教学计划是教师根据学科要求和学生需求所设计的一份教育方案。以下是小编为大家整理的一些创新教学计划范文,希望能够给大家提供一些新的教学思路。
倒数的认识教学设计思路(优秀18篇)篇一
一、创设情境、导入新课。
1、课件出示:吞---吴干---士杏---呆。
2、请同桌互相交流一下,找一找下面文字的构成有什么规律吗?
3、学生汇报。
4、同学们观察的非常仔细,这种现象在数学中也有,今天这堂课我们就来研究倒数的知识。(板书课题:倒数的'认识)。
二、出示学习目标。
1、能够理解和掌握倒数的意义。
2、学习求一个数的倒数的方法,能正确地求出一个数的倒数。
三、探究新知识。
1、课件出示例1的算式,开展小组活动:算一算,找一找,这组算式有什么特点?
2、小组汇报交流。(通过计算,发现每组两个数的乘积都是1,还发现了相乘的两个分数的分子和分母的位置是颠倒的)。
3、同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,也发现了每组两个数的乘积都是1,我们现在就可以得出倒数的定义了:乘积是1的两个数互为倒数。(板书)。
4、提问“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。
5、强调“两个数”“乘积是1”
6、出示0.4×2.5=1,让学生说一说0.4和2.5可不可以说互为倒数。
7、随堂练习:判断:(1)得数是1的两个数叫做互为倒数。(2)因为10×1/10=1,所以10是倒数,1/10是倒数。(3)因为1/4+3/4=1,所以1/4是3/4的倒数。
8、出示例题2,找一找哪两个数互为倒数?再说一说你是怎么找的?
9、以小组为单位进行讨论交流。
10、分组汇报:
第一种方法:看两个分数的乘积是不是1。
第二种方法:看两个分数的分子与分母是否分别颠倒了位置。
哪一种方法比较快?
11、观察书中的找倒数的方法,强调:3/5的倒数是5/3,不能用等号相连。
1、真分数、假分数。
2、整数。
3、小数。
4、带分数(板书)。
12、例2中还有哪些数没有找到倒数?
13、提问:1和0有没有倒数?如果有,是多少?(小组讨论、汇报。)。
四、巩固练习。
我们现在应用今天学习的知识解决一些问题。
五、课堂总结。
板书设计成知识树。
将本文的word文档下载到电脑,方便收藏和打印。
倒数的认识教学设计思路(优秀18篇)篇二
1、引导学生通过观察、研究、类推等数学活动,理解倒数的意义,总结出求倒数的方法。
2、通过互助活动,培养学生与人合作、与人交流的习惯。
3、通过自行设计方案,培养学生自主探索和创新的意识。
理解倒数的含义,掌握求倒数的方法。
1、找一找下面文字的构成规律。学生分组交流,找出文字的构成规律。
2、按照上面的规律填数。
3、揭示课题。今天,我们就来研究这样的数——倒数。
1、师:关于倒数,你想知道什么?
2、学习倒数的含义。
(1)学生观察教材第28页主题图。
(2)学生根据所举的.例子进行思考,还可以与老师共同探讨。
(3)学生反馈,老师板书。
学生可能发现:
每组中的两个数相乘的积是1。
每组中两个数的分子和分母的位置互相颠倒。
每组中两个数有相互依存的关系。
(4)举例验证。
(5)学生辩论:看谁说得对。
(6)归纳:乘积是1的两个数会为倒数。
3、特殊数:0和1。板书:0没有倒数,1的倒数是它本身。
(1)出示例1、
(2)归纳方法:你是怎样求一个数的倒数的?板书:分子和分母调换位置。
5、反馈练习。
(1)完成教材第28页的“做一做”。学生独立解答,老师巡视。
(2)完成教材第29页练习六的第1—5题。
1、找一找下列各数中哪两个数互为倒数。
2、填空。
(1)三分之四的倒数是,()的倒数是六分之七。
(2)10的倒数是(),()的倒数是1。
(3)二分之一的倒数是(),()没有倒数。
倒数的认识教学设计思路(优秀18篇)篇三
新人教版六年级数学上册第28页的例1。
1、通过学习,使学生知道什么叫做倒数,倒数表示的是两个数之间的关系,它是不能孤立存在的;掌握求倒数的方法;通过学习,使学生知道“0”没有倒数,“1”的倒数还是“1”。
2、学生根据自己的理解,发现求倒数的方法,知道不仅可以用乘法求一个数的倒数,还可以用调换分子和分母位置的方法求一个数的倒数。
3、在知识获取过程中,培养学生观察、归纳、推理和概括的能力。提高学生学好数学的信心。
理解倒数的意义,学会求倒数的方法。
熟练正确的求小数、带分数的倒数,发现倒数的一些特征。
多媒体课件。
一、猜字游戏导入,揭示课题。
上课之前,老师来考考同学们的语文学得如何。“吞”这个字读什么,如果把上下部分颠倒后是什么字?(“吞”——吴),“士”这个字读什么,如果把上下部分颠倒后是什么字?(“士”——干)。中国汉字有不少字有这样的关系,在数学中也存在这种关系。
如:(板书:3/8)如果把这个分数的分子和分母的位置调换,是哪个分数?(8 /3)。
师:谁还能说出这样的数?(课件出示)
象这样把分数的分子和分母上下颠倒之后就成另一个数,你能给这种特性给这些上下颠倒的数起个名字吗?(倒数)今天我们就一起来研究倒数(板书:倒数的认识,并让学生读一读。)
二、出示学习目标:
1、理解倒数的意义。
2、掌握求一个数的倒数的方法,能熟练准确地写出一个数的倒数。
三、自主探究新知
(一)探究讨论,理解倒数的意义。
1、(课件出示教材第24页例1的四个算式。)
开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的。)
生:我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。
2、出示倒数的意义:乘积是1的两个数互为倒数。(学生齐读三次)。
(二)深化理解。
1、乘积是1的两个数存在着怎样的倒数关系呢?
举例:3/8×8/3=1,那么我们就说8/3是3/8的倒数,反过来(引导学生说)3/8是8/3的倒数,也就是说3/8和8/3互为倒数。(谁还想举例说说。)
2、互为倒数的'两个数有什么特点?(两个数的分子、分母正好颠倒了位置)
例如:(2/5的倒数是5/2,5/2的倒数是2/5,……不能说5/2是倒数,要说它是谁的倒数。)
3、想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。
又因为0与任何数相乘都不等于1,所以0没有倒数。)
(三)运用概念。
1、讨论求一个数的倒数的方法。
所以3/5的倒数是5/3,7/2的倒数是2/7 。(能不能写成3/5=5/3,为什么?)
小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)
2、怎样求小数和带分数的倒数呢?(课件演示,学生观察。)
师强调:带分数先化成假分再把分子和分母调换位置;小数要先把它化成分数再把分子和分母调换位置。
3、怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)
四、堂堂清作业
(一)填一填。(出示课件)
1、乘积是()的()个数()倒数。
2、a和b互为倒数,那a的倒数是(),b的倒数是()。
3、只有当假分数为()时,它与它的倒数相等;而()是没有倒数。
4、一个真分数的倒数一定是()。
(二)判断题。(演示课件)
1、5/3是倒数。()
2、因为3/4×4/3=,所以4/3是倒数。()
3、真分数的倒数大于1,假分数的倒数小于1。()
4、因为1/4+3/4=1,所以1/4和/4互为倒数。()
(三)说一说。(课本第29页的第3题)
五、课堂小结:
今天我们学习了有关倒数的哪些新知识?什么叫倒数?怎样求一个数的倒数?还有什么的问题吗?板书设计:
倒数的认识
乘积是1的两个数互为倒数。 0没有倒数,1的倒数是它本身。例2:写出其中2/5 、7/2两个分数的倒数。
2/5的分子分母调换位置---5/2 7/2的分子分母调换位置---2/7 6的倒数是1/6求带分数的倒数先把带分数化成与假分数,再把分子和分母调换位置。
求小数的倒数的先把小数化成分数,再把分子和分母调换位置。
倒数的认识教学设计思路(优秀18篇)篇四
1、理解倒数的意义,掌握求一个数倒数的方法,能熟练地写出一个数的倒数。
2、引导同学自主合作交流学习,结合教学实际培养同学的笼统概括能力,激发同学学习的兴趣。
理解倒数的意义,掌握求倒数的方法。
熟练写出一个数的倒数。
多媒体课件。
一、情境导入。
1、口算。
5/12×2/5=15/7×7/5=11/8×8/13=。
5/21×1/5=3/16×7/3=8/21×7/8=。
先独立考虑,再指名口算订正。
2、比一比,看谁算得又对又快:
2/3×3/2=2×1/2=11/8×8/11=。
1/10×10=7/9×9/7=1/7×7=。
6/5×5/6=1/5×5=22/35×35/22=。
同学先独立口算,再口答订正。观察这些算式,说说自身有什么发现。
二、合作探索。
1、小组合作交流:
(1)和同桌说一说你的发现。
(2)请你自身举出3个像上面这样的乘法式子。
小组代表说说有什么发现。指名说说自身举出的例子。
教师:像这样的乘积是1的两个数我们说它们的关系是互为倒数。
教师:关于倒数的知识,你已经有哪些认识?(同学说说自身的已有认识)。
教师:书上又是怎样讲解倒数的呢?我们一起来读一读。
阅读教材,进一步理解。
教师:现在谁来说一说自身是怎样理解倒数的?
同学口答,教师小结:假如两个数的乘积是1,那么我们称其中一个数是另一个数的倒数,并称这两个数互为倒数。
出示:乘积是1的两个数互为倒数。读一读,强调概念中的关键词:“乘积”、“互为”。
2、强化概念理解。
你认为下面这两种说法是否正确?
(1)2/3是倒数。
(2)得数是1的两个数互为倒数。
同学先独立考虑,再口答,说明理由。
倒数的认识教学设计思路(优秀18篇)篇五
教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。
(1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。
(2)能力目标:采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。
(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。
知道倒数的意义和会求一个数的倒数。
课件。
一、课前谈话:
师:今天老师很高兴和大家上课,所以上课前老师想和大家互相成为好朋友。
生:好!
师:那你想怎样表述我们的关系?
生:我们双方面互为朋友,也可以说成“老师是你的朋友”,“你是老师的朋友”。这样学生对马上接触到的“互为倒数”就比较容易理解了。
二、揭示倒数的意义。
师:对,今天我们要研究的就是乘积是1的两个数。你们还能写出乘积是1的两个数吗?
生:(齐)能!
师:那好,我们就进行一个小小的比赛。请大家准备好课堂练习本,我给大家一定的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的类型。
准备好了吗?开始??
师:时间到,停!谁愿意把你写的念出来,和大家共同分享?
师:这么短的时间内就能写出这么多乘积是1的两个数,不错。
师:如果给你们充足的时间,你们还能写多少个这样的乘法算式?
生:无数个。
出示例7。
师:那请你们来帮帮忙,找出乘积是1的两个数。
师:你们找的这些与之前写的所有算式都有怎样的共同点?
生:乘积都是1。
师:你知道吗?揭示意义】教师板书:乘积是1的两个数叫做互为倒数。生齐读。
师:黑板上所写的两个数的积都是1,所以他们互为倒数。比如3/8和8/3的乘积是1,我们就说3/8和8/3互为倒数。(师板书3/8和8/3互为倒数)。
师:3/8和8/3互为倒数!我们还可以怎么说呢。
生:3/8的倒数是8/3;8/3的倒数是3/8。
生1:“互为”是指两个数的关系。
生2:“互为”说明这两个数的关系是相互依存的。
师:2/5和5/2的积是1,我们就说??(生齐说)。
师:7/10和10/7的乘积是1,这两个数的关系可以怎么说?请您告诉你的同桌。
探索求一个倒数的方法。
师:非常好!我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的这些例子。
生1:互为倒数的两个数分子和分母调换了位置。
师:同意吗?
生:同意。
师:根据这一特点你能写出一个数的倒数吗?
生:能。
师:试一试!
师在黑板上出示3/57/2,写出它们的倒数。
师:那5(0.1)的倒数是什么?它可是没有分子和分母呀?还有1又1/8呢?
生:把5看成是分母是1的分数,再把分子分母调换位置。
求小数的倒数的方法:小数求带分数的倒数的方法:带分数。
三、分数倒数。倒数。假分数。
师:那1的倒数是几呢?
0的倒数呢?
师:为什么?
生1:因为0和任何数相乘都得0,不可能得1。
师:刚才一个同学提出分子是0的分数,实际上就等于0,0可以看成是0/2、0/3、??把这此分数的分子分母调换位置后。
师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。
生1:求一个数的倒数,只要把分子分母调换位置。
生2:如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。
生3:1的倒数是1,0没有倒数。
(生齐读求一个数倒数的方法。)。
四、巩固练习。
1、打开书,阅读课本p34,把你认为重要的划起来。
2、完成练一练。
(1)学生在书上完成,教师巡视,请同学板演。注意学生的书写格式是否正确。
(2)发现一学生书写有误,与该生交流。
(3)用展台展示该生的错误。
师:这样写可以吗?(4/11=11/4)。
生:不可以!
师:为什么?
生1:比如4/11的倒数是11/4,4/11是真分数,11/4另一个是假分数,它们是不可能相等的。
(4)师:对,互为倒数的两个数是不会相等的(1除外)。我们在书写时要写清谁是谁的倒数,或谁的倒数是谁,如老师黑板上写的一样。
3、小游戏:同桌互相出一题,对方说出答案。
4、先说说下面每组数的倒数,再看看你能发现什么?
(1)3/4的倒数是()(2)9/7的倒数是()。
2/5的倒数是()10/3的倒数是()。
4/7的倒数是()6/5的倒数是()。
(3)1/3的倒数是()(4)3的倒数是()。
1/10的倒数是()9的倒数是()。
1/13的倒数是()14的倒数是()。
由学生说出各数的倒数。然后。
师:请你仔细观察,看能从中发现什么,发现得越多越好。
师:小组间可以先互相说一说。
汇报:
生1:我从第一组中发现真分数的倒数都是假分数。
生2:我从第二组中发现假分数的倒数是真分数或者假分数。
生3:真分数的倒数都小于1,假分数的倒数大于1。假分数的倒数也可能等于1。生4:我发现分子是1的分数。
4、填空:
7×()=15/2×()=()×3又2/3=0.17×()=1。
五、课堂小结。
1、小结:今天我们学习了什么???
2、学了倒数有什么用呢?
大家课后可去思考一下。
倒数的认识教学设计思路(优秀18篇)篇六
1、引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。
2、通过合作活动培养学生学会与人合作,愿与人交流的习惯。
3、通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。
教学重点:理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数的方法。
教学难点:掌握求倒数的方法
一、导入
课件出示:
1、找规律:指生回答。
2、找规律,填空,指生回答。
3、口算,开火车口算。
4、你能找出乘积是1的两个数吗?指生说。
今天我们一起来研究“倒数”,看看他们有什么秘密?出示课题:倒数的认识
二、新授
1、教学倒数的意义。
(1)学生看书自学,组成研讨小组进行研究,然后向全班汇报。
(2)学生汇报研究的结果:什么是倒数?生生说,举例说明。
乘积是1的两个数互为倒数。举例说明。课件出示。
观察每一对数字,你发现了什么?
像这样乘积是1的数字有多少对呢?
(3)提示学生说清“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数)
(4)互为倒数的两个数有什么特点?
像这样的每组数都有什么特点呢?
两个数的分子和分母交换了位置(两个数的分子、分母正好颠倒了位置)
2、教学求倒数的方法。试着写出3/5 、7/2的倒数。
(1)写出3/5的倒数:求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。
(2)写出7/52的倒数:求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。
想:写出6的倒数。独立完成。
先把整数看成分母是1的分数,再交换分子和分母的位置。 6= 6/1 1/6
求一个数(0除外)的倒数,只要把这个数的分子、分母交换位置就可以了。
3、教学特例,
深入理解
(1)1有没有倒数?怎么理解?(因为1x1=1,根据“乘积是1的.两个数互为倒数”,所以1的倒数是1。)
(2)0有没有倒数?为什么?(因为0与任何数相乘都不等于1,所以0没有倒数)
4、课件出示,巩固练习:这些数怎样求倒数呢?
(1)学生独立解答,教师巡视。
(2)汇报时有意识地让学有困难的学生说一说求倒数的方法。
三、巩固应用
课件出示:
1、练习六第2题:填一填。
2、找朋友。
3、写出上面各数的倒数
4、辨析练习:练习六第3题“判断题”。
5、我的发现。
6、马小虎日记,开放性训练。
7、谜语:
五四三二一
(打一数学名词)
四、总结
你已经知道了关于“倒数”的哪些知识?你联想到什么?还想知道什么?
倒数的认识教学设计思路(优秀18篇)篇七
这部分内容是在学历了分数乘法的基础上教学的,主要为后面学习分数除法做准备,因为一个数除以分数的计算方法,归结为乘这个数的倒数。这部分内容通过两个例题,主要教学倒数的意义和求倒数的方法。
本课强调从学生的学习兴趣,生活经验和认知水平出发,通过体验、实践、参与、交流和合作方式,让学生在合作学习的过程中,学会交流,相互评价,亲历知识的建构过程,培养学生的数学应用意识和激发学习热情,培养学生观察、归纳、推理和概括的能力。
认知目标:使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
能力目标:培养学生观察、归纳、猜想、推理和概括的能力。
情感目标:提供适当的问题情境,激发学生的学习兴趣和学习热情。让学生体验探索中成功的快乐,培养学生的创新意识和科学精神。
使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
一、 创设活动情景,引入概念
生(众):能!
师:好!(出示投影)请把下面的几个题目算一算,同位相互交换一下答案。
题目:3/8x8/3 7/15x15/7 5x1/5 1/12x12
生:进行计算。(完成后小组进行交流,学生汇报其发现的结论)
(通过计算,学生可能发现每组算式的乘积都是1,通过观察发现相乘的两个分数的分子和分母位置是颠倒的)
师:同学们发现了每组算式的两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做倒数。
出示倒数的意义:乘积是1的两个数互为倒数。
二、 探索研究,深入理解
师:同学们能不能说说你对倒数的意义的理解?
提示:“互为”是什么意思?
生:指的`是倒数表示两个数之间的关系,这两个数缺一不可,互相依存,单独的一个数不能叫倒数。
师:回答的很好,下面同学们来判断一下我说的话有没有错误:因为3/4x4/3=1,所以3/4是倒数,4/3也是倒数。
生:(争先恐后地)不对!
师:那我该怎么说呢?
生:3/4和4/3互为倒数。
师:还有其他的说法吗?
生:3/4是4/3的倒数,4/3是3/4的倒数。
师:好,大家说的都不错,那么我给你一个数你能找出它的倒数吗?
生:能!
师:好!我我来考考大家!
三、 运用概念,探讨方法
师:(投影,出示例2)
3/5 6 7/2 5/3 1/6 1 2/7 0
找一找,下面的哪两个数互为倒数?
(小组探讨交流,并说说是怎样找的?汇报交流结果。)
生:有两种方法来找一个数的倒数:
1、看看两个分数的乘积是不是1;
2、看两个分数的分子与分母是否分别颠倒了位置。
师:(征求意见)大家同意他的说法吗?
生:同意!
师:大家认为哪一种方法更快呢?
生:第二种。
师:好,那咱们就用第二种来求一个数的倒数。(板演方法,强化学生的理解。)
四、 出示特例,深入理解
师:同学们再观察一下刚才我们做的题目,还有没有没找到倒数的数据?
生:有!1和0。
师:(提问)那1和0有没有倒数呢?如果有,是多少?
小组讨论、汇报。
1、 关于1的倒数。
因为1x1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。
2、 关于0的倒数。
因为0与任何数相乘都不等于1,所以0没有倒数。
五、 巩固练习
(用多媒体投影出示下列各题,学生先做,再全班交流)
1、 写出下列各数的倒数。
4/11 16/9 35 7/8 4/15
2、 下面说法对不对?为什么?
(1)7/12与12/7的乘积为1,所以7/12与12/7互为倒数。
(2)1/2x4/3x3/2=1,所以1/2、4/3、3/2互为倒数。
(3)0的倒数还是0。
(4)一个数的倒数一定比这个数校
六、归纳小结,交流共享
师:本节课你学到了什么,你有什么体会?
生:我认识了什么叫倒数,还学会了怎样求倒数。
七、布置作业:练习7第7题。
倒数的认识教学设计思路(优秀18篇)篇八
1。通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。
2。使学生经历倒数意义的概括过程,提高观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。
3。通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。
理解倒数的意义,学会求倒数的方法。
发现倒数的一些特征。
课件。
通过观察,使学生发现一个分数的倒数就是把它的分子与分母的位置颠倒,进而使学生体会到“倒数”这一概念中“倒”的含义,很自然的得出求一个分数的倒数的方法。
一、猜字游戏引入新课。
找找下面文字的构成规律。
呆———杏土———干吞———吴。
按照上面的规律填数。
——()——()——()。
能根据分之和分母的位置关系,给这三组数取个名吗?揭示课题:倒数。
二、新知探究。
(一)探究讨论,理解倒数的意义。
1.课件出示算式。
开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。
我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。
2.出示倒数的意义:乘积是1的两个数互为倒数。
3.你是怎样理解互为倒数的呢?能举例吗?
(二)深化理解。
1.乘积是1的两个数存在着怎样的倒数关系呢?
2.互为倒数的两个数有什么特点?
3.想一想:1的.倒数是多少?0有倒数吗?为什么?怎么理解?
因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。
又因为0与任何数相乘都不等于1,所以0没有倒数。)。
(三)运用概念。
1.讨论求一个数的倒数的方法。
出示例2:写出其中3/5、7/2两个分数的倒数。
学生试做讨论后,教师讲过程。
小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)。
2。怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)。
三、巩固练习。
(一)完成教材第28页的“做一做”
(二)完成教材第29页练习六的第1—5题。
四、课堂小结。
今天我们学习了有关倒数的哪些新知识?
将本文的word文档下载到电脑,方便收藏和打印。
倒数的认识教学设计思路(优秀18篇)篇九
“倒数的认识”是人教版九年义务教育六年制小学数学第十一册第三单元第一课的内容。本节课是在学生学习了分数乘法的基础上进行教学的,它是分数乘法计算的后继内容,同时又是学习分数除法的先备条件,是属于承上启下的知识类型,主要包含两部分的知识:一是倒数的意义,二是求一个数倒数的方法。内容看似简单,但对学生来说比较抽象,难理解。根据对教材的认识和分析,结合学生实际,我拟订了如下教学目标:
教学目标。
根据对教材的认识和分析,结合学生实际,我拟订了如下教学目标:
(1)让学生在具体情境中理解倒数的意义,并掌握求一个数倒数的方法,会求一个数的倒数。
(2)让学生主动参与观察、猜测、交流等活动,经历探索求倒数的方法的过程。
(3)通过自主探索、合作交流,培养学生爱学数学、乐学数学的情感。
教学重点和难点。
倒数的引入是为分数除法作准备的,所以本课的教学重点是让学生熟练掌握求一个数(包括分数、小数、自然数等)的倒数的法,教学的难点是帮助学生理解倒数的意义,尤其是互为倒数的`两个数间相互依存的关系。
本课我采用了发现式教学法。教师只是通过组织者,引导者与合作者的身份,引导学生主动参与到整个学习过程中去,让学生自己组织学习材料,给学生提供放手的思维空间,并尊重学生的自主性,允许学生在探究新知中犯错误,并在修正错误的过程中体会成功,特别是注重情境的创设,如创设“找朋友”、“我来当名医”、“火眼金睛”等情境,以平等宽容的态度激起学生的探究热情。
1、观察、比较的方法。
倒数的意义是从几组乘积是1的算式引入的,因此,指导学生进行有效的观察比较这几组算式的共同点和不同点可以进一步培养学生的观察、分析能力,加深对倒数的意义的理解和识记。
2、合作交流的学习方法。
本课的部分教学环节的实施采用放手让学生自由讨论、相互交流的方式,这样就提高了学生学习的主动性和积极性,发挥了学生间的互补作用,增强合作意识,培养团结协作精神。
3、自学尝试的方法。
在倒数的意义和求一个数倒数的方法的学习中,指导学生自学和尝试性的解答,最后再引导学生对照课本,进行比较,促使学生仔细认真阅读课本,养成良好的学习习惯,培养学生的创新精神和创造能力。
(一)激情导入。
1、小故事。
从前,大清皇帝乾隆喜欢旅游,有一次,他来到一家天然居大酒楼吃饭,乾隆看到这里环境非常好,像是来到了天上仙境一般,于是写了一副非常有趣的对联“客上天然居,居然天上客。”
这副对联有趣在哪里呢?(可以倒着说)。
后来民间有人对出了绝妙的下联:僧游云隐寺,寺隐云游僧。你看对得多好。这幅对联无论顺读、倒读皆能成联,贴切而不混乱,从而产生了引人注目的效果。成为了千古佳联。
在我们平常的语文学习中也有这种类似的现象。
2、“吞”“杏”,问:这是什么结构的字?交换上下两部分,观察是什么字?还有这样的词语,现实,牛奶、字的顺序颠倒了,词语的意思也变了。
真奇妙,把一个字的上下部分交换就可能会变成另外一个我们认识的字,其实,在数学里两个数之间也有这种有趣的关系。
(二)新授。
我们今天就来学习这样关系的两个数。板书:倒数、这个字会读吗?齐读课题。
1、出示分数,你能照刚才的操作方法,写出另外一个分数吗?你是怎么做的?
2、迅速地算出这两个数的乘积,比比看谁算的快!
3、讨论:通过刚才的计算你发现了什么?
4、观察一下,这三组分数有什么特点?(他们的乘积都是1)。
像这样,乘积是1的两个数我们就说其中一个是另一个数的倒数,比如:x是x的倒数,也可以说这2个数互为倒数。
那你能说说怎样的两个数互为倒数呢?
5、交流讨论结果,老师板书。(乘积是1的两个数)。
6、师由此引出倒数的意义,课件出示:生齐读倒数的意义。
你觉得这句话中哪些字非常关键呢?
追问:你是怎么理解“互为”的意思?
是倒数这样说对吗?
也就是这2个数是相互依存的关系、在哪里我们还学习过相互依存的数学概念?
谁能像老师一样,说说哪两个数互为倒数。
7、问:老师随意写出2个数,你能判断这2个数是不是互为倒数吗?说明理由。
板书xx——。
8、判断一个数的倒数,大家会了,那现在就挑选一个你喜欢的数来求它的倒数,
你最喜欢求哪个数的倒数,为什么?
119030。
9、通过练习,请思考一下怎么求一个数的倒数呢?
10、统一求倒数的方法:求一个数(0除外)的倒数,可以把这个数的分子分母调换位置。
11、讨论:所有数都能求它的倒数吗?
(三)巩固练习。
1、找朋友。
2、火眼金睛。
3、我来当名医。
(四)课堂小结。
不仅文学中有“倒”的现象,数学中有倒数,而且自然界中也有这么美丽的景观。(课件欣赏美丽的自然风景。)在人类的社会发展过程中,有很多的现象有着惊人的相似,只要我们善于观察,做一个有心人,我们一定能从中体会到无穷的乐趣。
乘积是1的两个数互为倒数。
求一个数(0除外)的倒数只要把这个数的分子分母调换位置。
×=1×=1×=1。
倒数的认识教学设计思路(优秀18篇)篇十
学习目标:
一、理解倒数的意义,掌握求一个数倒数的方法,能准确熟练地写出一个数的倒数。
二、通过独立思考、小组合作、展示质疑,在探索活动中,培养观察、归纳、推理和概括能力。
三、激情投入,挑战自我。
教学重点:求一个数倒数的方法。
教学难点:1和0倒数的问题。
离上课还有一点时间,咱们先聊一会吧。同学们,我给你们代数学课多长时间了?(一年)一年时间虽然不是很长,但我觉得我们之间已经互相成为了朋友,你有这种感觉吗?该怎样表述我们之间的朋友关系呢?(你是我的朋友,我是你的朋友,互相应该是双方面的。)。
就先聊到这儿吧?好,上课!
一、导入:
生:上下两部分调换了位置,变成了另一个字。
师:对了,把其中任一个字上下两部分倒过来,就变成了另一个字,这个现象很有趣很奇妙吧!
二、合作探究:
(一)揭示倒数的意义。
1.(出示例题课件)请看大屏幕,先计算,再观察这些算式,同桌互相说一说它们有什么规律?(学生自学,经历自主探索总结的过程,并独立完成)。
请同学们按照要求逐一完成,看谁是认真仔细的人,既能准确的计算,又能发现其中的秘密。
师:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来有如此大的发现,那么,像符合这种规律的两个数叫什么数呢?谁能给这种数取个名字?(生取名字)。
师:那么根据刚才的计算结果与发现的规律你能说出什么叫倒数吗?(生答)师板书:乘积是1的两个数互为倒数。
你认为哪些字或词比较重要?你是如何理解“互为”的?你能用举例子的方法来说明吗?(生答)。
师小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。就像课前我们聊得话题,老师和你互相成为了好朋友,就是说“老师是你的朋友”,“你是老师的朋友”,我们俩是双方面的。
(二)小组探究求一个倒数的方法。
1.出示例题2课件:下面哪两个数互为倒数?
师:同学们知道了什么是倒数,那你能找出一个数的倒数吗?那好,请完成这道题。
出示课件,请看这里,哪两个数互为倒数?(生找)(生说教师演示)。
提问:你用什么好办法这么快就找出了这三组数的倒数?(同桌互相说说看)(找几名学生汇报)。
师板书:求倒数的方法:分数的分子、分母交换位置。
同学们想出了找倒数的好方法,那就是分数的分子、分母交换位置,你们把老师想说的都说出来了,太棒了!我们一起来看一看(出示课件)。在这三组数里哪一组不同于其它两组?对,6是整数,像6这样的整数找倒数的方法可以先把整数写成分母是1的分数,再找倒数。
2.师提问:再次出示连线题的课件,本题中的还有哪些数据没有找到倒数?它们有没有倒数?如果有,又是多少呢?同桌讨论说说你的发现。
3.出示课件想一想。
我的发现:1的倒数是(1),0(没有)倒数。
师提问:(1)为什么1的倒数是1?
生答:(因为1×1=1“根据乘积是1的两个数互为倒数”,所以1的倒数是1)。
(2)为什么0没有倒数?
生答:(因为0与任何数相乘都等于0,而不等于1,所以0没有倒数)。
4.探讨带分数、小数的倒数的求法。
师:看来像这样的分数与整数它的倒数求法很简单,可是我们学过的不仅仅是分数、整数,还有呢?这些数的倒数又该怎样求呢?请同桌的同学讨论一下,把你们讨论的结果填在表格上。
你们有结果了吗?谁愿意到这里把你们组的讨论结果说出来与大家共享(师切换实物投影),小组汇报讨论结果,学生自己用投影展示讨论结果并说明。
(师切换投影):老师也把求这一类数的倒数的方法写出来了,一起看看我们想的是否一样呢?(出示课件5)。
当你给带分数、小于1的小数、大于1的小数找出倒数后你有没有发现什么规律?请你对照大屏幕说说自己的发现:。
发现1:带分数的倒数都(小于)本身;。
发现2:比1小的小数的倒数都(大于)本身,并且都(大于)1。
发现3:比1大的小数的倒数都(小于)本身,并且都(小于)1。
(三)学以致用:
师:探究到这里,大家肯定有了很大的收获,现在请大家闭上眼睛休息一下,休息时想一想什么是倒数?再想一想求倒数的方法是什么?让学生再次记忆找倒数的方法。
1.想不想检验一下自己学的怎么样?
请打开课本24页完成做一做和25页练习六的第4题,(让学生做在课本上,并找学生口答做一做的题。练习六的第4题连线用投影展示学生的作业)。
2.(课件出示)请你以打手势的形式告诉老师你的答案。
(四)全课总结。
今天学习了什么?我们一起回顾总结出来好吗?
本节课一开始创设“让学生找朋友”的情境,通过此活动帮助学生理解“互为”的含义,从而为构建新知扫清语言理解障碍。并在课中多次强调表达的准确性,引导学生在与他人的交流中,运用数学语言清晰地、有条理地表述自己的思考过程,进行讨论与质疑。
本节课我采用了发现式教学法。教师只是通过组织者,引导者与合作者的身份,引导学生主动参与到整个学习过程中去,让学生自己组织学习材料,给学生提供放手的思维空间,并尊重学生的自主性,允许学生在探索新知中犯错误,并在修正错误中体会成功。以平等宽容的态度,激起学生的探究热情。特别是在探究倒数的意义与求倒数的方法时,放手让学生自己去探索,去观察,去归纳,去总结。此环节的设计,是为了引导学生在仔细观察数据特征的基础上,细心体会分子与分母的位置关系,尝试发现求倒数的方法。
“倒数”的学习适于学生展开观察、比较、交流、归纳等教学活动。为了更好地指导学法,我还采用小组合作形式组织教学。这一方面可以让学生尝试发现,体验到创造的过程;另一方面也可以增强学生的合作意识,让学生在小组交流、全班交流过程中,相互学习、相互借鉴,逐步完成对“倒数”的认识,有时还受同学启发,迸发出智慧的火花。并且充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。
在课后的巩固练习中,通过这些多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。
最后在全课的小结中再次提出问题,总结反思,帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。
倒数的认识教学设计思路(优秀18篇)篇十一
1.使学生感知倒数的意义,掌握求倒数的方法,学会对倒数的正确表述。
2.培养学生的观察能力、数学语言表达能力、发现规律的能力等。
求一个数的倒数的方法。
理解倒数的意义,掌握求一个数的倒数的方法。
教学光盘。
自学课本p50:
(1)什么是倒数?倒数的'概念中哪几个字比较重要?说一说你是怎么理解的。
(2)观察互为倒数的两个数,说说他们分子、分母的位置发生了什么变化?
(3)0有倒数吗?为什么?
1、出示例7。
学生在自备本上完成,指名核对。
教师板书:×=1×=1×=1。
2.你能模仿着再举几个例子吗?
学生回答,教师板书。
3.观察板书,揭示倒数意义:乘积是1的两个数互为倒数。(板书)。
和互为倒数,也可以说的倒数是,的倒数是。
让学生模仿着说另外两个算式,谁和谁互为倒数?谁是谁的倒数?
4.你能分别找出和的倒数吗?
学生同桌讨论找法,指名交流。
5.观察上面互为倒数的两个数,学生讨论怎样求一个分数的倒数?
指名交流方法:求一个分数的倒数时,只要把它的分子、分母调换位置就可以了。
6.合作练习:同桌两位同学一位说出一个分数,请另一位同学说这个分数的倒数,并交换练习。
1.电脑出示:5的倒数是多少?1的倒数呢?
学生跟自己的同桌说一说,再指名交流。
方法一:求5的倒数时,可以先把5看作,所以它的倒数是;
方法二:想5×()=1,再得出结果。
倒数的认识教学设计思路(优秀18篇)篇十二
1.知道倒数的意义。
2.经历倒数的意义这一概念的形成过程。
3.会求一个数的倒数。
4.培养学生合作学习,激发学习兴趣,让学生体验学习数学的快乐。
知道倒数的意义,会求一个数的倒数。
:掌握倒数的意义。
师:同学们,听说我们文城中心小学要举行计算比赛,你们想参加吗?
生:想。
生:分数乘法。
师:我们来算一算怎么样?(出示口算卡算一算。)。
生:好。
师:你们的口算不错,今天要研究的这几道题肯定难不倒你们,但要想发现它们的秘密,必须得有一双火眼金睛才行哦!
1、出示例1:先计算,再观察,看看有什么规律。
3/8×8/37/15×15/75×1/51/12×12。
师:上面这几道算式你能很快地算出结果吗?
生:能。(指名上去写结果)。
师:你们算得真快!认真观察一下算式,有什么发现吗?先把你的发现与同桌交流一下。
(交流完后请个别学生说一说)。
生:乘积都是1。(师板书:乘积是1)。
师:还有别的发现吗?(相乘的两个数有什么特征?)。
生:相乘的两个数的分子、分母正好颠倒了位置。
师:你们能写出这样的两个数吗?
生:(齐)能。
2、让学生自由写后再归纳倒数的意义。
师:你们写的算式乘积都是多少?
生:乘积都是1。
师:像这样乘积是1的两个数,我们把它们叫做互为倒数。(师又接着板书:的两个数叫做互为倒数。)这也就是这节课我们要学习的内容。(板题:倒数的认识)。
(让生齐读课题和倒数的意义)。
3、理解“互为倒数”的含义。
师:“乘积是1的两个数互为倒数.”你有不理解的地方吗?
生生交流后归纳:因为倒数是表示两个数之间的关系,这两个数是相互依存的,不能单独存在。(举例说明:如3/8和8/3,可以说3/8和8/3互为倒数,也可以说3/8是8/3的倒数,但不能说3/8是倒数)。
师:好像以前也学过有这样关系的两个数,还记得吗?
生:记得,是因数和倍数。
1、出示例2:下面哪两个数互为倒数?
3/567/25/31/612/70。
让学生说,师板书:3/5——————————→5/3。
6———————————→1/6。
师:你是怎样找一个数的倒数的?
生:把分子、分母交换位置。(师板书在箭头上面)。
师:那6的倒数怎么找?
生:把6看作6/1,然后再交换分子、分母的位置。
2、师再次引导学生观察以上的数,哪两个数互为倒数?哪些数没有找到倒数?引发学生质疑。
生:1和0有倒数吗?那它们的倒数是什么呢?为什么?
同桌之间再次交流得出:1的倒数是1,0没有倒数。(师相机板书)。
3、总结求一个数的倒数的方法:求真分数和假分数的倒数只要交换分数的分子、分母的位置,而求整数的倒数要把整数看作分母是1的分数,再交换分子、分母的位置。
4、引导学生打开课本学习。
四、巩固练习。
1、课本24页做一做。
2、互说倒数。(25页练习六第2题,同桌合作,师生合作)。
3、25页第3题:下面的说法对不对?为什么?
(1)7/12与12/7的乘积为1。所以7/12和12/7互为倒数。()。
(2)1/2×4/3×3/2=1,所以1/2、4/3、3/2互为倒数。()。
(3)0的倒数还是0。()。
(4)一个数的倒数一定比这个数小。()。
4、第4题。
这节课我们学习了什么?你学到了什么知识?能说一说吗?
板书设计:
(1)3/8×8/3=17/15×15/7=15×1/5=11/12×12=1。
乘积是1的两个数互为倒数。
(2)3/567/25/31/612/70。
分子、分母交换位置。
3/5————————————→5/33/5的倒数是5/3。
分子、分母交换位置。
6=6/1———————————→1/66的倒数是1/6。
1的倒数是1,0没有倒数。
倒数的认识这部分内容是在学习分数乘法的基础上进行教学的。学好倒数的认识这部分内容能够为后面学习分数除法打好基础。所以学好这部分内容对之后学习分数除法是至关重要的。我主要结合教材编排的特点、本班学生的认知规律及教学的重、难点对教学流程进行预设,收到了较好的效果。
一、谈话导入激发求知欲望,深入研究发现其中奥秘。
在导入这个环节,我主要结合本学期要举行的计算比赛,通过谈话激发学生学习的热情及求知欲望,让学生对学习充满信心,并引发期待学好新知识的决心。从学生的表现来看,很多地方都让我意想不到,如交流1和0的倒数时,很多学生都能根据倒数的意义推理出1的倒数是1,0没有倒数,并且说得有凭有据的,这是其一。还有在互说倒数这个环节,我出示了一些真分数、假分数和整数,学生都能正确地说出它们的倒数,这纯属正常发挥,不算什么,但在最后我分别出示了一个带分数和一个小数,让学生说出它们的倒数,拓展了我所提供给学生的知识内容,我以为会把他们难住了,没想到一位同学毫不犹豫地说出了它的倒数,在我的追问下,竟然还能把找这个数的倒数的过程说得滴水不漏,这不能不让我为之竖起大拇指。
二、精心预设洞悉其中规律,引发质疑解开心中疑团。
著名教育家苏霍姆林斯基说过:“在人的内心深处,都有一种根深蒂固的需要,那就是希望自己是一个发现者和探索者。”对于我们的学生来说,这种需求特别强烈。在这部分的教学中,掌握倒数的意义是学好这部分内容的关键。因此在教学倒数的意义时,我主要是让学生通过算一算,看一看,写一写,说一说的形式,还有合作学习的方式获得“什么样的两个数是互为倒数”这个概念,为了更好地理解“互为倒数”,我让学生自己质疑,然后再给他们设计一个交流的平台,让他们自己解开心中的疑虑,使学生在深入思考中得出结论,这就是学生学习的成果。我觉得,这样做不仅活跃了课堂气氛,而且还让学生经历了探索的过程,解决了心中的困惑,更主要的是让学生体会到了成功的喜悦。
经过这节课,我最大的收获是看到学生的成长及迸发出的那股探索知识的劲头,无一不让我为之高兴。但在高兴之余,我也看到了课堂中的不足之处,有相当一部分学生不善于表现自己,思维火花受到限制,导致回答问题的人气不足,这将是我在今后教学中所面临的一大挑战。
倒数的认识教学设计思路(优秀18篇)篇十三
1、引导学生通过观察、研究、类推等数学活动,理解倒数的意义,总结出求倒数的方法。
2、通过互助活动,培养学生与人合作、与人交流的习惯。
3、通过自行设计方案,培养学生自主探索和创新的意识。
理解倒数的含义,掌握求倒数的方法。
掌握求倒数的方法。
1、找一找下面文字的构成规律。学生分组交流,找出文字的构成规律。
2、按照上面的规律填数。
3、揭示课题。今天,我们就来研究这样的数——倒数。
1、师:关于倒数,你想知道什么?
2、学习倒数的含义。
(1)学生观察教材第28页主题图。
(2)学生根据所举的例子进行思考,还可以与老师共同探讨。
(3)学生反馈,老师板书。
学生可能发现:
每组中的两个数相乘的'积是1。
每组中两个数的分子和分母的位置互相颠倒。
每组中两个数有相互依存的关系。
(4)举例验证。
(5)学生辩论:看谁说得对。
(6)归纳:乘积是1的两个数会为倒数。
3、特殊数:0和1。板书:0没有倒数,1的倒数是它本身。
4、求倒数的方法。
(1)出示例1、
(2)归纳方法:你是怎样求一个数的倒数的?板书:分子和分母调换位置。
5、反馈练习。
(1)完成教材第28页的“做一做”。学生独立解答,老师巡视。
(2)完成教材第29页练习六的第1—5题。
1、找一找下列各数中哪两个数互为倒数。
2、填空。
(1)三分之四的倒数是,的倒数是六分之七。
(2)10的倒数是,的倒数是1。
(3)二分之一的倒数是,没有倒数。
倒数的认识教学设计思路(优秀18篇)篇十四
乘积是1的两个数互为倒数。
(2)3/567/25/31/612/70。
分子、分母交换位置。
3/5――→5/33/5的倒数是5/3。
分子、分母交换位置。
6=6/1――→1/66的倒数是1/6。
1的倒数是1,0没有倒数。
教学反思:
倒数的认识这部分内容是在学习分数乘法的基础上进行教学的。学好倒数的认识这部分内容能够为后面学习分数除法打好基础。所以学好这部分内容对之后学习分数除法是至关重要的。我主要结合教材编排的特点、本班学生的认知规律及教学的重、难点对教学流程进行预设,收到了较好的效果。
一、谈话导入激发求知欲望,深入研究发现其中奥秘。
在导入这个环节,我主要结合本学期要举行的计算比赛,通过谈话激发学生学习的热情及求知欲望,让学生对学习充满信心,并引发期待学好新知识的决心。从学生的表现来看,很多地方都让我意想不到,如交流1和0的倒数时,很多学生都能根据倒数的意义推理出1的倒数是1,0没有倒数,并且说得有凭有据的,这是其一。还有在互说倒数这个环节,我出示了一些真分数、假分数和整数,学生都能正确地说出它们的倒数,这纯属正常发挥,不算什么,但在最后我分别出示了一个带分数和一个小数,让学生说出它们的倒数,拓展了我所提供给学生的知识内容,我以为会把他们难住了,没想到一位同学毫不犹豫地说出了它的倒数,在我的追问下,竟然还能把找这个数的倒数的过程说得滴水不漏,这不能不让我为之竖起大拇指。
二、精心预设洞悉其中规律,引发质疑解开心中疑团。
著名教育家苏霍姆林斯基说过:“在人的内心深处,都有一种根深蒂固的需要,那就是希望自己是一个发现者和探索者。”对于我们的学生来说,这种需求特别强烈。在这部分的教学中,掌握倒数的意义是学好这部分内容的关键。因此在教学倒数的意义时,我主要是让学生通过算一算,看一看,写一写,说一说的形式,还有合作学习的方式获得“什么样的两个数是互为倒数”这个概念,为了更好地理解“互为倒数”,我让学生自己质疑,然后再给他们设计一个交流的平台,让他们自己解开心中的疑虑,使学生在深入思考中得出结论,这就是学生学习的成果。我觉得,这样做不仅活跃了课堂气氛,而且还让学生经历了探索的过程,解决了心中的困惑,更主要的是让学生体会到了成功的喜悦。
经过这节课,我最大的收获是看到学生的成长及迸发出的那股探索知识的劲头,无一不让我为之高兴。但在高兴之余,我也看到了课堂中的不足之处,有相当一部分学生不善于表现自己,思维火花受到限制,导致回答问题的人气不足,这将是我在今后教学中所面临的一大挑战。
倒数的认识教学设计思路(优秀18篇)篇十五
教学目标:
1、知道倒数的意义。
2、经历倒数的意义这一概念的形成过程。
3、会求一个数的倒数。
4、培养学生合作学习,激发学习兴趣,让学生体验学习数学的快乐。
教学重点:
知道倒数的意义,会求一个数的倒数。
教学难点:
教学关键:
掌握倒数的意义。
教学过程:
一、谈话导入。
师:同学们,听说我们文城中心小学要举行计算比赛,你们想参加吗?
生:想。
生:分数乘法。
师:我们来算一算怎么样?(出示口算卡算一算。)。
生:好。
师:你们的口算不错,今天要研究的这几道题肯定难不倒你们,但要想发现它们的秘密,必须得有一双火眼金睛才行哦!
二、揭示倒数的意义。
1、出示例1:先计算,再观察,看看有什么规律。
3/8×8/37/15×15/75×1/51/12×12。
师:上面这几道算式你能很快地算出结果吗?
生:能。(指名上去写结果)。
师:你们算得真快!认真观察一下算式,有什么发现吗?先把你的发现与同桌交流一下。
(交流完后请个别学生说一说)。
生:乘积都是1。(师板书:乘积是1)。
师:还有别的发现吗?(相乘的两个数有什么特征?)。
生:相乘的两个数的分子、分母正好颠倒了位置。
师:你们能写出这样的两个数吗?
生:(齐)能。
2、让学生自由写后再归纳倒数的`意义。
师:你们写的算式乘积都是多少?
生:乘积都是1。
师:像这样乘积是1的两个数,我们把它们叫做互为倒数。(师又接着板书:的两个数叫做互为倒数。)这也就是这节课我们要学习的内容。(板题:倒数的认识)。
(让生齐读课题和倒数的意义)。
3、理解“互为倒数”的含义。
师:“乘积是1的两个数互为倒数、”你有不理解的地方吗?
生生交流后归纳:因为倒数是表示两个数之间的关系,这两个数是相互依存的,不能单独存在。(举例说明:如3/8和8/3,可以说3/8和8/3互为倒数,也可以说3/8是8/3的倒数,但不能说3/8是倒数)。
师:好像以前也学过有这样关系的两个数,还记得吗?
生:记得,是因数和倍数。
三、探索求倒数的方法。
1、出示例2:下面哪两个数互为倒数?
3/567/25/31/612/70。
让学生说,师板书:3/5――→5/3。
6――→1/6。
师:你是怎样找一个数的倒数的?
生:把分子、分母交换位置。(师板书在箭头上面)。
师:那6的倒数怎么找?
生:把6看作6/1,然后再交换分子、分母的位置。
2、师再次引导学生观察以上的数,哪两个数互为倒数?哪些数没有找到倒数?引发学生质疑。
生:1和0有倒数吗?那它们的倒数是什么呢?为什么?
同桌之间再次交流得出:1的倒数是1,0没有倒数。(师相机板书)。
3、总结求一个数的倒数的方法:求真分数和假分数的倒数只要交换分数的分子、分母的位置,而求整数的倒数要把整数看作分母是1的分数,再交换分子、分母的位置。
4、引导学生打开课本学习。
四、巩固练习。
1、课本24页做一做。
2、互说倒数。(25页练习六第2题,同桌合作,师生合作)。
3、25页第3题:下面的说法对不对?为什么?
(1)7/12与12/7的乘积为1。所以7/12和12/7互为倒数。
(2)1/2×4/3×3/2=1,所以1/2、4/3、3/2互为倒数。()。
(3)0的倒数还是0。()。
(4)一个数的倒数一定比这个数小。()。
4、第4题。
五、课堂小结。
这节课我们学习了什么?你学到了什么知识?能说一说吗?
板书设计:
倒数的认识教学设计思路(优秀18篇)篇十六
1、是学生通过探究活动,认识倒数的意义,掌握找倒数方法。
2、培养学生观察、归纳、推理和概括的能力。
出示例1的一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。(通过计算,发现每组算式的乘积都是1.通过观察发现相乘的两个分数的分子和分母的位置是颠倒的)。
师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数就做倒数。
让学生读一读:倒数。
出示倒数的意义:乘积是1的两个数互为倒数。
让学生说说对到数意义的理解。
提问:互为是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)。
判断下面的句子错在哪里?应该怎样叙述?
因为3/44/3=1,所以四分之三是倒数,三分之四也是倒数。
出示例2,找一找那两个数互为倒数?
汇报找的结果,并说一说怎样找到的?
1,看两个分数的乘积是不是1;
2,看两个分数的分子与分母是否分别颠倒了位置。
讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)。
通过具体实例总结归纳找倒数的方法。
分子、分母交换位置。
例:3/55∕33∕5的倒数是5∕3。
(2)找倒数的倒数:先把整数看成分母是1的分数,在交换分子和分母的位置。
分子、分母交换位置。
例:6=1∕66的倒数是1∕6.
看一看。例2中的那些数据没有找到倒数?(1,0)。
提问:1和0有没有倒数?如果有,是多少?
小组讨论、汇报。
1、关于1的倒数。
也可以这样推导:1=1∕1=1,1的倒数是1.
2、关于0的倒数。
因为0与任何数相乘都不等于1,所以0没有倒数。
交换分子、分母的位置。
也可以这样推导:0=0∕11∕0,分母不能为0,所以0没有倒数。
1、完成做一做,先独立做,再全班交流。
2、练习六第3题。
用多媒体或投影逐题出示,学生判断,并说明理由。
3、同桌进行互说倒数活动(练习六第2题)。
今天学习了什么?
什么叫倒数?怎样找到一个数的倒数?
倒数的认识教学设计思路(优秀18篇)篇十七
倒数是北师大版五年级数学下册的内容,这部分内容实在分数乘法计算的基础上进行教学的,通过观察乘积是1的几组数的特点,引导学生认识到数,为后面学习分数除法做准备,它是分数计算的关键,他沟通了分数乘法和除法的计算,骑着承前启后的作用。
学情分析。
倒数这一节内容对学生来说非常陌生,以前从没有接触过,但是这节内容,对于五年级的学生来说非常简单,以为经过四年的学习,他们已经具备了分析问题和解决问题的能力,会很容易学会的。
教学目标:
1、使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。
2、进一步培养学生的自主学习能力,提高学生观察、比较、概括以及合作学习的能力。
3、提高学生学习数学的兴趣,发展学生质疑的习惯。
教学重点:概括倒数的意义与求法。
教学难点:理解“互为”、“倒数”的含义。
教学过程:
一、谈话引入。
师:同学们,当美国人碰到好朋友的时候,会热情拥抱,那我们中国人一般会怎样做呢?
生:握手。
师:现在谁愿意来前面和老师握握手?他就会成为老师最好的朋友。
(师生共同表演握手的动作)。
师:握手是几个人的事情呢?
生:两个人。
生:“互相成了朋友”就是说我们是老师的朋友,老师也是我们的朋友。
师:同学们,前面我们学习了分数的乘法,今天老师给出一些乘法算式,比一比谁能最先发现这组算式的秘密。(拿出作业本帮助你)。
二、引导探究,掌握方法。
1、举例观察,讨论。(2/5的倒数)。
师:怎样求一个数的倒数呢?
生:分子分母交换位置。
师生共同总结:一个分数的倒数就是把这个分数的分子分母交换位置。
2、小组讨论,探究求整数的倒数的方法。
师:2的倒数怎么求呢?
生:把2看成分母为1的分数,即2=2/1,所以2的倒数是1/2。
(师生共同总结:整数的倒数是用1做分子,用这个整数做分母。)。
三、巩固练习,拓展外延。
1、出示“1/5,3/4,5/9,1,3/7,9/5,4/3,7/3”八个数,请学生移动数的位置,找出几组互为倒数的数。
2、剩下“1/5和1”,分别求出1/5的倒数和1的倒数。
3、1的倒数是几?(1的倒数是1。)你是怎样计算的?
(1)整数的倒数是用1做分子,用这个整数做分母。所以1的倒数为1。
(2)因为1×1=1,所以1的倒数为1。
4、0也是整数,0的倒数是几呢?
(1)出示0×()=1。谁上来填一填?(没人举手)。
师:0乘任何数都不得1,这说明了什么?
生:0没有倒数。
(2)如果把0看成分母为1的分数,即为0/1,那么它的倒数应是1/0。
师:这样说可以吗?
生:不可以,因为0不以做分母。
5、真分数的倒数是假分数,假分数的倒数是真分数。那么带分数呢?
(先把带分数化成假分数,再求它的倒数。)。
6、小数有倒数吗?
(1)把小数化成分数,再求它的倒数。
(2)举例说明:因0.25×4=1,所以说0.25和4互为倒数。
四、深化练习,巩固提高。
1、填空。
(1)乘积是()的两个数互为倒数。
(2)()的倒数是它本身,()没有倒数。
(3)27/100的倒数是(),25/16的倒数是()。
(4)0.7的倒数是()。
六、全课小结。
同学们,今天这节课你有什么收获?
板书设计。
倒数。
乘积是1的两个数互为倒数。
求一个数(0除外)的倒数,就是将分子、分母交换位置。
1的倒数是1;0没有倒数。
文档为doc格式。
倒数的认识教学设计思路(优秀18篇)篇十八
1、通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。
2、使学生经历倒数意义的概括过程,提高衙门观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。
3、通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。
认识倒数并掌握求倒数的方法。
小数与整数求倒数的方法。
ppt课件,卡片。
1、列举数学中两个数乘积是1的算式。
2、揭示课题:倒数的认识。
(设计意图)问题是数学的心脏,是学生探究的起点和动力,在谈话、游戏情境中引导学生发现问题,提出问题。
1、探究倒数的意义。
(1)观察刚才列举的例子,找出特点。
(2)出示倒数的意义:乘积是1的两个数互为倒数。
(3)小组讨论,什么是倒数?
学生独立思考后,组内交流。
全班汇报,教师根据学生的汇报点拨引导。
师生共同归纳倒数的意义:乘积是1的两个数叫做互为倒数。(教师板书)。
(5)口答练习:
2、探究求一个数(分数)的倒数的方法。
(1)小组合作,自学例1。
(2)小组派代表交流例1。
(3)学生交流求一个分数倒数的方法。
师:互为倒数的两个数相等吗?怎么样表示它的结果?也可用—(破折号)表示。
(4)教师引导质疑:0有没有倒数?为什么?学生讨论释疑。
1×()=1,所以1的倒数是1。而0×()=1呢?
1的倒数是它本身,0没有倒数。
(5)引导学生概括求倒数的方法。
求一个数(0除外)的倒数,只要把这个数的分子、分母互相交换位置就行了。
(6)练习:师生对口令,找倒数。
老师说一个数,学生快速抢答出它的倒数。
3、探究求整数、小数、带分数的倒数方法。
师:同学们已经会求一个分数的`倒数了。想一想,我们还学过哪些数?(整数、小数、带分数),那么怎么样求整数、小数、带分数的倒数呢?选择一种,在小组内探究。
a:学生选择一种研究,教师巡视指导。
b:学生交流汇报,教师分别板书一例。
(设计意图)充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。
1、请你填一填。
2、我是小法官。
3、游戏:找朋友。
师:老师这里有一些卡片,上面写了一些数字,哪两个数是互为倒数关系,哪两个数就是好朋友。请你把这样的两张卡片找出来。
(设计意图)多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。
这节课你们有什么收获?还有什么疑问?
(设计意图)帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。
板书设计:倒数的认识。
乘积是1的两个数互为倒数。
求一个数(0除外)倒数的方法:
把这个数分子、分母调换位置。