教学计划应该分为长期计划、中期计划和短期计划,以满足不同阶段和不同部分的教学需要。接下来是一些教学计划的实例,希望能给大家带来一些灵感和帮助。
精选分数的性质和意义教学设计(汇总17篇)篇一
义务教育五年制小学数学第八册分数的意义。
义务教育六年制小学数学第十册分数的意义。
1.使学生知道分数的产生和其它数学知识一样是由人类的生产和生活实际中产生的。
2、使学生理解分数的意义和单位“1”的含义及分子、分母的含义。
3、培养学生形象思维,抽象概括能力和初步的逻辑思维能力。
4、使学生受到初步的辨证唯物主义观念的启蒙教育。
让学生理解分数的意义是本节课的重点,讲清单位“1”的含义是本节课的难点。
电脑软件一套。
每人一张正方形纸片、每组一个信封里面装有一张圆形、长方形纸片,4个苹果图片,6个玩具熊猫图片。
课前组织教学。
今天我们和许多小动物一起去参加小猴的生日聚会高兴吗?你们看小猴准备了许多好吃的、好玩的东西(电脑显示画面)请同学们观察一下都有什么?它还想测测同学们的智力利用课堂上所学的知识帮它分一分、算一算能做到吗?(上课)。
板书:分数。
1。把小猴准备的一部分礼物装在信封里,倒出来看一看都有什么?下面小猴要利用这些东西测测同学们的智力,看哪一个小组表现的好?听要求小组同学研究想办法表示出每种东西的。小组研究汇报。
2、根据刚才分的过程,把这些物体归两类,为什么这样分?
根据学生的回答板书:一个物体、一个整体(解释整体的含义)。
说明一个物体、一个计量单位或许多物体组成的整体都可以用自然数1来表示,通常叫做单位“1”
上面我们分的这些物体就可以用一句话表示出来谁能说出来?(把单位“1”平均分成两份,每份是它的)。
3、请同学们看屏幕,仔细观察回答问题。
(1)把一块饼平均分成两份,每份是它的()。
(2)把一张正方形的纸平均分成4份每份是它的(),其余的3份是它的()。
(3)把一条线段平均分成5份,每份是它的()其余的是它的()。
(4)同时显示以上3幅图,让同学们认真观察它们的分法和表示每一部分的分数有什么异同?小组讨论汇报。
4、请同学们拿出准备好的苹果和熊猫图片,平均分看有几种分法,其中的一份用什么数表示,小组讨论汇报,电脑显示平均分的苹果和熊猫图画,让学生按照第一幅图的说法说一说其余的几幅图的意思。
5、电脑同时显示一块饼、一张正方形纸、一条线段、四个苹果、六只熊猫图,提问:刚才我们分了这些物体都是把谁看作单位“1”?谁来说一说什么叫做单位“1”?电脑显示单位“1”的含义。
6、根据刚才所学的知识小组讨论到底什么样的数叫做分数呢?引导学生总结分数的意义,电脑显示分数的意义。
7、根据分数的意义指名说出刚才写的这些分数表示的意义。
8、教学分子、分母的含义:电脑显示分数各部分的名称,指名回答分子、分母各表示什么?写几个分数让学生说出分子、分母所表示的含义。
9、做一做电脑显示。
三、课堂练习:
1、让同学们闯三关,电脑显示三关题。
四、课堂小结:
这节课你学会了什么?
五、板书设计:
一个物体。
一个计量单位单位“1”2/34/155/11。
一个整体。
把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
精选分数的性质和意义教学设计(汇总17篇)篇二
分数与除法。
真分数。
真分数与假分数假分数。
带分数。
假分数化带分数或整数。
化成分母不同,大小不变的分数。
最大公因数。
约分求最大公因数。
最简分数。
约分及其方法。
最小公倍数。
通分求最小公倍数。
分数比大小。
通分及其方法。
小数化分数。
分数和小数的互化。
分数化小数。
1.知道分数是怎样产生的,理解分数的意义,明确分数与除法的关系。
2.认识真分数和假分数,知道带分数是一部分假分数的另一种书写形式,能把假分数化成带分数或整数。
3.理解和掌握分数的基本性质,会比较分数的大小。
4.理解公因数与最大公因数、公倍数与最小公倍数,能找出两个数最大公因数与最小公倍数,能比较熟练地约分和通分。
5.会进行分数与小数的互化。
1.充分利用教材资源,用好直观手段。
本单元教材在加强教学与现实世界的联系上作了不少努力.同时,教材还运用了多种形式的直观图式,数形结合,展现了数学概念的几何意义。从而为老师与学生提供了丰富的学习资源。教学时,应充分利用这些资源,以发挥形象思维和生活体验对于抽象思维的支持作用。
2.及时抽象,在适当的水平上,建构数学概念的意义。为了搞好木单元的教学,在加强直观教学的同时,还要重视及时抽象,不能听任学生的认识停留在直观水平上。否则,同样会妨碍学生对所学知识的理解和应用。例如,比较和的大小,有的学生回答不一定谁大谁小,要看他们分的那个圆,哪个大,由此得出可能比大,也可能比小、,还可能和相等。造成这样错误的主要原因就在于过分依赖直观,而没有及时抽象。因此,在充分展开直观教学,让学生获得足够的感性认识的基础上,要不失时机地引导学生由实例、图式加以概括,建构概念的意义。
3.揭示知识与方法的内在联系,在理解的基础掌握方法。在本单元中,约分与通分、假分数化为带分数或整数、分数与小数的互化的方法,都是必须掌握的。这些方法看似头绪较多,但若归结为基础知识,就是揭示相关知识与方法的联系,就比较容易在理解的基础上掌握方法。以约分与通分为例,它们都是分数基本性质的应用。尽管约分时分子、分母同除以一个适当的数,通分时分子、分母同乘一个适当的数,但它们都是依据分数的基本性质,使分数的大小保持不变。因此,教学时不宜就方法论方法,而应凸显得出方法的过程,使学生明白操作方法背后的算理。这样就能依靠理解掌握方法,而不是依赖记忆学会操作。
[课时安排1。
1.分数的意义……………………………………………5课时。
2.真分数和假分…………………………………………4课时。
3.分数的基本性质…………………………………………2课时。
4.约分…………………………………………………6课时。
5.通分…………………………………………………4课时。
6.分数与小数的互化………………………………………3课时。
整理和复习………………………………………………2课时。
第四单元实力评价…………………………………………1课时。
第一课时。
一教学内容。
教材第60页的内容。
二教学目标。
1.使学生知道分数的产生过程。
2.使学生感受到数学知识同样是在人类的生产和生活实践中产生的。
三重点难点。
理解分数的产生。
四教具准备。
米尺,挂图,几张长方形、正方形的纸。
五教学过程。
(一)导入。
同学们,我们在三年级时已经初步认识了分数,还记得我们都学了分数的哪些知识吗?
精选分数的性质和意义教学设计(汇总17篇)篇三
教材第70页的例3。
1.使学生认识带分数,学会把假分数化成整数或带分数的方法。
2.进一步培养学生的数感。
掌握把假分数化成整数或带分数的方法。
投影。
(一)导入。
提问:上节课我们学习了什么知识?什么叫真分数?什么叫假分数?
学生回忆并回答。
(二)教学实施。
1.出示例3中的插图。
老师随着提问,出示下图。
学生观察图,先独立思考,然后指名回答,“一个半”是1+的和。
老师提示:1+的和可以写成1。(板书:1)。
2.再让学生观察插图中其他几个同学吃了多少个橙子?怎样用分数表示?
学生试着说一说,老师分另”板书:1,2,。
4.请学生独立举出一两个带分数,让学生读一读。
5.老师小结:带分数都是由整数部分和分数部分组成的,带分数都比1大。
6.指出:有时根据需要,要把假分数化成整数或带分数。
(三)思维训练。
做同一种零件,王师傅2小时做15个,李师傅3小时做20个。谁做得快一些?(化成带分数再比较)。
(四)课堂小结。
通过本节课的学习,我们认识了什么是带分数,并会正确地把假分数化成带分数。
第三课时。
第71页的例4及“做一做”。
1.进一步培养学生的数感。
2.培养学生应用数学知识解决问题的意识。
掌握把假分数化成整数或带分数的方法。
投影。
(一)导入。
(1)出示例4,请学生看图说出假分数。
老师指出:这里都把一个圆看作单位“1”。
提问:
(1)它们的分数单位分别是什么?它们各有几个这样的分数单位?
(2)怎样把这几个假分数化成带分数?
学生以小组为单位讨论第(2)个问题。
请小组代表发言:=1=2。
请问:你是怎样得到这两个结果的?
学生汇报,可以从以下两个方面说:一种是看图直接得出=1=2,一种是根据分数与除法的关系得到结果。
老师强调指出:因为4个是1,而8÷4=2,所以8个是2,也就是=8÷4=2。
提问:这两个结果都是什么数?你发现在什么情况下,假分数能化成整数了吗?
小结:当分子是分母的倍数时,假分数可以化成整数。
提问:的分子还是分母的倍数吗?这种情况怎样化?学生回答:根据分数与除法的关系计算7÷3,商2表示7份中的6份,还剩1表示1份,是所以结果是2。
提问:化成带分数,怎样化?
学生独立完成,写在练习本上,然后集体订正。
=6÷5=1。
(二)小结。
假分数化成整数或带分数的方法是什么?
(1)分子是分母的倍数时,化成整数,用分子除以分母,商是整数。
(2)分子不是分母倍数时,化成带分数,用分子除以分母,数的整数部分,余数是分数部分的分子,分母不变。
9.指导学生完成教材第71页的“做一做”。
学生口述方法及结果,全班同学判断。
(三)思维训练。
在中,a是非0自然数。当a时,它是真分数;当a时,它是假分数;当a_时,它能化成整数。
第四课时。
真分数和假分数的练习课。
教材第72一74页练习十三的。
第1。
一13题。
1.通过教学,巩固学生对真分数、假分数和带分数的认识,并能正确地把假分数化成整数或带分数。
2.培养学生综合应用所学知识解题的能力。
3.培养学生复习的良好习惯。
综合应用分数的意义及真分数、假分数和带分数的知识解题。
投影。
(一)导入。
谈话:前几节课,我们研究了有关分数的哪些知识?
学生回忆并回答。
老师:今天,我们就来应用这些知识解题,看谁掌握得好。
(二)教学实施。
1.完成教材第72页的第1题。
让学生在课本上填一填,并读一读。
2.完成教材第72页的第2题。
老师提示:把一个椭圆或一个六边形看作单位“1”。
让学生看图在课本上写出分数。
提问:还可以把谁看作单位“1"?涂色部分占几分之几?学生自己确定单位“1",再看图写出分数,集体交流。
精选分数的性质和意义教学设计(汇总17篇)篇四
教学目标:
1.使学生知道分数的产生和其它数学知识一样是由人类的生产和生活实际中产生的。
2.使学生理解分数的意义和单位“1”的含义及分子、分母的含义。
3.培养学生形象思维,抽象概括能力和初步的逻辑思维能力。
4.使学生受到初步的辨证唯物主义观念的启蒙教育。
教学重点与难点:
让学生理解分数的意义是本节课的重点,讲清单位“1”的含义是本节课的难点。
教具准备:
电脑软件一套。
学具准备:
每人一张正方形纸片、每组一个信封里面装有一张圆形、长方形纸片,4个苹果图片,6个玩具熊猫图片。
教学过程:
课前组织教学。
今天我们和许多小动物一起去参加小猴的生日聚会高兴吗?你们看小猴准备了许多好吃的、好玩的东西(电脑显示画面)请同学们观察一下都有什么?它还想测测同学们的智力利用课堂上所学的知识帮它分一分、算一算能做到吗?(上课)。
一、分数的产生。
板书:分数。
1.把小猴准备的一部分礼物装在信封里,倒出来看一看都有什么?下面小猴要利用这些东西测测同学们的智力,看哪一个小组表现的好?听要求小组同学研究想办法表示出每种东西的。小组研究汇报。
2.根据刚才分的过程,把这些物体归两类,为什么这样分?
根据学生的回答板书:一个物体、一个整体(解释整体的含义)。
说明一个物体、一个计量单位或许多物体组成的整体都可以用自然数1来表示,通常叫做单位“1”
上面我们分的这些物体就可以用一句话表示出来谁能说出来?(把单位“1”平均分成两份,每份是它的)。
3.请同学们看屏幕,仔细观察回答问题。
(1)把一块饼平均分成两份,每份是它的()。
(2)把一张正方形的纸平均分成4份每份是它的(),其余的3份是它的()。
(3)把一条线段平均分成5份,每份是它的()其余的是它的()。
(4)同时显示以上3幅图,让同学们认真观察它们的分法和表示每一部分的分数有什么异同?小组讨论汇报。
4.请同学们拿出准备好的苹果和熊猫图片,平均分看有几种分法,其中的一份用什么数表示,小组讨论汇报,电脑显示平均分的苹果和熊猫图画,让学生按照第一幅图的说法说一说其余的几幅图的意思。
5.电脑同时显示一块饼、一张正方形纸、一条线段、四个苹果、六只熊猫图,提问:刚才我们分了这些物体都是把谁看作单位“1”?谁来说一说什么叫做单位“1”?电脑显示单位“1”的含义。
6.根据刚才所学的知识小组讨论到底什么样的数叫做分数呢?引导学生总结分数的意义,电脑显示分数的意义。
7.根据分数的意义指名说出刚才写的这些分数表示的意义。
8.教学分子、分母的含义:电脑显示分数各部分的名称,指名回答分子、分母各表示什么?写几个分数让学生说出分子、分母所表示的含义。
9.做一做电脑显示。
三、课堂练习:
1.让同学们闯三关,电脑显示三关题。
四、课堂小结:
这节课你学会了什么?
精选分数的性质和意义教学设计(汇总17篇)篇五
2、真分数与假分数。
4、最大公因数与约分。
5、最小公倍数与通分。
6、分数与小数的互化。
1、知道分数是怎样产生的,理解分数的意义,明确分数与除法的.关系。
2、认识真分数和假分数,知道带分数是一部分假分数的另一种书写形式,能把假分数化成带分数或整数。
3、理解和掌握分数的基本性质,会比较分数的大小。
4、理解公因数与最大公因数、公倍数与最小公倍数,能找出两个数的最大公因数与最小公倍数,能比较熟练地进行约分和通分。
5、会进行分数与小数的互化。
1、多侧面地展现了分数的来源。现实需要和数学需要。
2、把因数、倍数的有关知识与分数的相关知识结合起来教学。
3、关注数学的抽象过程,从现实问题情境引出数学问题,得出数学知识。
4、部分内容作了适当的精简处理或编排调整。
1、充分利用教材资源,用好直观手段。
2、及时抽象,在适当的抽象水平上,建构数学概念的意义。
3、揭示知识与方法的内在联系,在理解的基础上掌握方法。
精选分数的性质和意义教学设计(汇总17篇)篇六
教材第66页的例3及做一做。
1.使学生掌握分数与除法的关系。
2,培养学生的应用意识。
1.理解、归纳分数与除法的关系。
2.用除法的意义理解分数的意义。
圆片。
(一)引入。
老师:5除以9,商是多少?(板书:5÷9=)如果商不用小数表示,还有其他方法吗?学习了分数与除法的关系后,就能解决这个问题了。
板书课题:分数与除法的关系。
(二)教学实施。
1.学习例3。
(1)板书例题。
小新家养鹅7只,养鸭10只。养鹅的只数是鸭的几分之几?
(2)指名读题,理解题意并列出算式。板书:7÷10。
(3)利用除法和分数的关系得出结果。
7÷10=。
所以养鹅的只数是鸭的。
四)思维训练。
1.把8米长的绳子平均分成13段,每段长多少米?
2.把一个5平方米的圆形花坛分成大小相同的6块,每一块是多少平方米?(用分数表示)。
(五)课堂小结。
通过今天这节课的观察、操作,同学们发现了分数与除法之间的关系。分数的分子相当于除法的被除数,分数的分母相当于除法的除数,除号相当于分数的分数线。
2.真分数和假分数。
第一课时。
一教学内容。
真分数和假分数。
教材第69页的例1、例2及第70页的“做一做”。
二教学目标。
1.使学生理解真分数和假分数的意义及特征,并能辨别真分数和假分数。
2.培养学生观察、比较、概括的能力。
3.培养学生数形结合的数学思想。
三重点难点。
四教具准备。
例1及例2中图形的教具。
五教学过程。
(一)导入。
1.复习:什么叫分数?
2.用分数表示出下面各图的涂色部分。(出示教具)。
请学生分别说出每个分数的意义。
(二)教学实施。
1.提问:比较上面三个分数的分子与分母的大小?这些分数比1大还是比1小?并说明理由。
2.学生观察后,试着回答。
学生:(第一个圆)平均分成了3份,这样的3份也就是一个整圆,表示1,而阴影部分只有1份,所以比l小。
再请学生分别说出另外两个分数。
4.让学生独立思考后,与同桌交流一下,再指名回答。
5.小结:分子比分母小的分数叫做真分数。真分数小于1。
6.老师再出示例2中图形的教具。
7.请学生分别用分数表示每组图形中的阴影部分。
提问:第一幅图中,把一个圆平均分成几份?表示有这样的几份?怎样用分数表示?
老师强调:第二组图和第三组图中每个圆都表示“1”。
8.比较,,的分子和分母的大小,再与1比较。学生观察图,试着进行比较,与同桌交流。老师指名回答:所表示的阴影部分占据了整个圆,所以等于1;所表示的阴影部分占据了1个圆还多,所表示的阴影部分占据了2个圆还多,所以和都比1大。
9.老师指出:像,,这样的分数,叫做假分数。假分数大于1或等于1。
请学生举出一些假分数的例子,引导学生多举一些分子和分母相等的假分数。
10.引导学生完成教材第70页的“做一做”。
(l)学生先独立完成第1题,然后订正。
(四)思维训练。
1.在分数中,当a小于()时,它是真分数;当a大于或等于()时,它是假分数。
2.在分数(a0)中,当a小于或等于()时,它是假分数;当a大于()时,它是真分数。
3.分数单位是的最小真分数是(),最小假分数是()。
4.写出两个大于的真分数()和()。
(五)课堂小结。
通过本节课的学习,我们认识了真分数和假分数的特征,真分数的分子比分母小,真分数小于1;假分数的分子比分母大或分子和分数相等,假分数大于或等于1。通过学习,要会正确区分哪个分数是真分数,哪个分数是假分数,并会正确应用概念灵活解题。
第二课时。
一教学内容。
假分数。
教材第70页的例3。
二教学目标。
1.使学生认识带分数,学会把假分数化成整数或带分数的方法。
2.进一步培养学生的数感。
三重点难点。
掌握把假分数化成整数或带分数的方法。
四教具准备。
精选分数的性质和意义教学设计(汇总17篇)篇七
1、进一步认识分数,理解分数的意义。
2、认识分数单位,感受到单位的价值。
3、体会到数学好玩,进一步喜欢数学。
一、师生谈话,调节气氛。
二、简单提问,找准学生知识起点。
生:
师:能说说是怎么想的吗?
生:平均分成4份,取其中的3份就是。
生:
师:说说怎么想的?这个分数表示什么?
生:表示公猴或母猴占猴子总数的六分之三。
师:还想到了什么分数?
生:
师:说说是怎么想的。
……。
三、探究新知。
(一)、大头儿子的难题----引出单位。
(课件播放动画片:小头爸爸出去买沙发套,到了商店发现忘了测量沙发的长度,于是打电话让大头儿子测量一下,可是家中没有尺子)。
师:这可怎么办?你有什么好办法吗?
生:可以找个东西代替尺子测量。
师:一起来看看大头儿子是怎么解决的。
(课件继续播放故事:大头儿子想起可以找个东西代替尺子测量,于是他问爸爸戴领带了没有,爸爸回答戴了,于是他从家中找出一条爸爸的领带进行测量,他先将领带对折,发现不行,再对折,还是不行,又对折了一次,折出这很后放在沙发前)。
师:你知道大头儿子将领带平均分成了几份吗?
生:8份。
师:那你知道沙发的长度了吗?
生:知道。
师:请大家独立把答案写在作业本上。
(指名交流结果)。
生:
师:为什么是?
师:爸爸叫大头儿子测量沙发长度,为什么大头儿子首先想得到的是找尺子。
生:因为尺子有单位,比较容易看出长度。
师:那大头儿子没有尺子上的单位,又怎么测量出了沙发长度的呢?
生:将领带平均分成8份,就有了这个单位,然后数数有几个这样的单位就可以了。
师:原来分数就是这样产生的,今天我们就进一步来认识分数。
(板书课题)。
师:分数的再认识究竟是认识什么?你对分数有哪些问题?
生1:分数是什么?
生2:为什么要认识分数?
生3:怎么确定一个分数?
师:现在我们就带着这些问题一起来认识分数。
师:大头儿子在测量沙发长度是产生了这个分数,那这个分数是怎么产生的?
生:先把领带平均分成8分,这样就有了八分之一这个分数单位,然后再数数有几个这样的单位就行了。
生:米。
师:量一枝铅笔的长用什么做单位?
生:厘米。
师:为什么你会做这样的选择?
生:因为测量较长的物体就会选择较大的长度单位,测量较短的物体就选择较短的单位。
师:正是这样,不光是测量长度,测量面子、重量等都是这样的。也就是说不同的尺子就是单位不同。大头儿子用领带来测量沙发的长度,他创造了一把尺子,其实就是创造了一个新的单位。
师:一起来看一组分数,你知道他的单位吗?
(出示一组分数,指名说出分数单位,教室板书)。
师:观察一下这些分数单位,你发现了什么?
生1:所有的分数单位分子都是1。
生2:分数单位与原分数比较,分母不变,分子都变成了1。
生1:因为只有创造八分之一这个单位才好数。
生2:如果是二分之一、四分之一这样的分数单位,就数不出有几个这样的整单位。
师:原来要根据实际情况来确定单位呀!
师:古埃及人在进行分数运算时,只使用分子是1的分数,因此这种分数也叫做埃及分数。埃及分数,曾经是一个被人瞧不起的,古老的课题,但它隐含着十分丰富的内容,许多新奇的迷等待着人们去揭开。
(二)、大臣们的难题-----规定单位。
(课件演示动画过程,古代君臣一行几人正在花园中赏景,皇帝一时心血来潮,询问大臣们眼前的池塘中有几桶水,并限时回答否则重罚,这下可忙坏了大臣们,大家七手八脚的拿桶来测量,可怎么也搞不清楚,这时旁边的一个小孩哈哈大笑说:这么简单的问题还要这样大动干戈吗?我知道)。
精选分数的性质和意义教学设计(汇总17篇)篇八
1、了解分数的产生,让学生理解单位“1”不仅是一个物体,许多物体也可以看成单位“1”。
2、学生能掌握单位“1”平均分成若干份,表示其中一份或者几份的数,叫分数。
3、能用分数表示部分与整体的关系。
4、学生能知道某一个量是整体的几分之几。
情感态度与价值观:体会数学在日常生活中的应用。
使学生理解“分数”的意义,弄清分母,分子及分数单位的含义.
使学生理解“分数”的意义,弄清分数单位的含义.
课件。
一、板书课题:同学们今天我们一起来学习分数的意义。
二、揭示目标:这节课的目标是什么呢?请看:(出示学习目标),这个目标能当堂达到吗?:
1、什么情况下用分数表示。
2、分数四分之一表示什么。
3、什么叫单位“1”
4、什么是分数单位?
五分钟后比一比,谁自学最认真,谁能做对检测题。
四、先学。
一)看书(看一看)。
学生看书自学,教师巡视,确保每一名学生都在紧张的自学。
(二)检测(做一做):
1、完成课本46页做一做,指明学生板演,其余学生做练习本上。(要求字写的大小适中,字体端正。)。
2、教师巡视发现错例,准备二次备课。
五、后教。
(一)更正:
观察黑板上的题,发现错误的进行更正。(不同颜色的粉笔)。
1、看做一做的第1空,若对,问:认为对的举手?为什么?若错,问:为什么错了?
2、看做一做的第2空,若对,问:认为对的举手?为什么?若错,问:为什么错了?
3、看做一做的第3空,若对,问:认为对的举手?为什么?若错,问:为什么错了?
4、看做一做的第4空,若对,问:认为对的举手?为什么?若错,问:为什么错了?
通过刚才的解答,我们可以看出,(总结)一堆糖可以看作是一个整体,可以把这个整体平均分成若干数,所以分数单位也不相同。(学生一分钟时间记忆)。
六、课堂小结。
今天我们学习了分数的意义,知道了一个物体或一些物体可以看作单位1,把这个整体分成若干份,这样的一份或者几份可以用分数来表示。一个整体可以用自然数1来表示,通常把它叫做单位“1”。(学生记忆并板书)。
七、当堂训练。
1、课本63面练习十一第1、2、3题。(必做题)。
2、有三个小盒里面装有小棒,我从第一个小盒中拿出一根小棒,这一根小棒是这个整体的五分之一,我从第一个小盒中拿出二根小棒,这二根小棒是这个整体的五分之一,我从第一个小盒中拿出三根小棒,这三根小棒是这个整体的五分之一。你能猜出每个盒子里面原来有几根小棒吗?那你能不能说一说这三个五分之一有什么相同点和不同点吗?(思考题)。
八、板书设计。
一个物体或一些物体可以看作单位1,把这个整体分成若干份,这样的一份或者几份可以用分数来表示。
一个整体可以用自然数1来表示,通常把它叫做单位“1”。
本课教学的重点就是分数的意义。考虑到如果让我自己概括分数的意义,概念中“一份”我也会把它纳入到“几份”中去,让学生自主、完整地概括出这一概念几乎不可能。因此我主要是引导学生回顾前面各个分数的产生,使学生在回顾的过程中感受、理解、提炼出分数意义的模型,结合教师的板书补充,逐步形成分数的意义。而对于分数单位的教学,我是在分数的意义教学之后,让学生通过看书,再通过尝试回答,去理解。在多次回答“它的分数单位是多少?它里面有几个这样的分数单位?”之后,学生势必会有一些发现,再请学生概括出分数单位、分数单位的个数与分数分子、分母的关系,使学生在数学技能方面得到发展。
在设计练习时,我着重围绕本课重点既分数意义的理解进行安排,既安排了完成书本上的习题,也设计了一道综合性、生活化、渗透数学思想的习题。首先是让学生在具体的实际生活问题中理解把哪个量看作“单位1”,深化对分数意义的理解;其次是使学生感受到同一个分数,“单位1”的量变化,所对应的数量也随之变化。并引导学生通过观察,感受到“单位1”的量的变化是如何影响分数所对应的数量的变化的。二是发展学生数感,培养学生的估计能力,其实也渗透深化学生对分数意义的理解。三是渗透数学思想,极限的思想。引导学生在现实的问题情景中,通过想象,体会到“日取其半,万世不竭”。学生数感的发展需要专项的训练,但更需要教师课堂教学进行长期的、适时地渗透进行,数学思想、数学文化更是如此。这不是一蹴可就的,而是一个长期的、潜移默化的过程。
但是回顾整课的教学,还是存有一些遗憾。比如一些细节上处理还是不够好。在新授部分将许多物品作为整体呈现时还是需要用一些符号使学生深入感受到将它们看作一个整体,在学生看书过程中缺少必要的引导和指导。还有就是练习的量还是较少,学生在技能层面发展不够。
文档为doc格式。
精选分数的性质和意义教学设计(汇总17篇)篇九
教材第66页的例3及做一做。
1、使学生掌握分数与除法的关系。
2,培养学生的应用意识。
1、理解、归纳分数与除法的关系。
2、用除法的意义理解分数的意义。
圆片。
(一)引入。
老师:5除以9,商是多少?(板书:5÷9=)如果商不用小数表示,还有其他方法吗?学习了分数与除法的关系后,就能解决这个问题了。
板书课题:分数与除法的关系。
(二)教学实施。
1、学习例3。
(1)板书例题。
小新家养鹅7只,养鸭10只。养鹅的只数是鸭的几分之几?
(2)指名读题,理解题意并列出算式。板书:7÷10。
(3)利用除法和分数的关系得出结果。
7÷10=。
所以养鹅的只数是鸭的。
(三)思维训练。
1、把8米长的绳子平均分成13段,每段长多少米?
2、把一个5平方米的圆形花坛分成大小相同的6块,每一块是多少平方米?(用分数表示)。
(四)课堂小结。
通过今天这节课的观察、操作,同学们发现了分数与除法之间的关系。分数的分子相当于除法的被除数,分数的分母相当于除法的除数,除号相当于分数的分数线。
2、真分数和假分数。
第一课时。
一教学内容。
真分数和假分数。
教材第69页的例1、例2及第70页的“做一做”。
二教学目标。
1、使学生理解真分数和假分数的意义及特征,并能辨别真分数和假分数。
2、培养学生观察、比较、概括的能力。
3、培养学生数形结合的数学思想。
三重点难点。
四教具准备。
例1及例2中图形的教具。
五教学过程。
(一)导入。
1、复习:什么叫分数?
2、用分数表示出下面各图的涂色部分。(出示教具)。
请学生分别说出每个分数的意义。
(二)教学实施。
1、提问:比较上面三个分数的分子与分母的大小?这些分数比1大还是比1小?并说明理由。
2、学生观察后,试着回答。
学生:(第一个圆)平均分成了3份,这样的3份也就是一个整圆,表示1,而阴影部分只有1份,所以比1小。
再请学生分别说出另外两个分数。
4、让学生独立思考后,与同桌交流一下,再指名回答。
5、小结:分子比分母小的分数叫做真分数。真分数小于1。
6、老师再出示例2中图形的教具。
7、请学生分别用分数表示每组图形中的阴影部分。
提问:第一幅图中,把一个圆平均分成几份?表示有这样的几份?怎样用分数表示?
老师强调:第二组图和第三组图中每个圆都表示“1”。
8、比较,,的分子和分母的大小,再与1比较。学生观察图,试着进行比较,与同桌交流。老师指名回答:所表示的阴影部分占据了整个圆,所以等于1;所表示的阴影部分占据了1个圆还多,所表示的阴影部分占据了2个圆还多,所以和都比1大。
9、老师指出:像,,这样的分数,叫做假分数。假分数大于1或等于1。
请学生举出一些假分数的例子,引导学生多举一些分子和分母相等的假分数。
10、引导学生完成教材第70页的“做一做”。
(1)学生先独立完成第1题,然后订正。
(四)思维训练。
1、在分数中,当a小于()时,它是真分数;当a大于或等于()时,它是假分数。
2、在分数(a0)中,当a小于或等于()时,它是假分数;当a大于()时,它是真分数。
3、分数单位是的最小真分数是(),最小假分数是()。
4、写出两个大于的真分数()和()。
(五)课堂小结。
通过本节课的学习,我们认识了真分数和假分数的特征,真分数的分子比分母小,真分数小于1;假分数的分子比分母大或分子和分数相等,假分数大于或等于1。通过学习,要会正确区分哪个分数是真分数,哪个分数是假分数,并会正确应用概念灵活解题。
第二课时。
一教学内容。
假分数。
教材第70页的例3。
二教学目标。
1、使学生认识带分数,学会把假分数化成整数或带分数的方法。
2、进一步培养学生的数感。
三重点难点。
掌握把假分数化成整数或带分数的方法。
四教具准备。
精选分数的性质和意义教学设计(汇总17篇)篇十
真分数与假分数。
分数的基本性质。
最大公因数与约分。
最小公倍数与通分。
分数与小数的互化。
二、教学目标。
1.知道分数是怎样产生的,理解分数的意义,明确分数与除法的关系。
2.认识真分数和假分数,知道带分数是一部分假分数的另一种书写形式,能把假分数化成带分数或整数。
3.理解和掌握分数的基本性质,会比较分数的大小。
4.理解公因数与最大公因数、公倍数与最小公倍数,能找出两个数的最大公因数与最小公倍数,能比较熟练地进行约分和通分。
5.会进行分数与小数的互化。
三、编排特点。
1.多侧面地展现了分数的来源。
现实需要和数学需要。
2.把因数、倍数的有关知识与分数的相关知识结合起来教学。
3.关注数学的抽象过程,从现实问题情境引出数学问题,得出数学知识。
4.部分内容作了适当的精简处理或编排调整。
(1)求一个数是另一个数的几分之几的实际问题,原来安排在分数与除法的关系之后,现在挪后。
(2)分数大小比较,不单列一段,而是与通分结合在一起学习。
(3)删去了原来第2节中把整数或带分数化成假分数的内容。
四、具体编排。
1.分数的意义。
分数的产生。
通过测量与分物,引入分数,使学生感悟分数是适应客观需要而产生的。
分数的意义。
(1)单位“1”既可以表示一个物体,也可以表示一些物体,体现了部分与整体的关系。同一个分数可以表示不同的具体量,体现了分数的抽象性。
(2)分数单位的概念。
分数与除法。
(1)体现了分数的数学来源:计算时往往不能正好得到整数的结果,常用分数来表示。可从数系的扩展角度来认识分数的产生。
(2)分数与除法的统一点:对一个整体进行平均分。
(3)为后面的假分数以及把假分数改写成整数、带分数作准备。
例1。
把除法的意义和分数的意义进行统一:把1个物体平均分成3份,用除法的意义列出除法算式1÷3,根据分数的意义得到每份是。
例2。
(1)把许多物体(3块月饼)平均分成4份,求每份是多少。用除法的意义列出除法算式3÷4,根据分数的意义得到每份是,在这儿,可以用两种方式来理解:a、把1平均分成4份,每份是,这样的3份是。b、把3平均分成4份,每份是。
(2)通过图示得到分数结果,方法多样:一、用操作或图示法。二、推理:1块月饼平均分给4人,每人分得块,3块月饼平均分给4人,每人分得3个块,是块。
分数与除法关系的总结。
根据例1和例2总结出分数与除法的关系。在这儿,可以把分数的意义进一步扩展,它既可以表示作为结果的一个数,也可以表示一种运算过程。
(1)可以解决整数除法中商不是整数的情况。
(2)分数与除法可以互逆,可看作同一种运算。
(3)因为除数不能为0,所以分母不能为0。
2.真分数与假分数。
以前学生只接触过分子比分母小的分数,现在介绍分子和分母相等或分子大于分母的分数,可以让学生更全面地认识分数。
例1。
让学生根据已有知识写出分数,并重点观察分数中分子和分母的大小,并借助直观把它们和1比较,再介绍真分数的概念。
例2。
让学生重点观察分数中分子和分母的大小,并把它们和1的大小比较,给出假分数的概念。需指出这里的单位“1”是一个圆而不是所有圆的总体。
例3。
(1)从生活语言“一个半”引出带分数的写法及读法。
(2)让学生仿照着写出其他的分数。
例4。
(1)要把假分数化成整数或带分数是因为要培养学生对于分数的数感。
(2)化的时候有不同的方式。
a.根据分数的意义:4个就是1。
b.利用直观图。
c.利用分数与除法的关系。
(3)可引导学生总结假分数化成整数或带分数的一般方法。
3.分数的基本性质。
分数的基本性质是约分、通分的基础。
例1(分数基本性质的推导)。
(1)通过直观图观察得出三个分数相等。
(2)从两个方向观察三组分数的分子、分母的变化规律。
(3)通过自主举例,从具体到一般,总结出分数的基本性质。
(4)由于分数与除法的内在一致性,引导学生用除法中商不变的性质来说明分数的基本性质。
例2(分数基本性质的应用)。
把分数化成分母不同(分母扩大、分母缩小两种情况),但大小相同的另一分数。
4.约分。
与九义教材相比,把公因数、最大公因数移至此,更体现了求公因数的必要性。
最大公因数。
例1(公因数、最大公因数的概念)。
(1)利用实际情境(用正方形铺满长方形且必须是整块数)引出求公因数的必要性。
(2)借助操作进一步理解正方形的边长必须既是长方形长的因数,又是宽的因数,从实际问题转入数学问题。
(3)用集合的形式表示出因数、公因数,与第二单元相响应。
例2(最大公因数的求法)。
(1)前面没有正式教学分解质因数,因此这儿不教学用分解质因数的方法求最大公因数的方法,只在“你知道吗”中进行介绍。
(2)多种方法。
a.分别列出两个数的所有因数,再找公因数。
b.从较小的数的最大因数开始找,看是不是另一个数的因数。
也可引导学生想出不同的方法,如:从较大的数的最大因数开始找,然后和上面的b方法进行比较,看哪种更合适。
(3)让学生通过观察,找出公因数和最大公因数之间的关系:所有的公因数都是最大公因数的因数。
做一做。
让学生接触两类特殊数的最大公因数:两数存在因数和倍数的关系,两数互质。
约分。
例3(最简分数的概念)。
(1)通过实际情境引出两个分数(根据不同的素材引出:具体的米数、分成四段)。
(2)利用分数的基本性质说明两个分数相等,为后面的约分设下铺垫。再给出最简分数的概念。
例4(约分)。
(1)原理:利用分数的基本性质把分数改写成相等的最简分数。
(2)方法多样:可以逐步约分,也可直接用最大公因数约。
(3)给出约分的简便写法。
5.通分(编排方式与约分相似)。
与九义教材相比,把公倍数、最小公倍数移至此,更体现了求公倍数的必要性。
最小公倍数。
例1(公倍数、最小公倍数的概念)。
(1)利用实际情境(用长方形铺满正方形且必须是整块数)引出求公倍数的必要性。
(2)借助操作进一步理解正方形的边长必须既是长方形长的倍数,又是宽的倍数,从实际问题转入数学问题。
(3)用集合的形式表示出倍数、公倍数,与第二单元相响应。
例2(最小公倍数的求法)。
(1)前面没有正式教学分解质因数,因此这儿不教学用分解质因数的方法求最小公倍数的方法,只在“你知道吗”中进行介绍。
(2)多种方法。
a.分别列出两个数的倍数,再找公倍数。
b.从较大的数的最小倍数开始找,看是不是另一个数的倍数。
也可引导学生想出不同的方法,如:从较小的数的最小因数开始找,然后和上面的b方法进行比较,看哪种更合适。
(3)让学生通过观察,找出公倍数和最小公倍数之间的关系:所有的公倍数都是最小公倍数的倍数。
做一做。
让学生接触两类特殊数的最小公倍数:两数存在因数和倍数的关系,两数互质。
通分。
例3(分数大小的比较)。
(1)通过实际情境引出两个分母相同的分数的大小比较。
(2)和的比较方法多样(三年级上册已经有了一定基础)。
a.根据分数的意义。
b.根据分数单位的多少。
(3)让学生通过一些特例,自行总结分母相同或分子相同的分数的大小比较方法(三年级上册有了分子都是1的分数大小比较方法)。
(2)利用分数的基本性质说明两个分数相等,为后面的约分设下铺垫。再给出最简分数的概念。
例4(通分)。
(1)从实际情境引入,出现分子、分母均不相同的情况,比较大小时产生认知冲突。
(2)原理:利用分数的基本性质把两个分数改写成分母相等的分数。
(3)通分时,可以把分母都化成两个分母的最小公倍数,也可以不是最小公倍数。
(4)作为比较大小的方法,还可以把两个分数改写成分子相同的分数。
(5)区别通分与约分:约分是对一个分数的运算,通分是对两个分数的运算。
6.分数和小数的互化。
例1(小数化分数)。
(1)用小数和分数两种不同的方式表示同一个除法运算的结果,建立起两者的联系。
(2)利用小数的意义给出小数化分数的一般方法。一位小数由教材给出范例,两、三位小数由自己类推。
例2(分数化小数)。
(1)创设六个数比较大小的数学情境。
(2)分数化小数的方法多样;。
a.分母是10、100……的,利用小数的意义来化。
b.分母不是10、100……的,可以化成分母是10、100……的,也可以利用分数与除法的关系来化。
整理和复习。
分数的概念。
分数的分类。
分数的基本性质及其运用。
分数与小数的互化。
五、教学建议。
1.充分利用教材资源,用好直观手段。
2.及时抽象,在适当的抽象水平上,建构数学概念的意义。
3.揭示知识与方法的内在联系,在理解的基础上掌握方法。
精选分数的性质和意义教学设计(汇总17篇)篇十一
义务教育课程标准实验教科书《数学》五年级下册p60—64。
1、结合具体情境,在学生原有分数知识基础上,了解分数产生的背景,理解分数的意义,理解单位“1”不仅是一个物体,也可以是许多物体;知道分子、分母和分数单位的含义。
2、经历认识分数意义的过程,进而理解分数的意义和分数单位的意义,并学会用分数描述生活中的事物,体会“整体”与“部分”之间的关系。
3、利用操作、讨论、交流等形式展开小组学习,培养学生的合作探究能力,培养质疑和验证科学知识的能力。
一、回忆旧知。
2.师:你们认识它吗?请大声地读出它?(二分之一)。
它是什么数?
3.师:你已经知道了分数的哪些知识?
(分子,分母,分数线)。
二、探究新知。
(一)了解分数的产生。
1.师:对于分数同学们知道的真不少,那你们知道分数是怎么来的吗?
2.师:我给你们准备了几幅图,大家看(课件出示60页主题图1)。
3.师:古人把绳子按相同的长度打上结用来测量物体的长度,两个结中间的一段就表示长度的一个计量单位,(指着图)如图上这样的一段就用1表示,这里有1、2、3三段就用(3)表示,剩下的不足一段,还能用1表示吗?(不能)。
4.师:(课件出示60页主题图2)再来看,把桌上的东西平均分给两个同学,每个同学分到的东西还能用整数表示吗?(不能)。
5.师:在进行测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。
6.师:你知道第一个发明分数的人,他是怎么写这个分数的吗?
7.师:(课件出示62页主题图)3000多年前,古埃及就有了分数记号,人们借助椭圆表示分子为1的分数;20xx多年前,我们中国用算筹表示分数,像这样上面摆3根,下面摆5根,就表示3/5;后来,印度用阿拉伯数字表示分数,这种方法和我国的类似,只是这两种方法都没有分数线,直至公元12世纪,也就是大约800年前,阿拉伯人发明了分数线,这种方法一直沿用至今。
8.师:那分数到底表示什么呢?接下去我们就重点研究分数的意义。(板书:和意义)。
(二)探索研究,理解分数的意义。
1.师:你能举例说明1/4的含义吗?(学生答)。
2.师:下列图中的阴影部分能用1/4表示吗?为什么?
如生说可以,则问:你为什么觉得可以用1/4表示呢?生说理由。
(强调一定要平均分)(板书:平均分)。
3.动手操作,创作分数。
(1)操作。
师:现在你能利用手中的学具,通过折一折、画一画、分一分等方法,创造出几个不同的分数吗?(学生动手操作,教师巡视。)。
(2)交流。
师:谁愿意上来说一说,你得到了哪些分数?这个分数是怎样得到的?
4.认识单位“1”。
师:象把一张长方形纸平均分,我们可以称之为把一个物体平均分。
把4根香蕉、8块面包平均分,我们又可以称之为把一些物体平均分。
师小结:
一个物体也可以表示一些物体。
师:你能举例说说可以把什么看作单位“1”?
师:通过刚才的举例和学习,谁可以更准确地说说怎样才用分数表示呢?(两个学生讲后老师小结)把单位“1”平均分成若干份,(老师板书)这样的一份或几份可以用分数表示。
(三)认识分数单位。
1、62页做一做。
2、师:自然数的单位是什么?7里面有几个1?26呢?
分数也有自己的单位,什么是分数单位呢?请同学们自学课本62页。
3.找生汇报:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫分数,这是分数的意义。而表示其中一份的数叫做分数单位。如2/3的分数单位是1/3。
3、练习:读出下面的分数,并说出每一个分数的分数单位。(课件)。
三、
巩固新知。
1.完成课本练习十一部分练习。
2.体会“整体”与“部分”之间的关系。
(结合课件演示)。
师:为什么都是,有的是1支,有的是2支,还有的却是3支呢?
师小结:虽然都是把全部的粉笔平均分成了5份,但是因为单位“1”的数量不同,所以每一份的数量也就不同。因此说一个分数时,一定要强调是哪一个整体的几分之几,即:说清楚是“谁的”几分之几。
四、全课。
总结。
板书设计:
一个物体。
一个整体单位“1”
一些物体。
把单位“1”平均分成若干份,这样的一份或几份可以用分数表示。表示这样一份的数叫分数单位。
精选分数的性质和意义教学设计(汇总17篇)篇十二
1、在具体的情境中了解分数的产生,会用分数表示生活中的事物。
2、通过动手操作、观察、比较、探究等学习活动,归纳、整理并理解分数的意义,理解单位“1”,明确分数单位。
3、通过一系列的数学活动学生获得成功、愉悦的情感体验,并感受到生活中处处有分数,培养学习数学的兴趣。
学生理解分数的意义和分数单位,弄懂单位“1”。
理解单位“1”的含义。
一、导入:回顾旧知,引入新课(2分钟)。
出示:1/32/57/10。
师:老师黑板出示了三个分数,记得在三年时我们初步认识了分数。现在让我们一起把这三个分数读出来。(生齐读)。
师:同学们,除了会读,还记得哪些分数的知识?
(生汇报)。
师:同学们对分数已经有了初步的了解,但是关于分数的知识还有很多,这节课我们就来进一步学习有关分数的知识。(教师板书课题:分数的意义)。
二、交流预习,明确任务(3分钟)。
师:老师知道我们班同学都爱学数学,因为数学里埋藏着好多奥秘,数学是一个藏金的宝藏。不知道你们在昨天的预习中挖出了什么宝贝?先让我们来交流一下预习情况。或说出你收获了哪些知识,或提出需要进一步探究的问题。
(学生汇报,教师适当提炼板书)。
师:大家真的用心预习了,找出了本课的知识点。下面就让我们来深入地学习。
三、新授:自主学习、探究新知(20分钟)。
联系实际,了解分数的产生、发展。
(学生观察,交流)。
师:同学们看到了,生活中处处有分数。然而,我们今天使用的分数它却走过一段及其漫长的旅程。让我们具体了解一下,课件出示。
请同学们拿出已经准备的长方形纸、正方形纸、圆形纸、线段图。动手折一折,涂一涂,表示它的1/4。
引导学生初步概括分数的意义(分数是把一个物体平均分成若干份,表示这样的一份或几份的数)。
(二)、更进一步理解分数的意义。
1、理解单位“1”
我以组词游戏的形式引出单位“1”。
课件出示一个苹果(1个苹果)。
再出示两个苹果(1双、1对)。
4个苹果呢?(1组、1盘、1斤)。
24个苹果呢?(1箱)。
小结:通过刚才的小游戏我们发现,自然数“1”不仅可以表示1个物体,还可以表示多个物体。我们把这些多个物体也看作了一个整体。这个整体我们通常把它叫做单位“1”。
课件演示把这一箱苹果打开,再把这24个苹果看作是一个整体,把它平均分成4份,取其中的一份可以用1/4表示。
通过我们观察折一折、涂一涂的活动和分苹果活动,请同学们认真观察以上的表示过程,说一说有什么相同的地方,有什么不同的地方。
(1)相同点:都表示1/4。
(2)不同点:有的用长方形纸表示、有的用正方形纸表示、有的用圆形纸表示、有的用线段表示、有的用24个苹果表示。
指着黑板与学生沟通:请同学们静下心来想一想:分数是什么呢?从而概括出(分数是把一个物体、一些物体平均分成若干份,表示这样的一份或几份的数。)。
3、学习分数单位。
课件出示教科书46页做一做的练习题。
通过练习让同学们,认识当我们把单位“1”平均分成若干份,表示其中的一份的数叫分数单位。
四、巩固反馈,拓展提高。
练习十一的第1、2、3、4题。
五、课堂小结。
本节课你学习了哪些知识,你有哪些收获?
资源文件列表:
精选分数的性质和意义教学设计(汇总17篇)篇十三
理解单位1,归纳出分数的意义。
理解并掌握单位1及其分数的意义。
多媒体教学课件
教学方法手段及学法指导:
四年级的学生已经具备了一定的信息收集和处理的能力,并能在网络环境下做出自我检测和评价。为实现上述目标,突破重难点,我将本节数学课设计成以计算机网络为依托的一种教学方式。在这个环境中,通过提供宽松的教学环境,相关的教学资源,调动学生的积极性,让他们自己去发现问题、解决问题,使其真正成为学习的主人。充分利用计算机的交互功能,让学生在网络环境下去完成学习任务。对于有困难的学生给予及时的辅导与帮助,让学生在学习过程中真正成为一个有思想、会思考的探究者。
师:同学们,六一儿童节又快到了,你们高兴吗?每到这一天,我们学校都会组织野营拉练活动。
(播放情境动画:同学们排着整齐的队伍向大山中走去)
师:同学们在大自然中尽情地唱,尽情地跳。到了中午,大家席地而坐,一起用餐,别提多高兴了。可是有一个低年级的小同学在吃午餐时却遇到了一个问题。
(出示课件:一张饼,4个人分)
师:从这里不难看出,在实际生活中,往往会得到一些不能用整数表示的结果,比如分东西、测量或计算等,这时就需要用一种新的数分数来表示,这样就产生了分数。这节课我们就共同研究分数的意义。
说明:知识源于生活,又服务于生活。教学中,通过创设学生感兴趣的情境,联系学生已有的生活经验,让学生体会到数学知识、数学问题来源于生活的思想。
1.回顾旧知
2.小试身手
问:你们得到分数了吗?谁愿意说说是怎样得到的?
(指名选择不同物品,采用不同分法,得到不同分数的学生进行汇报)
说明:这一环节的设计力求实现学习自主性。把学习资源交给学生,让他们按自己的想法去操作,分得的结果必然各异,得到的分数自然也各不相同。让学生从动手操作中,亲身体会分数的产生,同时也极大地调动了学生的自主探究欲望,在实践中思考,在思考中归纳,从而为独立归纳分数的意义奠定了基础。
3.尝试归纳
问:谁能用自己的话说说什么是分数?
师:让我们看看最科学的说法。(出示分数的意义)
4.理解单位1
问:同学们想一想,单位1可以指什么?
师:同学们说的都对,大到宇宙空间,小到微尘沙粒,我们想用分数的思想去研究谁,就可以把谁看作单位1。
说明:按照学生认知的发展规律展开新知的探索,并通过观察、操作、思考、归纳等教学过程,让学生参与知识形成的全过程。苏霍姆林斯基说:在人的心灵深处有一种根深蒂固的需要,这就是希望感到自己是一个发现研究者、探索者。而在儿童意识中,这种需要特别强烈。在这里新知的探索是建立在学生已有的知识平台上,并给他们一个自主、自由的探索空间,去主动构建知识的体系。根据儿童的认知规律及思维特点,在探索中使学生能够从多角度、多侧面、多方位感受知识产生的过程,为学生创设一个积极参与、主动学习的网络环境,培养学生的思维品质及合作意识。教学中,让学生主动建构,师生共同合作,共同探究,实现由不知到知,由知其然到知其所以然的认识,充分体现学生活动的主体性和自主性。
5.即时训练
问:你能找出这两则报道中的单位1吗?
(出示蛋糕的画面)
问:同学们,看到这个画面你想到了什么?
再仔细观察,你还发现了什么?(上面有12支蜡烛、8朵玫瑰花)
(动态演示:把蛋糕平均分成四份)
从这个画面中,你发现了哪些有关分数的知识?
(学生可以分别把一整块蛋糕、12支蜡烛、8朵花看作单位1进行阐述,并从上得到相应的分数)
说明:这一环节的设计,不仅可以培养学生的观察能力和分析能力,而且可以充分调动学生的思维。这里,观察的角度不同,单位1也不同,通过观察和思考,使学生明确,虽然每一份都可以用1/4表示,但由于我们确定的单位1不同,这个分数所表示的实际意义也不同。
师:同学们现在又学会了很多关于分数的知识,请点击进入到自我挑战的内容。比比看,谁能在最短的时间内完成所有的挑战练习。
说明:这一环节的设计,可让不同层次的学生自由选择进入不同类型的练习,同时在学习活动中,充分信任学生,使学生能够进行创造性学习和活动,通过课件的反馈功能及时发现自己的错误,最后通过知识点的统计结果可让学生自我检测学习效果。从而培养学生的思维品质。
师:同学们战况如何啊?完成所有挑战练习,而且全都正确的举一下手。
问:谁能说说,这些人还可以用哪一个数来表示?为什么?
说明:这一环节的设计,巧妙地让学生把刚刚学到的分数知识适时恰当地运用于课堂当中,不但及时地检测了学生对分数的意义的理解情况,考察了学生活学活用的能力,而且让学生切身感受到了分数离我们的生活其实非常近。
师:老师这里还有一组更难的挑战思维的练习,你们愿意尝试吗?(出示开放题)
说明:练习设计,层次多样,注重培养学生的创新意识和实践能力。本节课的练习,分为自我挑战练习和开放拓展练习。这样的设计既巩固了基础知识又让学生将所学的知识与生活实际紧密结合起来,不仅可以把课堂气氛推向高潮,而且让学生深刻地体会到今天所学的数学知识能够解决生活中的实际问题,是有用的数学,从而进一步培养了学生的创新意识和应用能力。
师:现在老师要进行一项小调查。请同学们进入到参与调查的界面,发表一下你对这节课的评价。
你认为这样的学习方式有趣吗?是觉得很有趣?还可以?还是没意思?根据你自己的意愿,选择一项提交上来。
(学生根据自己的意愿去自由选择提交)
师:我们来查看一下结果。从这个结果中,你能看出什么?你能提出哪些关于分数的问题?
说明:这一环节的设计,为学生提供了表达自己学习情感的空间。学生可根据自己的意愿对本节课的学习方式和效果进行评价,而且在统计结果中还可让学生根据相关信息提出分数问题,对理解分数的意义又一次进行了提升。
师:通过这节课的学习,同学们有哪些收获和体验,请把你的想法签写到留言板上吧!
精选分数的性质和意义教学设计(汇总17篇)篇十四
教学资料:人教版小学数学五年级下册《分数的意义》(60—62页)。教学目标:
1、在具体的情境中了解分数的产生,会用分数表示生活中的事物。
2、透过动手操作、观察、比较、探究等学习活动,归纳、整理并理解分数的意义,理解单位“1”,明确分数单位。
3、透过一系列的数学活动学生获得成功、愉悦的情感体验,并感受到生活中处处有分数,培养学习数学的兴趣。
教学重点:学生理解分数的意义和分数单位,弄懂单位“1”。
教学难点:理解单位“1”的含义。
教具准备:三个装有不一样数量小棒的盒子。
学具准备:每人准备四张彩纸剪成的圆或规则的四边形、剪刀、水彩笔等。
教学过程:
一、导入:回顾旧知,引入新课(2分钟)。
出示:1/32/57/10。
师:老师黑板出示了三个分数,记得在三年时我们初步认识了分数。此刻让我们一齐把这三个分数读出来。(生齐读)。
师:同学们,除了会读,还记得哪些分数的知识?
(生汇报)。
师:同学们对分数已经有了初步的了解,但是关于分数的知识还有很多,这节课我们就来进一步学习有关分数的知识。
二、交流预习,明确任务(3分钟)。
师:老师明白我们班同学都爱学数学,因为数学里埋藏着好多奥秘,数学是一个藏金的宝藏。不明白你们在昨日的预习中挖出了什么宝贝?先让我们来交流一下预习状况。或说出你收获了哪些知识,或提出需要进一步探究的问题。
(学生汇报,教师适当提炼板书)。
师:大家真的用心预习了,找出了本课的知识点。下方就让我们来深入地学习。
三、新授:自主学习、探究新知(20分钟)。
1.联系实际,了解分数的产生、发展。
(学生观察,交流)。
师:同学们看到了,生活中处处有分数。然而,我们这天使用的分数它却走过一段及其漫长的旅程。让我们具体了解一下。
出示图1:世界上最早的分数是在3000多年前古埃及出现的。我们看,明白这表示的是哪个分数吗?(生答)对,1/4,人们借助圆来表示分子是1的分数。
出示图2:你认为这个分数是多少?(3/5)这是我国多年前,用算筹来表示的分数。这是有考证的。1975年底在湖北云梦县秦代墓葬中出土了大批竹简,上方就记录了一些这样的分数,表现得整齐划一,这批竹简最早的是公元前359年的,最晚的是秦始皇统一十二年的,算到这天大约2360年。
出示图3:这是之后印度用数字表示的分数。这个分数是什么?(3/4)。
出示图4:到公元12世纪,距此刻大约800多年,阿拉伯人发明了分数线。这种分数就延续至今。这个分数也是?(生答:3/4。师板书)。
2。感知3/4,理解分数意义。
师:此刻我们就来看3/4。老师让大家准备一个学具,剪一个我们所学的平面图形,大家把它拿出来。你能找出你手中图形的3/4吗?自我动手试一试。
(1)学生独立尝试剪。
(2)学生汇报剪的方法。(强调:平均分谁是谁的3/4。)。
(3)归纳分数的意义。师:大家都是这样剪的吗?举起来互相看一看。如果要表示3/5、3/6怎样办呢?(生回答)这就告诉我们分数是表示什么的?(生齐答,师板书:把一个物体平均分成若干份,表示这样的一份或几份的数,叫做分数)。
(4)阅读教材61页,画出分数的概念,读一读。
3。合作探究,理解单位“1”
师:同学们,看到书中的概念,你们对老师整理的概念有异议吗?
(师生交流,提出“一些物体”也是一个整体的问题。)。
师:一些物体能看成一个整体吗?让我们拿出小组内准备的三张饼,这次小组合作,要剪出三张饼的3/4,该怎样办呢?让我们一齐探究剪的方法。
(1)小组合作,探究方法。
(2)全班汇报剪的方法,师演示剪的过程。
(3)明确单位“1”:我们把三张饼当成一个整体来分,也能够把一些物体当成一个整体来分,这一个整体能够用自然数“1”来表示,这就是我们所说的单位“1”。
(4)说一说你想把什么作为单位“1”来分一分?(生举例)。
(5)完善分数的概念。
(师板书:把“一个物体”换成“单位1”)。
4。弄清分数单位。
(老师出示线段图:一条线段平均分成7分。)。
(2)学生再与文本对话,画出概念,同桌互相说说分数单位的意义。
(3)说出3/4的分数单位是多少?课前复习的几个分数的单位分别是多少?
四、练习:深化理解,回归生活(12分钟)。
1。独立完成练习十一第4题,然后全班交流。
2.游戏:
师:同学们,喜欢游戏吧?也喜欢挑战吧?下方让我们在游戏中理解挑战,看看同学们对分数的意义是否有更深入的理解。
(拿出三个盒子,第一个盒子里装5根小棒,第二个盒子里装10根小棒,第三个盒子里装15根小棒。老师抽出小棒,学生猜分数或盒子中小棒的数量。)。
3。共同完成练习十一第7、6题。
师:分数很搞笑吧?分数在我身边比比皆是,看64页的第7题带给给我们的信息就是我们生活中的分数。一齐开看。
(生默读信息,举手交流)。
师:生活中你还见过那些分数?把你搜集的分数和同学们说说。(可留为实践作业,进一步体会分数的意义。)。
五、布置作业,巩固提高(0。5分钟)。
练习十一的5、8、9题。
六、全课总结,感受收获。(2。5分钟)。
这节课,我们一齐学习了分数的意义,你在本节课学习中都有哪些收获?
(生汇报)。
同学们这节课表现得都很棒,收获也很多,表扬自我一下吧。
假设一只手的五根手指一样长,
请你拿出一只手手指的五分之一来评价一下自我的表现。(第一,最棒)。
请你拿出一只手手指的五分之二来庆祝一下自我的收获。(成功,耶)。
请你拿出一只手手指的五分之三来表示你是否同意下课。(ok,ol)。
这样的一份或几份的数,叫做分数。
单位“1”:一个整体(一个物体、一些物体)。
1/4分数单位。
精选分数的性质和意义教学设计(汇总17篇)篇十五
知识与技能:理解百分数的意义,掌握百分数的读法、写法。
过程与方法:通过交流、讨论、辨析等教学活动,培养学生独立思考、抽象概括的能力,深刻理解百分数与分数的联系和区别。
情感态度与价值观:养成生敢于提问、善于质疑的学习态度、
教学难点:理解百分数与分数的联系与区别。
(一)情景导入。
提问:天气越来越冷,老师想去买一套保暖内衣,在商场里选了这样两套衣服。在看了合格证以后发现这样一些信息,请你来帮老师选一选,买哪一套比较好?(出示课件)。
明确:100%棉表示这件衣服是全棉的,65.5%棉表示这件衣服含有65.5%的棉。
(二)新课教学。
1、提问:你还在什么地方见过上面这样的数?举例说一说。老师这里也收集了几个这样的数。
总结:像刚才这样的数,都叫做百分数,也叫百分率或百分比。其中的“%”叫做百分号。
提问:所有的百分数都可以这样表示吗?这个百分数表示什么?
明确:已经复制的文件容量占所要复制的文件容量的14/100。
提问:那么没有复制的文件容量占所要复制的文件容量的多少?(86%)表示什么?
提问:你能用这样的形式表示收集到的百分数吗?同桌之间互相说一说(讨论)。
总结:百分数表示一个数是另一个数的百分之几。
3、百分数与分数的联系和区别。
课件出示题目:下面哪几个分数可以用百分数来表示?哪几个不能?说说为什么。
学生讨论75%、50%各表示什么意义。
总结:分数既能表示一个数是另一个数的几分之几,也可以表示具体量。百分数只能表示一个数是另一个数的百分之几,不能表示具体量。
(三)巩固练习。
练习:猜盐水的`浓度。
(四)小结作业。
学习这节课之后,你有什么收获?谁能和大家分享分享?
(五)教学反思。
精选分数的性质和意义教学设计(汇总17篇)篇十六
教学内容:p57练习九第9-13题。教学目标:
1.使学生加深认识比的意义和基本性质,能说出一个比的具体含义,能比较熟练地应用比的基本性质化简比。
2.使学生认识求比值与化简比的联系和区别,以及比与相关知识间的联系和区别。
一、揭示课题。
二、基本题练习。1.比的意义。
比前项比号后项比值除法被除数除号除数商分数分子分数线分母分数值2.比的基本性质。3.做练习九第9、10题。
三、
综合练习。
1.做练习九第11、12题。
(4)杨树棵数和柳树棵数的比的比值是1.5(5)女生人数是男生的四、课堂小结。
五、作业:练习九第13题。
六、教学思考题。
精选分数的性质和意义教学设计(汇总17篇)篇十七
1.使学生知道分数的产生和其它数学知识一样是由人类的生产和生活实际中产生的。
2.使学生理解分数的意义和单位“1”的含义及分子、分母的含义。
3.培养学生形象思维,抽象概括能力和初步的逻辑思维能力。
4.使学生受到初步的辨证唯物主义观念的启蒙教育。
让学生理解分数的意义是本节课的重点,讲清单位“1”的含义是本节课的难点。
电脑软件一套。
每人一张正方形纸片、每组一个信封里面装有一张圆形、长方形纸片,4个苹果图片,6个玩具熊猫图片。
课前组织教学。
今天我们和许多小动物一起去参加小猴的生日聚会高兴吗?你们看小猴准备了许多好吃的、好玩的东西(电脑显示画面)请同学们观察一下都有什么?它还想测测同学们的智力利用课堂上所学的知识帮它分一分、算一算能做到吗?(上课)。
板书:分数。
1.把小猴准备的一部分礼物装在信封里,倒出来看一看都有什么?下面小猴要利用这些东西测测同学们的智力,看哪一个小组表现的好?听要求小组同学研究想办法表示出每种东西的。小组研究汇报。
2.根据刚才分的过程,把这些物体归两类,为什么这样分?
根据学生的回答板书:一个物体、一个整体(解释整体的含义)。
说明一个物体、一个计量单位或许多物体组成的整体都可以用自然数1来表示,通常叫做单位“1”
上面我们分的这些物体就可以用一句话表示出来谁能说出来?(把单位“1”平均分成两份,每份是它的)。
3.请同学们看屏幕,仔细观察回答问题。
(1)把一块饼平均分成两份,每份是它的()。
(2)把一张正方形的纸平均分成4份每份是它的(),其余的3份是它的()。
(3)把一条线段平均分成5份,每份是它的()其余的是它的()。
(4)同时显示以上3幅图,让同学们认真观察它们的分法和表示每一部分的分数有什么异同?小组讨论汇报。
4.请同学们拿出准备好的苹果和熊猫图片,平均分看有几种分法,其中的一份用什么数表示,小组讨论汇报,电脑显示平均分的苹果和熊猫图画,让学生按照第一幅图的说法说一说其余的几幅图的意思。
5.电脑同时显示一块饼、一张正方形纸、一条线段、四个苹果、六只熊猫图,提问:刚才我们分了这些物体都是把谁看作单位“1”?谁来说一说什么叫做单位“1”?电脑显示单位“1”的含义。
6.根据刚才所学的知识小组讨论到底什么样的数叫做分数呢?引导学生总结分数的意义,电脑显示分数的意义。
7.根据分数的意义指名说出刚才写的这些分数表示的意义。
8.教学分子、分母的含义:电脑显示分数各部分的名称,指名回答分子、分母各表示什么?写几个分数让学生说出分子、分母所表示的含义。
9.做一做电脑显示。
三、课堂练习:
1.让同学们闯三关,电脑显示三关题。
四、课堂小结:
这节课你学会了什么?
一个物体。
一个计量单位单位“1”2/34/155/11。
一个整体。
把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。