的工具,由此可以看出数学的重要性,进入到信息时代后,计算机得到了普及应用,无论是日常生活中还是工作中,计算机都有非常重要的应用,而在信息时代,注重的是解决问题的效率。与其他解决问题的方式相比,数学建模显然更加科学,现在数学建模已经成为了一门独立的学科,很多高校中都开设了这门课程,为了培养学生们利用数学解决实际问题的能力,我国每年都会举办全国性的数学建模大赛,采用开放式的参赛方式,对学生们的数学建模能力进行考验,而大赛的题目,很多都是一些实际问题,对于比赛的结果,每个参赛队伍的建模方式都有一定的差异,其中选出一个最有效的方式成为冠军。由此可以看出,对于一个实际的问题,可以建立多个数学模型进行解决,但是执行的效率具有一定的差异,如有些计算的步骤较少,而有些计算的过程比较简单,而如何评价一个模型的效率,必须从各个方面进行综合的考虑。

2.1计算机软件中数学建模思想的应用。

通过深入的分析可以知道,计算机之所以能够解决实际问题,很大程度上依赖与计算机软件,而计算机软件自身就是一个或几个数学模型,在软件开发的过程中,首先要进行需求的分析,这其实就是数学建模的第一个环节,对问题进行分析,在了解到问题之后,就要通过计算机语言,对问题进行描述,而计算机语言是人与计算机进行沟通的语言,最终这些语言都要转化成0和1二进制的方式,这样计算机才能够进行具体的计算。由此可以看出,计算机就是依靠数学来解决实际问题,而每个计算机软件,都可以认为是一个数学模型,如在早期的计算机程序设计中,受到当时计算机技术水平的限制,采用的还是低级语言,由于低级语言人们很难理解,因此在程序编写之前,都会先建立一个数学模型,然后将这个模型转化成相应的计算机语言,这样计算机就可以解决实际的问题,由于计算机能够自行计算的特点,只要输入相应的参数后,就可以直接得到结果,不再需要人为的计算。

经过了多年的发展,现在数学建模自身已经非常完善,为了培养我国的数学建模人才,从1992年开始,每年我国都会举办一届全国数学建模大赛,所有的高校学生都可以参加,大赛采用了开放性的参赛方式,通常情况下,对于题目设置的也比较灵活,会有多个题目提供给队员选择,学生可以根据自己的实际情况,来选择一个最适合自己的问题。而数学建模大赛举办的主要目的,就是让学生们掌握如何利用数学理论,来解决实际问题,在学习数学知识的过程中,很多学生会认为,数学与实践的距离很远,学习的都是纯理论的知识,学习的兴趣很低,与一些实践密切相关的学科相比,选择数学专业的学生很少,而数学建模的出现,在很大程度上改善了这种情况,让人们真正的了解数学,并利用数学来解决复杂的问题。受到特殊的历史因素影响,我国自然科学发展的起步较晚,在建国后经历了很长一段时间封,闭发展,与西方发达国家之间的交流比较少,因此对于数学建模等现代科学,研究的时间比较短,导致目前我国很少会利用数学建模来解决实际问题,相比之下,发达国家在很多领域中,经常会用到数学建模的知识,如在企业日常运营中,需要进行市场调研等工作,而对于这些调研工作的处理,在进行之前都会建立一个数学模型,然后按照这个建立的模型来处理。

从本质上来说,数学是在实际应用的基础上,逐渐形成的一门学科,但是受到当时技术水平的限制,虽然人们已经懂得去计算,却并知道自己使用的是数学知识,随着自然科学的发展,对数学的应用越来越多,而数学自身理论的发展速度很快,远远超过了实际应用的范围,同时随着其他学科的发展,数学变成了一种计算的工具,因此数学应用的第一个阶段中,主要是作为一种工具。随着电子计算机的出现,对数学的应用达到了一个极限,人们在数学和物理的基础上,制作出了能够自动计算的机器,在计算机出现的早期,受到性能和体积上的限制,只能进行一些简单的数学计算,还不能解决实际的问题,但是计算机语言和软件技术的.发展,使其在很多领域得到了应用,在计算的基础上,能够解决很多问题,而软件程序的开发,其实就是建立数学模型的过程,由此可以看出,数学建模思想应用的第二阶段中,主要是以现代计算机等电子设备的方式,来解决实际的问题。

3.1分析问题。

数学模型的应用都是为了解决实际问题,虽然很多问题都可以通过建模的方式来解决,但是并不是所有的问题,因此在遇到实际问题时,首先要对问题进行具体的分析,首先就是看是否能够转化成数学符号,如果能够直接用数学语言来进行描述,那么就可以容易的建立相应的数学模型,但是通过实际的调查发现,随着经济和科技的发展,遇到的问题越来越复杂,其中很多都无法直接用数学语言来描述,这就增加了数学建模的难度。由此可以看出,分析问题作为数学建模的第一个环节,也是最重要的一个环节,如果问题分析的不够具体,那么将无法建立出数学模型,同时对数学模型的建立也具有非常重要的影响,通过实际的调查发现,能够建立高效率的数学模型,都是对问题分析的比较彻底,甚至有些独特的理解,只有这样才能够采用建立一个最简单的模型,而随着数学建模自身的发展,现在建立模型的过程中,对于一个实际的问题,经常需要建立多个模型,这样通过多个数学模型协同来解决一个问题。

在分析实际问题后,就要用数学符号来描述要解决的问题,这是建立数学模型的准备环节,要想利用数学来解决实际问题,无论采用哪种方式,都要转化成数学语言,然后才能够通过计算的方式解决,而数学模型的过程,就是在描述完成后,建立相应的数学表达式,通常情况下,在分析问题时,都能够发现某种内在的规律,这个规律是数学建模的基础。如果无法找到这个规律,显然就不能利用现有的一些数学定律,从而建立相应的表达式,最后解决相应的问题,由此可以看出,分析问题的内在规律,是影响数学建模的重要因素,而这个规律的发现,除了在现有的数学知识外,也可以结合其他学科的知识,尤其是现在遇到的问题越来越复杂,对于以往简单的问题,只需要建立一个简单的模型即可解决,而现在复杂的问题,经常需要建立多个模型。因此现在数学建模的难度越来越大,从近些年全国数学建模大赛的题目就可以看出,对于问题的描述越来越模糊,甚至出现了一些历史上的难题,而不同学生根据自己的理解,建立的模型也具有很大的差异,其中一些模型非常新颖,为实际问题的解决提供了良好的参考,目前我国对数学建模的研究有限,尤其是与西方发达国家相比,实践的机会还比较少。

在数学模型建立之后,对于这个模型是否能够解决实际问题,具体的执行效率如何,都需要进行校验,因此检验是数学模型建立最后的一个环节,也是非常重要的一个步骤,通常情况下,经过校验都能够发现模型中存在的一些问题,从而进行完善,这样才能够保证严谨性,在实际校验的过程中,要对数学模型的每个部分进行验证,通过输入特定的数据,看得到的结果是否符合理论值,如果没有问题,就说明该模型可以解决实际问题。除了检验模型的准确外,校验还有另外一个作用,就是优化模型,在选定数据后,能够看到数学模型计算的整个过程,这时就可以对具体的细节进行优化,如哪部分可以减少计算的步骤,或者简化计算的方式等,这样可以使整个模型更加科学、合理,由此可以看出,校验工作对于数学模型的建立,具有非常重要的意义。

4结语。

通过全文的分析可以知道,对于数学理论的应用,从很久之前就已经开始了,但是数学建模思想的出现,却是随着计算机技术的发展,逐渐形成的一门学科,电子计算机的出现,在很大程度上改变了处理事情的方式,利用计算机软件,只要输入相应的参数,就可以直接得到结果,这正是数学模型完成的任务,只是计算机的出现,省略了中间的计算过程,因此计算机软件的方式,是数学建模思想最好的应用方法,要想解决不同的问题,只要建立不同的模型,然后编写相应的程序。

最新数学建模心得体会论文大全(20篇)篇十二

数学,源于人们对生产与生活实际问题,抽象出的数量关系与空间结构发展而成的.近年来,信息技术飞速发展,推动了应用数学的发展,使数学日益渗透到社会各个领域.中考实际应用题目更贴近日常生活,具有时代性、灵活性,涉及的模型有方程、函数、不等式、统计、几何等模型.数学课程标准指出,教师在教学中应引导学生从实际背景中理清数学关系、把握变化规律,能从实际问题中建立数学模型.教师要为学生创造用数学的氛围,引导学生参与自主学习、自主探索、自主提问、自主解决,体验做数学的过程,从而提高解决实际问题的能力.

一、影响数学建模教学的成因探析

一是教师未能实现角色转换.建模教学离不开学生“做”数学的过程,因而教师在教学中要留有让学生思考、想象的空间,让他们自主选择方法.然而部分教师对学生缺乏信任,由“引导者”变为“灌输者”,将解题过程直接教给学生,影响了学生建模能力的提高.二是教师的专业素养有待提高.开展建模教学,需要教师具有一定的专业素养,能驾驭课堂教学,激发学生的兴趣,启发学生进行思考,诱发学生进行探索,但是部分教师专业素养有待提高,或认为建模就是解应用题,或重生活味轻数学味,或使讨论活动流于形式.三是学生的抽象能力较差.在建模教学中,教师须呈现生活中的实际问题,其题目长、信息量大、数据多,需要学生经历阅读提取有用的信息,但是部分学生感悟能力差,不能明析已知与未知之间的关系,影响了学生成功建模.

二、数学建模教学的有效原则

1.自主探索原则.

学生长期处于师讲、生听的教学模式,沦为被动接受知识的“容器”,难有创造的意识.在教学中,教师要为学生创设轻松愉悦的探究氛围,让学生手脑并用,在探索、交流、操作中提高解决问题的`能力.

2.因材施教原则.

教师要着眼于学生原有的认知结构,要贴近学生的最近发展区,引导他们从旧知的角度思考,找出问题的解决方法。

3.可接受性原则.

数学建模内容的设计,要符合学生的年龄特点和认知能力,能让学生理解所探究的内容.若设计的问题不切实际,往往会扼杀学生的兴趣,教师要密切联系教学内容、生活实际,让学生有能力解决问题.

最新数学建模心得体会论文大全(20篇)篇十三

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二)教学方法传统化。

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用。

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施。

(一)在公式中使用建模思想。

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的'教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二)讲解习题的时候使用数学模型的方式。

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三)组织学生积极参加数学建模竞赛。

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语。

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

参考文献。

[1]谢凤艳,杨永艳。高等数学教学中融入数学建模思想[j]。齐齐哈尔师范高等专科学校学报,20xx(02):119—120。

[2]李薇。在高等数学教学中融入数学建模思想的探索与实践[j]。教育实践与改革,20xx(04):177—178,189。

[3]杨四香。浅析高等数学教学中数学建模思想的渗透[j]。长春教育学院学报,20xx(30):89,95。

[4]刘合财。在高等数学教学中融入数学建模思想[j]。贵阳学院学报,20xx(03):63—65。

最新数学建模心得体会论文大全(20篇)篇十四

信息化时代,数学科学与其他学科交叉融合,使得数学技术变成了一种普适性的关键技术。大学加强数学课程的应用功能,不但可以为学生提供解决问题的思想和方法,而且更为重要的是可以培养学生应用数学科学进行定量化、精确化思维的意识,学会创造性地解决问题的应用能力。数学建模课程将数学的基本原理、现代优化算法以及程序设计知识很好地融合在一起,有助于培养学生综合应用数学知识将现实问题化为数学问题,并进行求解运算的能力,激发学生对解决现实问题的探索欲望,强化数学课程本身的应用功能,凸显数学课程的教育价值,适应大学数学课程以培养学生创新意识为宗旨的教育改革需要。

大学传统的数学主干课程,如高等数学、线性代数、概率论与数理统计在奠定学生的数学基础、培养自学能力以及为后续课程的学习在基础方面发挥奠基作用。但是,这种原有的教学模式重在突出培养学生严格的逻辑思维能力,而对数学的应用重视不够,这使得学生即使掌握了较为高深的数学理论,却并不能将其灵活应用于现实生活解决实际问题,更是缺乏将数学应用于专业研究和军事工程的能力,与创新教育的基本要求差距甚远。教育转型要求数学教学模式从传统的传授知识为主向以培养能力素质为主转变,特别是将数学建模的思想方法融入到数学主干课程之中,在教学过程中引导学生将数学知识内化为学生的应用能力,充分发挥数学建模思想在数学教学过程中的引领作用。数学课程教学改革要适应这一教学模式转型需要,深入探究融入式教学模式的理论与方式,是推进数学教育改革的重要举措。

2.1理清数学建模思想方法与数学主干课程的关系。数学主干课程提供了大学数学的基础理论与基本原理,将数学建模的思想方法有机地融入到数学主干课程中,不但可以有效地提升数学课程的应用功能,而且有利于深化学生对数学本原知识的理解,培养学生的综合应用能力。深入研究数学主干课程的功能定位,主要从课程目标上的一致性、课程内容上的互补性、学习形式上的互促性、功能上的整体优化性等方面,研究数学建模本身所承载的思想、方法与数学主干课程的内容与逻辑关系,阐述数学建模思想方法对提高学生创新能力和对数学教育改革的重要意义,探索开展融入式教学及创新数学课程教学模式的有效途径。

2.2探索融入式教学模式提升数学主干课程应用功能的方式。融入式教学主要有轻度融入、中度融入和完全融入三种方式。根据主干课程的基本特点,对课程体系进行调整,在问题解决过程中安排需要融入的知识体系,按照三种方式融入数学建模的思想与方法。以学生能力训练为主导,在培养深厚的数学基础和严格的逻辑思维能力的基础上,充分发挥数学建模思想方法对学生思维方式的培养功能和引导作用,培养学生敏锐的分析能力、深刻的'归纳演绎能力以及将数学知识应用于工程问题的创新能力。

2.3建立数学建模思想方法融入数学主干课程的评价方式。融入式教学是处于探索中的教学模式,教学成效有待于实践检验。选取开展融入式教学的实验班级,对数学建模思想方法融入主干课程进行教学效果实践验证。设计相应的考察量表,从运用直觉思维深入理解背景知识、符号翻译开展逻辑思维、依托图表理顺数量关系、大胆尝试进行建模求解等多方面对实验课程的教学效果进行检验,深入分析融入式教学模式的成效与不足,为探索有效的教学模式提出改进的对策。

3.1改革课程教学内容,渗透数学建模的思想方法。传统的数学主干课程教学内容,将数学看作严谨的演绎体系,教学过程中着力于对学生传授大学数学的基础知识,而对应用能力的培养却重视不够。使得本应能够发挥应用功能的数学知识则沦为僵死的教条性数学原理,这失去了教学的活力。学生即使掌握了再高深的数学知识,仍难以学会用数学的基本方法解决现实问题。现行的大学数学课程教学内容中,适当地渗透一些应用性比较广泛的数学方法,如微元法、迭代法及最佳逼近等方法,有利于促进学生对数学基础知识的掌握,同时理解数学原理所蕴涵的思想与方法。

这样,在解决实际问题的时候,学生就会有意识地从数学的角度进行思考,尝试建立相应的数学模型并进行求解,拓展了数学知识的深度与广度,提升了学生的数学应用能力四、结语数学建模是数学科学在科技、经济、军事等领域广泛应用的接口,是数学科学转化成科学技术的重要途径。在数学主干课程中融入数学建模的思想与方法,可以推动大学数学教育改革的深入发展,加深学生对相关知识的理解和掌握,有助于从思维方式上培养学生的创新意识与创新能力。

此外,数学建模思想方法融入教学主干课程还涉及到许多问题,比如数学建模与计算技术如何有效结合以进行模拟仿真、融入式教学模式的基本理论、构建新的课程体系等问题,仍将有待于更深入的研究。

最新数学建模心得体会论文大全(20篇)篇十五

摘要:在新课改以后,要求教师要在教学中重视学生的主体地位,提升学生学习兴趣,培养他们的自主学习能力。本文从小学数学教学过程中数学建模入手,对如何将数学建模运用到学生解题过程中进行了分析。

数学建模是指利用数学模型的形式去解决实际中遇到的问题,换句话说,就是利用数学思维、数学方法解决各种数学问题。数学建模是在新课程改革后出现的新概念,经过一段时间的观察我们可以发现,数学建模的方法能够有效的提高学生的学习兴趣,培养学生的数学能力。这种方式能够将复杂的数学问题利用简单的方式找到解决方案,是提高小学数学课堂效率及课堂质量的有效手段。小学数学是小学学习中的重要课程之一,也是培养学生数学思维的重要阶段。可以说,小学数学的学习是学生学习数学的关键,对今后的学习起到极大的影响。因此,对于小学数学教师来说,不断的完善教学手段,提高数学课堂质量是教学工作中的重中之重。而数学建模就是为了解决数学在生活中的实际问题,能够让学生感受到数学本身的魅力,培养他们的数学思维,提高数学学习能力,从而让小学数学教学质量也得到大幅度的提升。小学数学与数学建模之间有着密不可分的作用,两者相互联系、相互促进,如何有效的将数学建模运用在小学数学教学过程中,是每个小学数学教师都值得思考的问题。

数学建模是为了解决数学中遇到的问题,数学本身特别是小学数学也是一门较贴近学生生活的学科。因此在数学学习中,教师要首先培养学生的数学学习意识,让他们感受到数学与生活的紧密联系,然后再引导学生用数学建模去解决遇到的问题。在这一过程中,数学教师要注意以下两个问题:(一)在教学中一定要贴近学生的生活,课堂中所提出的问题也必须要符合生活实际,让学生对所学内容感到亲切。积极引导学生利用多种方式解决同一问题,尤其是利用数学建模的方式,以达到培养他们的数学思维以及想象能力的目的。(二)在学生进行数学建模的过程中要利用多鼓励的方式调动他们对数学学习的积极性,让他们在数学建模中获得成就感,增加自信心,以此来提高学生在今后学习中使用数学建模方法的热情。

二、提高学生想象力,用数学建模简化问题。

对于小学生来说,他们的思维与其他年龄段相比极其活跃,拥有了丰富的想象力。在数学学习中,如果能将想象力与数学学习结合在一起,一定会得到意想不到的效果。教师可以根据小学生这一特点,提高他们的想象力,然后再引导他们利用数学建模解决问题,让题目简单化。具体来说,就是在面对复杂的'数学问题时,教师可以先为学生创建教学情境,以这样的方式提高学生的学习兴趣,让他们愿意主动去深入的研究遇到的题目。之后教师再去对他们进行引导,让他们能够理解题目中所提问题的含义,并能够运用他们的想象能力思考解决问题的方式。最后再引导他们进行数学建模,解决问题。这样的方式充分的利用了学生的想象能力,将所需解决的问题简单化。

三、选择合适的题目作为建模案例。

在数学建模过程中,教师也要时刻牢记题目应该贴近学生的生活,符合实际,并且具有一定的趣味性,让他们有兴趣投入到数学建模的过程中去,然后再反复练习之后达到提高他们建模能力的目的。在选择数学建模案例时教师主要应该注意以下两点:首先,教师在选择建模案例时要尽量选择比较典型的问题,能够让学生在学习了该题目以后掌握这一类的解题方法,达到小学数学教学的目的。所以,这就需要教师对题目进行深入的分析,看是否在拥有趣味性、真实性的同时符合教学要求。其次,题目最好能够拥有可变性,教师能够通过对题目中已知条件的改变让学生进行不同方面的建模练习,以此提高他们数学建模的能力。

四、引导学生主动进行数学建模。

在教师经过反复的教学后,学生都已经拥有了基本的数学建模知识,了解了数学建模过程,并且能够在解题过程中简单的使用数学建模。此时,教师在教学中就可以引导学生利用数学建模解决数学题目了。引导学生用数学建模方法解决数学问题,就要在解题过程中多对学生进行这一方面的鼓励,让他们提高建模信心。在这一过程中,教师还可以尝试让学生之间利用合作的方式让他们进行数学建模方法的探讨,并在探讨的过程中吸取他人的经验,提高自己数学建模水平,同时这样的方式能够让数学建模深入到每一个学生的心中,逐渐影响每一个学生的解题思路,让他们能够在解题过程中熟练运用建模的方式,提高解题能力。数学建模的方法能够有效的改变过去的传统教学思路,增加学生对数学的学习兴趣,提高数学解题能力。这种教学方法对于小学数学教师来说,值得不断的探讨研究,并应用在教学中,以此提高数学课堂的教学效率和教学质量。

最新数学建模心得体会论文大全(20篇)篇十六

摘要:数学建模课堂中学生的自主探究、合作学习与教师的科学引导并不矛盾而是相辅相成的。只有在教师科学、适时、适当地引导下才能更好地突出学生的主体地位,从而打造出自主探究、合作学习、愉悦发展的高效数学建模课堂。

一、新课的引入需要发挥教师的作用。

教师在数学建模课堂上的引导作用首先体现在教师对新课的引入上。教师一段精彩的导入会点燃学生学习的热情、激发学生的学习兴趣、唤起学生的好奇心,能把学生的注意力迅速集中到要学的知识上来。这对提高教学质量、提高学生的学习效果起着不可估量的作用。同时,新课前的导入环节是对学生进行情感教育的最佳时刻。学生只有在教师的引导下才能够体会到数学建模的价值、增强学好数学建模的信心。俗话说:“好的开始是成功的一半。”数学建模课堂也是这样。因此,在新课引入时要充分发挥教师的作用。

二、在教学任务的设计上需要发挥教师的作用。

数学建模课堂一般应采用任务型教学模式,是让学生通过自主探究、合作学习、交流展示的方式完成一系列学习任务来达到特定的教学目标和学习目标。学生在课堂中的主体作用能否得到有效发挥取决于教师对问题设计质量的高低。教师应通过设计一系列高质量的问题把复杂的数学建模问题分解成若干简单问题来引导学生更好地发挥其主动性。学生也只有在这些问题的正确引导下才能突破难点并向着学习目标努力,有效防止学生思考、探究、交流的内容偏离学习目标等现象的出现。这些任务的制订需要充分发挥教师的作用。

三、在新旧知识的联系点上需要发挥教师的作用。

建构主义强调新知识是在学生已有知识的基础上通过学生自身有意义的建构获得的。笔者认为,学生自主建构知识应在教师的科学引导下进行。尤其是对于数学建模这样高难度的知识更是这样。失去了教师的科学引导,学生易产生疲倦感,久而久之会丧失学习数学建模的兴趣和信心。因此,在新旧知识联系点上应发挥教师的作用。教师应在准确掌握教学目标、难点的基础上,充分考虑学生的认知能力、习惯、思维方式,通过有针对性的具体问题唤起学生对旧知识的回忆,再通过启发性问题引导学生去发现新知识,从而实现温故知新的目的。在教师引领下学生自主建构知识可以使学生少走弯路,从而使学生更加高效地自主探究、掌握新知识。

四、在教学重点、难点上需要教师的引导。

教学的重点、难点是每一节课的核心和主线,只有准确把握了重点、突破了难点才能更好地掌握本节课的内容。在强调学生自主探究、小组合作学习的课堂教学模式中,数学建模教材的重点、难点学生往往把握不准、难以突破。这就需要教师科学引导学生主动去发现重点、突破难点。教师引导学生发现重点、突破难点并不是让教师直接告诉学生本节课的重点是什么、怎样突破难点,而是通过具体问题的引导让学生自己找到重点、并通过学生自己的思考、讨论解决疑难问题。学生在教师的引导下通过自己的努力、讨论解决了疑难后,学生会非常兴奋,从而会越来越喜欢数学建模课。相反,在没有教师引导的数学建模课堂中,学生经常被困难吓倒,从而对数学建模课产生畏惧感。由此可见,教师对学生的科学引导是学生学好数学建模必不可少的环节。在以学生为本、注重学生全面发展、提倡课堂中突出学生主体地位的背景下,教师的引导仍是数学建模课堂中不可缺失的要素。数学建模课堂中学生的自主探究、合作学习与教师的科学引导并不矛盾而是相辅相成的。只有在教师科学、适时、适当地引导下才能更好地突出学生的主体地位,从而打造出自主探究、合作学习、愉悦发展的高效数学建模课堂。

最新数学建模心得体会论文大全(20篇)篇十七

高校数学教育是高等教育的基础学科,占据重要的一席之地。如何改变学生对数学枯燥乏味的学习状态,让学生轻松愉快地参与到数学学习中,是当前高校数学教学者面临的一个重要课题。在高校数学教学中开展数学建模竞赛,不仅能培养学生的创新思维,还能有效提高提高学生的创新能力、综合素质和对数学的应用能力。本文对高校开展数学建模竞赛与创新思维培养进行了分析阐述,并对此进行了一定的思考。

数学建模是一种融合数学逻辑思想的思考方法,通过运用抽象性的数学语言和数学逻辑思考方法,创造性的解决数学问题。当前很多高校中开始引入数学建模思想来加强学生创新能力的培养,可以使学生的逻辑思维能力和运用数学逻辑创新解决问题的能力得到提升。数学建模竞赛起源于1985年的美国,几年后国内几所高校数学建模教师组织学生开始参与美国的数学建模大赛,促进了数学建模思维的快速发展。直到1992中国首届数学建模大赛召开,而后一发不可收拾,至今仍以每年20%左右的速度增长,呈现一派繁荣景象。

2.1数学建模竞赛自主性较强。自主性首先体现在在数学建模过程中学生可以根据自己的建模需要通过一切可以利用的资源、工具来进行资料查阅和收集,建模比赛队员可以根据自己的意见和思维进行灵活自由解答,形式不拘一格。其次体现在数学建模竞赛的组织形式呈现多元化特点,组织制度上也较为灵活多样,数学建模主要侧重于分析思想,没有标准答案可以参考分享。2.2建模队伍呈日益燎原之势。1992年首届中国数学建模大赛开展以来,其影响力与日俱增,高校和社会各界对数学建模颇为重视,参赛队伍、参赛学生的质量一直处于上升状态,数学模型也日渐合理科学,学生团队在国际数学建模大赛中屡创骄人战绩。2.3组织培训日益加强。数学建模竞赛对学生数学知识的掌握及灵活运用、口套表达、语言逻辑思维、综合素质都有着非常高的要求,因此高校遴选参赛选手都投入了很大的精力,组织培训的时间很长,培训内容也很丰富,为数学建模竞赛取得好成绩奠定了坚实的基础。

3.1学生的团队协作能力和意识得到增强。数学建模竞赛的团队组织形式活泼自由,通常采用学生组队模式开展,数学建模竞赛队伍形成一个团结战斗的整体,代表着不仅仅是学校的声誉,还一定程度上展示着国家的形象。经过长时间的培训,对数学模型的研究和分析,根据学生训练中的优势和特长,进行合理科学的小组分工,让学生快速高效地完成整个数学建模,在建模过程中学生统筹协作、密切配合,发挥各自的优势和长处,确保数学建模取得最大效用,学生的团队协作能力和意识得到锻炼,责任感和荣誉感进一步增强,通过建模竞赛彰显团队的合作能力和中国数学建模方面的发展。

3.2高校学生参赛积极性高涨。近年来大学生数学建模竞赛的参与性高涨,参赛人数保持着20%左右的上涨幅度,参赛成绩也较为理想,创新能力得到了较好的锻炼和培养,综合素质得到提高,数学的应用能力提升。

3.3高校学生数学逻辑思维能力和灵活运用知识的能力得到提升。数学建模竞赛充满着刺激性和挑战性,是学生各方面综合能力的一个展示。在数学建模竞赛中,学生不仅要需要扎实丰厚的数学知识储备,还需要具备清晰的数学逻辑思维和语言表达能力。同时要有机智的临场发挥能力和应变能力,不怯场、不惊慌,有充分的思想准备,能轻松应对其他参赛选手和评委的提问,能组织条理性、逻辑性的语言进行表述,将参赛小组数学模型的含义和设计清晰完整的传达给评委和其他参赛选手。在这个过程中,无疑会使学生的数学逻辑思维和语言表达能力及灵活运用数学知识的能力有一个较大的提升。

3.4学生的自学能力和意志力得到锻。数学建模竞赛对参赛学生的综合知识和能力要求非常高,难度也非常大,需要与众不同的智慧和能力。可以说数学建模过程中,有许多高深的知识难于理解,有的日常学习过程中根本接触不到,需要数学建模参赛小组成员的互助合作,充分发挥各自优势和平时培训中的知识积淀,通过借助大量的工具书及参考资料,加上团队的`理解分析去摸索,探寻数学建模所需要的基础知识,无疑这对学生的自学能力培养是一个很好的锻炼。另外,搜寻资料、学习数学建模知识的过程是枯燥乏味的,需要长久的耐力和信心,无疑这对学生的坚毅不畏难的品质是一个很好的培养和磨炼。

3.5创新思维与能力得到有效提升。经过艰苦复杂的数学建模训练,高校学生信息收集与处理复杂问题的能力得到培养锻炼,学生数量观念得到增强,能够养成敏锐观察事物数量变化的能力,数学的严谨推导也使学生养成认真细心、一丝不苟的习惯,逻辑思维能力得到提高,思路变得更加富有条理性,能灵活地处理各种复杂问题,有效解决数学疑难,数学理论能更好第应用于实践,数学素养进一步得到提升。

综上所述,高校学生数学建模竞赛的开展,能较高地提升学生的创新能力和综合素养,团队合作能力、竞争能力、表达交流能力、逻辑思维能力、意志品质能力等都能得到良好的塑造。高校要积极组织和开展数学建模竞赛,使学生的综合素质得到发展和锻炼。学校用重视和鼓励全体学生参与数学建模竞赛,通过竞赛实现学生各方面能力尤其是创新能力的培养。

[1]赵刚.高校数学建模竞赛与创新思维培养探究[j].才智,20xx(06).

[2]陈羽,徐小红,房少梅.数学建模实践及其对培养学生创新思维的影响分析[j].科技创业月刊,20xx(08).

[3]赵建英.数学建模竞赛对高校创新人才培养的促进作用分析[j].科技展望,20xx(08)5.

[4]毕波,杜辉.关于高校开展数学建模竞赛与创新思维培养的思考[j].中国校外教育,20xx(12).

最新数学建模心得体会论文大全(20篇)篇十八

众所周知,高等数学是所有自然学科的基础,一个大学生要想在以后的工作、学习中大展宏图,那么就一定少不了坚实的高等数学基础。如何解决大学生在学习高等数学时碰到的问题?如何调动大学生学习高等数学的积极性?让学生们了解高等数学的用途,真正愿意静下心来好好学习高等数学,努力为以后的发展打好数学基础。一直以来,各所高校的教师们都在努力的想办法、找对策,一些实用有效的方法已经提出并且在逐步推广,比如,问题驱动式的教学方法和基于pbl的教学方法等。笔者从所在学校的学生实际学习情况出发,根据几年来的教学心得和积累,打算提出一种较为实用的教学方法——利用数学建模的思想调动大学生学习高等数学的积极性。该方法在笔者所教授的班级中已经实际应用过几届,学生普遍反映效果较好,任课老师也认为该方法确实能极大地调动学生的学习积极性。

提到高等数学,学生们的第一反应往往是:各种公式塞满黑板,各种运算充斥脑海;定义、定理、推论一个连着一个;极限、连续、可导可积一个涵盖另一个[1]。和高中数学相比,记忆的负担轻了(实际上是知识点太多,记不住了),而对思维的要求却提高了。对大学生来说,每一次的高数课,都是一次大脑的思维训练,时刻要求精神高度集中,一定要紧跟老师的步划,一旦走神,后面的内容就不知所云了。这样的要求短时间可以达到,长久下去学生们会觉得很辛苦,很有压力,会出现抱怨。笔者碰到过这样的学生,刚开始时,兴致勃勃,雄心万丈,可到后来兴趣索然,马虎应对。怪学生吗?诚然学生有责任,但任课老师也该负很大的责任。作为高等数学的老师我们经常要面对学生提的这些问题:(1)我学的专业和高等数学相差甚远,有可能这一辈子都不会用到高等数学的知识,那我学高等数学的目的何在?(2)老师您天天鼓吹高等数学的强大功能和广泛用途,但是通过一学期的学习,我发现除了对付考试有用,真不知高等数学可以用在何处?这些问题不及时解决,时间长了一定会影响到大学生对高等数学的学习积极性,甚至有可能会产生厌学的情绪和氛围。有些极端的学生,期末考试之后,一听到自己高等数学考过了,立马将高等数学的课本给撕了,可想而知高等数学对其造成的压力有多大[2]。如何解决大学生在学习高等数学时碰到的问题?如何调动大学生学习高等数学的积极性?让学生们了解高等数学的用途,真正愿意静下心来好好学习高等数学,努力地为以后的发展打好数学基础。笔者从所在学校的学生实际学习情况出发,根据几年来的教学心得和积累,打算提出一种较为实用的教学方法——利用数学建模的思想调动大学生学习高等数学的积极性。

一、以实际问题反推解决问题时我们需要的高等数学知识。

有这样一个实际问题:报童每天清晨从报社购进报纸零售,晚上将没卖掉的报纸退回给报社。假设报纸每份的购进价为b元,零售价为a元,退回价为c元,自然地有abc。这就是说,报童每售出一份报纸赚a-b元,每退回一份报纸赔b-c元,报童每天如果购进的报纸太少,那么会不够卖,就会少赚钱;如果每天购进的报纸太多,那么会卖不完,将要赔钱。请为报童规划一下,他该如何确定每天购进的报纸份数,以获得最大的收入[3]。

现在我们来反推该问题涉及到的高等数学的知识:首先,通过分析题目可知,问题解决的关键在于——如何确定每天的报纸需求量,注意每天的报纸需求量是随机变化的?解决这个关键问题的知识我们早就掌握了,分别是数理统计中的频率连续化、概率论中的概率密度与期望和高等数学中的定积分[4]。

二、利用高等数学的解决实际问题。

f(r)[4]。如果求出了f(r),那么。

g(n)=[(a-b)r+(b-c)(n-r)]f(r)+(a-b)nf(r).(1)。

现在我们来求f(r),假定报童已经通过自己的经验和其他渠道掌握了一年(365天)中每天报纸的售出份数,那么在他的销售范围内,每天报纸日需求量r的概率f(r)为:

f(r)=,r=(0,1,2,3,…)。

其中k表示为卖出r份的天数。

g(n)=[(a-b)r+(b-c)(n-r)]p(r)dr+(a-b)np(r)dr.(2)。

通过上面的分析,可知实际问题归结为,在p(r)和a,b,c已知时,求n使得g(n)最大。

=-(b-c)p(r)dr+(a-b)p(r)dr.(3)。

令=0,得到=,又因为p(r)dr+p(r)dr=1,所以p(r)dr=.(4)。

在等式(4)中,p(r)和a,b,c均为已知,所以利用定积分的知识一定可以求出n。也即可以确定每天购进的报纸份数,使报童每天获得最大的收入。

三、利用现实问题,让学生学会思考,给他们提供创造成就感的机会。

通过上面碰到的实际问题,可以很容易地说服同学们静下心来好好学习高等数学。因为通过实际问题的求解,学生们了解到了,要想解决一个实际问题(哪怕是很小的问题),也需要大量的高等数学知识的储备;学生们也大概领略到了高等数学的用途与功能。这样的教学方法简单、直接,胜过老师课堂上反复的唠叨与强调。有了这样的一些实际问题,老师们就可以大胆地将数学建模思想引入高等数学的教学当中,让学生们在解决实际问题中学会思考,掌握知识,提高能力。

通过训练后,碰到实际问题,同学们会自然的想到我们的教学方法:(1)这些实际问题涉及到的高等数学知识?那些自己掌握了,那些还没有弄明白,学要加强学习。(2)知识点找到后,如何建立起数学与实际问题求解之间的关系?也即如何建立数学模型。(3)除了老师给的题目,自己本专业中的实际问题,能否用高等数学的知识去解决?通过思考、分析、解决这些问题,学生们会有一种创造创新的成就感,会愿意自主学习,自然而然其学习高等数学的积极性也会大大提高了。

最新数学建模心得体会论文大全(20篇)篇十九

摘要:随着现代社会的发展,数学的广泛用途已经无需质疑,他深入到我们生活的方方面面。现阶段,数学建模已经成为应用数学知识解决日常问题的一个重要手段。本文通过简述数学建模的方法与过程,以及应用数学建模解决实际经济问题的应用,展现的了数学学习的重要意义,以及数学在经济问题解决中的重要作用。

经济现象具有多变性,随着经济社会的发展,国际间贸易往来的日趋紧密,日常经济形势受到的影响因素越来越复杂多变。而日常经济生活中所遇到的经济现象同样存在着诸多的变化的影响因素。如何应对这些难以把控的变量,做好风险的预估、成本的核算、进行最大成本的规划,所有这些都可以借助数学知识、应用数学建模为工具进行较为理性的计算,为经济决策、企业规划提供重要的帮助。

数学建模,其实就是建立数学模型的简称,实际上数学建模可以称之为解决问题的一种思考方法,借助数学工具应用已知的定理定义进行合理的运算,推导出一种理性的结果的过程。数学建模是可以联系数学和外部世界的一个中介和桥梁,在工业设计、经济领域、工程建设等各个方面,运用数学的语言和方法进行问题的求解和推导,实际上,都是一种数学建模的过程。数学建模的主要过程可以总结为如下的框图形式:实际上,数学模型的最终建立是一个反复验证、修改、完善的动态过程,很少能够通过一次过程就建立起完美适合实际问题的数学模型。通过上述过程的多次循环执行:1.模型准备:分析问题,明确建模的目的,统计各种信息数据;2.模型假设:根据建模目的,结合实际对象的特性,对复杂问题进行简化,提取主要因素,提炼精确的数学语言;3.模型建立:根据提炼的主要因素,选择适当的数学工具,建立各个量(变量、常量)间的数学关系,化实际问题为数学语言;4.模型求解:对上述数学关系进行求解(包括解方程、图形分析、逻辑运算等);5.模型分析:将求解结果与实际问题结合,综合分析,找到模型的缺陷和不足,进行数学上的优化,建立稳定模型;6.模型检验:将模型得到的结果与实际情况相验证,检验模型的合理性和适用性。

二、经济问题数学模型的建立。

经济类问题因为其特有的特点,可以按照变量的性质分为两类:概率型和确定型。概率型应用于处理具有随机性情况的模型,可以解决类似风险评估、最优产量计算、库存平衡等问题;确定型则可以基于一定的条件与假设,精确的对一种特定情况的结果做出判断,如成本核算、损失评估等。对经济问题的建模计算实际上是一个从经济世界进入数学世界再回到经济世界的过程。建立经济数学模型,需要首先对实际经济问题和情况有一个较为深入的认识,然后通过细致的观察梳理,抽出最为本质的特征性的东西。将原始的复杂的经济问题简化提炼为一个较为理想的自然模型,然后基于这个原始模型应用数学知识建立完整的数学经济模型。

三、建模举例。

四、结语。

综上所述,我们可以看到,数学建模在经济中的应用可以非常广泛,对很多的决策和工作都可以提供参考和指导,如提高利润、规避风险、降低成本、节省开支等各个方面。上文只提供了一个简单的例子,和初步的介绍,其深入的理念和概念更加值得我们去努力的学习和思考。

最新数学建模心得体会论文大全(20篇)篇二十

1培养创造性思维学生在学习数学知识的过程中,虽然其接受的知识和经验是前人研究和发现的成果,但对于学生来说,其处于知识再发现的地位。教师向学生教授数学发现的思维和方法,换言之就是重点引导学生重温数学经验和知识的研究道路,进而保证学生的再发现能够顺利实现。这也是培养学生创新思维和能力的一个重要途径。利用数学建模能够有效地弥补数学教学过程中存在的缺陷,使学生充分体会到数学发现过程中的乐趣,进而激发学生学习数学的热情和积极性,培养其创造性思维。

2选择经典案例开展数学建模讨论、分析教师在实际的数学课堂教学中,可选择一些社会实际案例为讲授分析的主要对象,如实际生活和高科技的热点话题。教师可对此类实例进行必要的分析与讲解,在此过程中,积极引导学生独立钻研和研究问题,并培养学生主动查阅相关资料、自主讨论的能力。与此同时,教师还要及时与学生进行交流,答疑释难,并要求学生在自己实际能力的基础上构建恰当的模型,由易到难,循序渐进。除此之外,还要使学生充分发挥其主观能动性,培养学生发现问题,思考问题以及处理问题的能力。以微积分方程为例,教师在课堂教学中,可以“经济增长”作为主要案例,向学生系统地阐述微积分方程的实际应用过程,进一步加深学生对知识的理解、掌握和应用。

3同时开设数学建模与高等数学课程在职业院校数学教学过程中,同时开设数学建模与高等数学课程,能够有效提高学生对基础知识的理解能力和掌握程度,促进学生实践动手能力的培养。在数学建模课程的开设中,应该在教师的指导下,充分利用教学软件,引导学生动手实验和计算,加深学生对知识的掌握。在此过程中,使学生充分了解到运用数学理论和方法去分析和解决实际问题的全过程,进一步提高学生的积极性和思维意识能力,使他们意识到数学在实际生活应用中的关键作用。同时,促使学生将计算机技术融入数学学习中去,以现代化的高新科技为媒介,着手实际社会问题的解决。

4创新教学模式根据职业院校学生学习的特点和知识水平,重点提高学生运用数学的技能和思维方式来处理实际生活和专业问题的能力。要想从根本上培养学生的创新能力,一定要改变原来单一固定的教学模式,尝试和探索基于学生实际情况的教学措施和方式。经过长期的实践经验研究,讨论式教学和双向教学方式对培养学生的能力非常有效。这两种教学模式能够加深学生参与课堂教学的程度,激发学生学习数学的'主动性,最终达到提高教学效率的目的。所以,数学建模可以以具体问题为媒介,采用小组集体讨论解决问题的方法,培养学生的创新能力和意识,进一步加快职业技术院校数学教学模式的创新。

5组建数学建模团队在实际的数学教学中,教师可引导学生构建数学建模团队。在教师对数学建模的深入分析为基础,充分调动学生参与问题解决的主动性,师生积极互动,最终完成数学建模。如此一来,不仅能够有效培养学生积极进取的良好学习态度,而且还能够促进学生数学逻辑思维能力的提高。

6搭建校内数学建模网络平台在职业技术院校中构建校内数学建模网络平台,积极宣传与数学建模有关的知识经验,为学生主动获取数学建模信息提供各种数据资料。数学建模网络平台的搭建,能够有效促进教师和学生,学生与学生之间的交流与沟通,大大缩短学生和数学建模之间的距离,进而促进学生自主学习能力的提高和培养。

总而言之,数学建模思想是学生将基础理论知识与实际解决问题的方法相结合的最佳途径。将数学建模融入职业院校数学中,全面培养学生的创新意识和数学应用能力,进一步使数学为达成学院的教学和培养计划奠定基础,为培养更多更优秀的现代化社会人才服务。

相关范文推荐

    2023年学习艺术相关的心得体会(汇总16篇)

    心得体会可以促使我们提高对问题的分析和解决能力,形成自己的独到见解。接下来,我们将分享一些出色的心得体会范文,让我们一起来欣赏和学习。园林艺术是一门关于设计、建

    最新改革开放历史专题心得体会(热门17篇)

    写心得体会可以促使我们更有条理地组织思维,发现问题并提出解决方案。心得体会的撰写不仅可以帮助我更好地思考问题,还能够帮助他人获得启示和借鉴。我希望我的心得体会能

    最新销售经理心得体会总结(汇总21篇)

    在日常学习和工作中,通过总结心得体会可以使我们更好地反思自己的优点和不足。以下是一些成功经验的心得体会范文,希望能对大家有所帮助。第一段:引言(大约200字)。

    最新欣赏歌曲心得体会(热门17篇)

    写心得体会能够让自己更好地反思自己的学习和工作方式,找到不足,并从中成长。通过这次经历,我意识到思考和解决问题的能力对个人的成长和发展至关重要,从而开始注重培养

    最新java阅读心得体会(专业15篇)

    通过写心得体会,我们可以更好地反思自己的成长和进步,并且为未来的学习和工作制定更好的计划。下面是一些学生的心得体会,他们通过努力和积累发现了一些学习方法和心得。

    最新三会一课的会议记录(汇总18篇)

    范文是指具有一定价值和示范作用的文学作品或者其他文本,可以用于模仿和学习。希望大家能够从以下范文范本中汲取营养,提升自己的写作能力和水平。活动时间:3月12日活

    2023年高校教师心得体会和感想(专业20篇)

    教师心得体会是教师与同行交流和分享的重要途径,可以促进教师的相互学习和成长。现在,请大家一起来品味一下小编为大家整理的教师心得体会范文,相信会给大家带来思考和启

    2023年副行长心得体会和感想(实用17篇)

    通过写心得体会,可以更好地理清自己的思路,梳理所学所得。如果你正在写心得体会,不妨参考一下以下的范文,或许能够获得一些新的思路和灵感。党建工作是党的建设的重要内

    最新装修协议简单大全(16篇)

    装修是一个综合性的项目,需要我们具备一定的专业知识和经验。小编整理了一些经典的装修总结,希望能给大家带来一些灵感和思考。为规范家庭室内装修的施工,保护双方的合法

    最新秋姑娘的教案(通用22篇)

    教学工作计划是一种对教师在一段时间内的教学工作进行规划和安排的重要文件。下面是一些教学工作计划的案例,可以帮助大家更好地理解和应用。1.学会本课的生字,理解词语