八年级数学教案推荐(精选18篇)

时间:2024-12-23 作者:雁落霞

范文可以用作学习和参考的标杆,帮助我们更好地理解和掌握写作技巧。接下来,我们将通过一些实例来详细介绍如何写一篇优秀的总结。

八年级数学教案推荐(精选18篇)篇一

学会可化为一元一次方程或一元二次方程的分式方程的解法,会用去分母求方程的解、掌握解分式方程的一般步骤。

去分母法解可化为一元一次方程或一元二次方程的分式方程、验根的方法、

解分式方程的一般步骤。

1、什么叫分式方程?

2、解分式方程的基本思想:

分式方程整式方程。

3、解方程(学生板演)。

1、由上述学生的板演归纳出解分式方程的一般步骤。

(1)去分母:在方程的两边都乘以最简公分母,化为整式方程;

(2)解这个整式方程;

2、范例讲解。

(学生尝试练习后,教师讲评)。

例1:解方程例2:解方程例3:解方程讲评时强调:

1、怎样确定最简公分母?(先将各分母因式分解)。

2、解分式方程的步骤、

巩固练习:p1471t,2t、

课堂小结:解分式方程的一般步骤。

布置作业:见作业本。

八年级数学教案推荐(精选18篇)篇二

(一)、知识与技能:

(1)使学生了解因式分解的意义,理解因式分解的概念。

(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。

(二)、过程与方法:

(1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。

(2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。

(3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力。

(三)、情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。

二、教学重点和难点。

重点:因式分解的概念及提公因式法。

难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系。

三、教学过程。

教学环节:

活动1:复习引入。

看谁算得快:用简便方法计算:

(1)7/9×13-7/9×6+7/9×2=;

(2)-2.67×132+25×2.67+7×2.67=;

(3)992–1=。

设计意图:

注意事项:学生对于(1)(2)两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(3)小题的逆向利用平方差公式的运算则有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式。

活动2:导入课题。

p165的探究(略);

2.看谁想得快:993–99能被哪些数整除?你是怎么得出来的?

设计意图:

引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备。

活动3:探究新知。

看谁算得准:

计算下列式子:

(1)3x(x-1)=;

(2)(a+b+c)=;

(3)(+4)(-4)=;

(4)(-3)2=;

(5)a(a+1)(a-1)=;

根据上面的算式填空:

(1)a+b+c=;

(2)3x2-3x=;

(3)2-16=;

(4)a3-a=;

(5)2-6+9=。

在第一组的整式乘法的计算上,学生通过对第一组式子的观察得出第二组式子的结果,然后通过对这两组式子的结果的比较,使学生对因式分解有一个初步的意识,由整式乘法的逆运算逐步过渡到因式分解,发展学生的逆向思维能力。

活动4:归纳、得出新知。

比较以下两种运算的联系与区别:

a(a+1)(a-1)=a3-a。

a3-a=a(a+1)(a-1)。

在第三环节的运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗?

八年级数学教案推荐(精选18篇)篇三

多媒体投影一组图片,让同学们从中抽象出平面图形,从而引出课题。

二、自主学习,指向目标。

学习至此:请完成《学生用书》相应部分。

三、合作探究,达成目标。

多边形的定义及有关概念。

活动一:阅读教材p19。

小组讨论:结合具体图形说出多边形的边、内角、外角?

反思小结:多边形的定义及相关概念。

针对训练:见《学生用书》相应部分。

多边形的对角线。

活动二:(1)十边形的对角线有35条。

(2)如果经过多边形的一个顶点有36条对角线,这个多边形是39边形。

反思小结:当n为已知时,可以直接代入求得对角线的条数,当对角线条数已知时,可以化为方程来求多边形的边数。

小组讨论:如何灵活运用多边形对角线条数的规律解题?

针对训练:见《学生用书》相应部分。

正多边形的有关概念。

活动二:阅读教材p20。

小组讨论:判断一个多边形是否是正多边形的条件?

反思小结:由正多边形的概念知:满足各边、各角分别相等的多边形是正多边形。

针对训练:见《学生用书》相应部分。

四、总结梳理,内化目标。

本节学习的数学知识是:

1、多边形、多边形的外角,多边形的对角线。

2、凸凹多边形的概念。

五、达标检测,反思目标。

1、下列叙述正确的是(d)。

a、每条边都相等的多边形是正多边形。

c、每个角都相等的多边形叫正多边形。

d、每条边、每个角都相等的多边形叫正多边形。

2、小学学过的下列图形中不可能是正多边形的是(d)。

a、三角形b。正方形c。四边形d。梯形。

3、多边形的内角是指多边形相邻两边组成的角;多边形的外角是指多边形的边与它的邻边的延长线组成的角;多边形的内角和它相邻的外角是邻补角关系。

4、已知一个四边形的四个内角的比为1∶2∶3∶4,求这个四边形的各个内角的度数。

八年级数学教案推荐(精选18篇)篇四

2、使学生掌握用平方差公式分解因式。

重点:掌握运用平方差公式分解因式。

难点:将单项式化为平方形式,再用平方差公式分解因式。

学习方法:归纳、概括、总结。

创设问题情境,引入新课。

在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。

如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的`一种因式分解的方法——公式法。

1、请看乘法公式。

利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。

a2—b2=(a+b)(a—b)。

2、公式讲解。

如x2—16。

=(x)2—42。

=(x+4)(x—4)。

9m2—4n2。

=(3m)2—(2n)2。

=(3m+2n)(3m—2n)。

例1、把下列各式分解因式:

(1)25—16x2;(2)9a2—b2。

例2、把下列各式分解因式:

(1)9(m+n)2—(m—n)2;(2)2x3—8x。

补充例题:判断下列分解因式是否正确。

(1)(a+b)2—c2=a2+2ab+b2—c2。

(2)a4—1=(a2)2—1=(a2+1)?(a2—1)。

教科书练习。

1、教科书习题。

2、分解因式:x4—16x3—4x4x2—(y—z)2。

3、若x2—y2=30,x—y=—5求x+y。

八年级数学教案推荐(精选18篇)篇五

教学目标:

〔知识与技能〕。

1.在生活实例中认识轴对称图.

2.分析轴对称图形,理解轴对称的概念.轴对称图形的概念。

〔过程与方法〕。

2、在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步培说理和进行简单推理的能力。

〔情感、态度与价值观〕。

辩证唯物主义观点。

教学重点:.

理解轴对称的概念。

教学难点。

能够识别轴对称图形并找出它的对称轴.

教具准备:三角尺。

教学过程。

一.创设情境,引入新课。

1.举实例说明对称的重要性和生活充满着对称。

2.对称给我们带来多少美的感受!初步掌握对称的奥秒,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐.

3.轴对称是对称中重要的一种,让我们一起走进轴对称世界,探索它的秘密吧!

二.导入新课。

1.观察:几幅图片(出示图片),观察它们都有些什么共同特征.

强调:对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,•甚至日常生活用品,人们都可以找到对称的例子.

练习:从学生生活周围的事物中来找一些具有对称特征的例子.

3.如果一个图形沿一直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.我们也说这个图形关于这条直线(成轴)•对称.

4.动手操作:取一张质地较硬的纸,将纸对折,并用小刀在纸的中央随意。

刻出一个图案,将纸打开后铺平,你得到两个成轴对称的图案了吗?

归纳小结:由此我们进一步了解了轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合.

5.练习:你能找出它们的对称轴吗?分小组讨论.

思考:大家想一想,你发现了什么?

小结得出:.像这样,•把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,•这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.

三.随堂练习。

1、课本60练习1、2。

四.课时小结。

分了轴对称图形和两个图形成轴对称.

五.课后作业。

习题13.1.1、2、6题.

六.教后记。

八年级数学教案推荐(精选18篇)篇六

一、教材分析:

《正方形》这节课是九年义务教育人教版数学教材八年级下册第十九章第二节的内容。纵观整个初中教材,《正方形》是在学生掌握了平行线、三角形、平行四边形、矩形、菱形等有关知识及简单图形的平移和旋转等平面几何知识,并且具备有初步的观察、操作等活动经验的基础上出现的。既是前面所学知识的延续,又是对平行四边形、菱形、矩形进行综合的不可缺少的重要环节。

本节课的重点是正方形的概念和性质,难点是理解正方形与平行四边形、矩形、菱形之间的内在联系。根据大纲要求,本节课制定了知识、能力、情感三方面的目标。

(一)知识目标:

1、要求学生掌握正方形的概念及性质;

2、能正确运用正方形的性质进行简单的计算、推理、论证;

(二)能力目标:

1、通过本节课培养学生观察、动手、探究、分析、归纳、总结等能力;

2、发展学生合情推理意识,主动探究的习惯,逐步掌握说理的基本方法;

(三)情感目标:

1、让学生树立科学、严谨、理论联系实际的良好学风;

2、培养学生互相帮助、团结协作、相互讨论的团队精神;

3、通过正方形图形的完美性,培养学生品格的完美性。

二、学生分析:

该段学生具有一定的独立思考和探究的能力,但语言表达能力方面稍有欠缺,所以在本节课的教学过程中,特意设计了让学生自己组织语言培养说理能力,让学生们能逐步提高。

三、教法分析:

针对本节课的特点,采用"实践--观察--总结归纳--运用"为主线的教学方法。

通过学生动手,采取几种不同的方法构造出正方形,然后引导学生探究正方形的概念。通过观察、讨论、归纳、总结出正方形性质定理,最后以课堂练习加以巩固定理,并通过一道拔高题对定义、性质理解、巩固加以升华。

四、学法分析:

本节课重点是从培养学生探索精神和分析归纳总结能力为出发点,着重指导学生动手、观察、思考、分析、总结得出结论。在小组讨论中通过互相学习,让学生体验合作学习的乐趣。

五、教学程序:

第一环节:相关知识回顾。

以提问的形式复习的平行四边形、矩形、菱形的定义及性质之后,引导学生发现矩形、菱形的实质是由平行四边形角度、边长的变化得到的。并启发学生考虑,若这两种变化同时发生在平行四边形上,则会得到什么样的图形?让学生们通过手上的学具演示以上两种变化,从而得出结论。

第二环节:新课讲解通过学生们的发现引出课题“正方形”

1、正方形的定义:引导学生说出自己变化出正方形的过程,并再次利用课件形象演示出由平行四边形的边、角的变化演变出正方形的过程。请同学们举手发言,归纳总结出正方形定义:一组邻边相等,且一个角是直角的平行四边形是正方形。再由此定义启发学生们发现正方形的三个必要条件,并且由这三个条件通过重新组合即一组邻边相等与平行四边形组成菱形再加上一个角是直角可得到正方形的另两个定义:一个角是直角的菱形是正方形;一组邻边相等的矩形是正方形。此内容借助课件演示其变化过程,进一步启发学生发现,正方形既是特殊的菱形,又是特殊的矩形,从而总结出正方形的性质。

2、正方形的性质。

定理1:正方形的四个角都是直角,四条边都相等;

定理2:正方形的两条对角线相等,并且互相垂直、平分,每条对角线平分一组对角。

以上是对正方形定义和性质的学习,之后是进行例题讲解。

4、课堂练习:第一部分采用三道有关正方形的周长、面积、对角线、边长计算的填空题,目的是对正方形性质的进一步理解,并考察学生掌握的情况。

第二部分是选择题,通过体现生活中实际问题,来提升学生所学的知识,并加以综合练习,提高他们的综合素质,使他们充分认识到数学实质是来源于生活并要服务于生活。

5、课堂小结:此环节我是通过图框的形式小结正方形和前阶段所学特殊四边形之间的内在联系,通过对所学几种四边形内在联系体现正方形完美的本质,渲染学生们应追求象正方形一样方正的品质,从而要努力学习以丰富的知识充实自己,达到理想中的完美。

6、作业设计:作业是教材159页,第12、14两小道证明题,通过此作业让同学们进一步巩固有关正方形的知识。

八年级数学教案推荐(精选18篇)篇七

1、掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用。

2、使学生理解判定定理与性质定理的区别与联系。

3、会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理。

1、通过“探索式试明法”开拓学生思路,发展学生思维能力。

2、通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的能力。

通过一题多解激发学生的学习兴趣。

通过学习,体会几何证明的方法美。

构造逆命题,分析探索证明,启发讲解。

1、教学重点:平行四边形的判定定理1、2、3的应用。

2、教学难点:综合应用判定定理和性质定理。

(强调在求证平行四边形时用判定定理在已知平行四边形时用性质定理)。

八年级数学教案推荐(精选18篇)篇八

1.了解方差的定义和计算公式。

2.理解方差概念的产生和形成的过程。

3.会用方差计算公式来比较两组数据的波动大小。

1.重点:方差产生的必要性和应用方差公式解决实际问题。

2.难点:理解方差公式。

问题农科院计划为某地选择合适的甜玉米种子.选择种子时,甜玉米的产量和产量的稳定性是农科院所关心的问题.为了解甲、乙两种甜玉米种子的相关情况,农科院各用10块自然条件相同的试验田进行试验,得到各试验田每公顷的产量(单位:t)如表所示。

根据这些数据估计,农科院应该选择哪种甜玉米种子呢?

来衡量这组数据的波动大小,并把它叫做这组数据的方差(variance),记作。

意义:用来衡量一批数据的波动大小。

在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。

(1)研究离散程度可用。

(2)方差应用更广泛衡量一组数据的.波动大小。

(3)方差主要应用在平均数相等或接近时。

(4)方差大波动大,方差小波动小,一般选波动小的。

例题:在一次芭蕾舞比赛中,甲乙两个芭蕾舞团都表演了舞剧《天鹅湖》,参加表演的女演员的身高(单位:cm)分别是:

甲163164164165165166166167。

乙163165165166166167168168。

哪个芭蕾舞团的女演员的身高比较整齐?

1.已知一组数据为2、0、-1、3、-4,则这组数据的方差为。

2.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:

甲:7、8、6、8、6、5、9、10、7、4。

乙:9、5、7、8、7、6、8、6、7、7。

经过计算,两人射击环数的平均数相同,但s,所以确定去参加比赛。

3.甲、乙两台机床生产同种零件,10天出的次品分别是()。

甲:0、1、0、2、2、0、3、1、2、4。

乙:2、3、1、2、0、2、1、1、2、1。

分别计算出两个样本的平均数和方差,根据你的计算判断哪台机床的性能较好?

八年级数学教案推荐(精选18篇)篇九

在推理判断中得出同底数幂乘法的运算法则,并掌握“法则”的应用.2.过程与方法。

在小组合作交流中,培养协作精神、探究精神,增强学习信心.重、难点与关键。

1.重点:同底数幂乘法运算性质的推导和应用.2.难点:同底数幂的乘法的法则的应用.

一、创设情境,故事引入【情境导入】。

力一劈,把混沌的宇宙劈成两半,上面是天,下面是地,从此宇宙有了天地之分,盘古完成了这样一个壮举,累死了,他的左眼变成了太阳,右眼变成了月亮,毛发变成了森林和草原,骨头变成了高山和高原,肌肉变成了平原与谷地,血液变成了河流.

八年级数学教案推荐(精选18篇)篇十

1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.

2.会综合运用平行四边形的判定方法和性质来解决问题。

平行四边形的判定方法及应用。

阅读教材p44至p45。

利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:

(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?

(2)你怎样验证你搭建的四边形一定是平行四边形?

(3)你能说出你的做法及其道理吗?

(5)你还能找出其他方法吗?

平行四边形判定方法1两组对边分别相等的四边形是平行四边形。

平行四边形判定方法2对角线互相平分的四边形是平行四边形。

平行四边形判定方法1两组对边分别相等的四边形是平行四边形。

证明:(画出图形)。

平行四边形判定方法2一组对边平行且相等的四边形是平行四边形。

八年级数学教案推荐(精选18篇)篇十一

一、教学目的:

1、掌握菱形概念,知道菱形与平行四边形的关系;

3、通过运用菱形知识解决具体问题,提高分析能力和观察能力;

4、根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想;

二、重点、难点。

1、教学重点:菱形的性质1、2;

2、教学难点:菱形的性质及菱形知识的综合应用;

三、例题的意图分析。

四、课堂引入。

1、(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?

《18、2、2菱形》课时练习含答案;

5、在同一平面内,用两个边长为a的等边三角形纸片(纸片不能裁剪)可以拼成的四边形是()。

a、矩形b、菱形c、正方形d、梯形。

答案:b。

知识点:等边三角形的性质;菱形的判定。

解析:

分析:此题主要考查了等边三角形的性质,菱形的定义、

6、用两个边长为a的等边三角形纸片拼成的四边形是()。

a、等腰梯形b、正方形c、矩形d、菱形。

答案:d。

知识点:等边三角形的性质;菱形的判定。

解析:

分析:本题利用了菱形的概念:四边相等的四边形是菱形、

《菱形的性质与判定》练习题。

一选择题:

1、下列四边形中不一定为菱形的是()。

a、对角线相等的平行四边形b、每条对角线平分一组对角的四边形。

c、对角线互相垂直的平行四边形d、用两个全等的等边三角形拼成的四边形。

2、下列说法中正确的是()。

a、四边相等的四边形是菱形。

b、一组对边相等,另一组对边平行的四边形是菱形。

c、对角线互相垂直的四边形是菱形。

d、对角线互相平分的四边形是菱形。

3、若顺次连接四边形abcd各边的中点所得四边形是菱形,则四边形abcd一定是()。

a、菱形b、对角线互相垂直的四边形c、矩形d、对角线相等的四边形。

八年级数学教案推荐(精选18篇)篇十二

《基础教育课程改革纲要(试行)》指出:“大力推进多媒体信息技术在教学过程中的普遍应用,促进信息技术与学科课程的整合,逐步实现教学内容的呈现方式、学生的学习方式、教师的教学方式和师生互动方式的变革,充分发挥信息技术的优势,为学生的学习和发展提供丰富多彩的教育环境和有力的学习工具。”教师运用现代多媒体信息技术对教学活动进行创造性设计,发挥计算机辅助教学的特有功能,把信息技术和数学教学的学科特点结合起来,可以使教学的表现形式更加形象化、多样化、视觉化,有利于充分揭示数学概念的形成与发展,数学思维的过程和实质,展示数学思维的形成过程,使数学课堂教学收到事半功倍的效果。

本节课内容是学生在小学阶段初步了解特殊四边形以及学过《三角形》这章的基础上进行的,在知识结构上打破了教材的编写顺序,从整体的角度探究特殊四边形性质。运用多媒体教学体现出直观、课容量大、容易接受的特点,为进一步的理论证明及应用起着提供数据和宏观指导作用,使学生学习本章具体内容时知道身在何处,使知识体系更加系统。本节课内容是四边形这章的理论基础,在该章占有非常重要的地位。

本班经历了一年多课改实践,学生对运用现代多媒体信息技术的教学方式有浓厚的兴趣,能运用《几何画板》这一工具进行简单的操作,形成自主探索和合作交流的学风,从而乐于在教师的指导下主动与同学探索、发现、归纳、经历数学知识于实践的过程。

本节课充分利用现有的先进教学设备(两名学生一台电脑),利用笔者自制,借助《几何画板》把学生带入数学模拟实验室,以研究电动门的机械原理为切入点,从学生已有的生活经验出发,让学生亲身经历数学知识的形成并进行解释与应用过程。组员相互配合分别测量、搜集、分析、整理特殊四边形的边长、角度、对角线长度等数据,并总结其性质,通过人机对话方式把静态、抽象的几何图形变为动态、直观地演示出来。在此过程中教师当好课堂教学的组织者、决策者、创造者和参与者,教给学生自觉主动地探究新知识的方法,激发学生的思维,培养学生的科学精神和创新思维习惯,使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到发展。

1、初步理解特殊四边形性质;

2、培养学生自主收集、描述和分析数据的能力;

1、了解特殊四边形性质的形成过程;

2、初步了解探究新知识的一些方法;

1、了解特殊四边形在日常生活中的应用;

2、学生在观察、归纳、类比及实验教学活动中,体会成功后的喜悦;

3、初步具有感性认识上升到理性认识的辩证唯物主义思想。

教学环境:

多媒体计算机网络教室。

教学课型:

试验探究式。

教学重点:

特殊四边形性质。

教学难点:

特殊四边形性质的发现。

一、设置情景,提出问题。

提出问题:

1、电动门的网格和结点能组成哪些四边形?

2、在开(关)门过程中这些四边形是如何变化的?

3、你还发现了什么?

解决问题:

学生猜想:包括平行四边形、矩形、菱形、等腰梯形、直角梯形……;

当我们学习完本节知识后,其他问题就容易解决了。

(意图:用《几何画板》的动态演示生活事例,充分展示了数学的美妙,可以使学生容易进入情境和保持积极学习状态,激起学生探究解决问题的求知欲望。)。

二、整体了解,形成系统。

本节课从整体角度研究特殊四边形性质,为今后的个体研究打下良好的基础。我们先研究四边形中的特殊与一般的关系。

提出问题:

1、本章主要研究哪些特殊四边形?

2、从哪几方面研究这些特殊四边形?

解决问题:

学生操作电脑(用几何画板),了解本章研究的主要图形;教师个别指导。

1、包括:平行四边形、矩形、菱形、梯形、等腰梯形、直角梯形。

3、等腰梯形和直角梯形后面应该是矩形,但不符合梯形定义,所以没有图形。

(意图:学生自主观察、分组讨论了解本章知识结构,从而形成系统;通过假设、猜想、推理、论证、否定假设获得新知识)。

三、个体研究、总结性质。

1、平行四边形性质。

提出问题:

在平行四边形的形状、位置、大小变化过程中,请观察数据并找出边长、角度、对角线长度相对不变的性质。

解决问题:

教师引导学生拖动b点(学生操作电脑),改变平行四边形的形状、位置、大小,并观察数据的变化,从中找出相对不变的要素。

在图形变化过程中,

(1)对边相等;

(2)对角相等;

(3)通过ao=co、bo=do,可得对角线互相平分;

(4)通过邻角互补,可得对边平行;

(5)内外角和都等于360度;

(6)邻角互补;

……。

指导学生填表:

平行四边形性质矩形性质正方形性质。

菱形性质。

梯形性质等腰梯形性质。

直角梯形性质。

(既属于平行四边形性质又属于矩形性质可以画箭头)。

按照平行四边形性质的探索思路,分别研究:

2、矩形性质;

3、菱形性质;

4、正方形性质;

5、梯形性质;

6、等腰梯形性质;

7、直角梯形的性质。

(意图:学生运用电脑自主收集、描述、分析数据,把抽象的性质变为直观化、形象化,培养独立探究,自主自信,使学生体验到科学探索的乐趣。)。

教师总结:

(意图:掌握画箭头的方法,使学生了解事物个体既有该事物一般性质,又有自己的特点。既清楚地表达,又节省时间。)。

四、联系生活,解决问题。

解决问题:

学生操作电脑,观察图形、分组讨论,教师个别指导。

学生在分别演示开(关)门过程中,观察数据并总结:边长、角度、对角线长度的变化引起四边形的形状、大小、位置的变化。

四边形具有不稳定性,而三角形没有这个特点……。

(意图:使学生体会到数学于生活、又服务于生活,更重要的是培养学生应用知识解决实际问题的能力,体会成功后的喜悦。)。

五、小结。

1.研究问题从整体到局部的方法;

2.主要从边长、角度、对角线长度三方面研究特殊四边形性质。

六、作业。

1.平行四边形内角中,既有两个相邻的角相等,又有一组邻边相等,试判断它是什么图形。

2.观察实际生活中的电动门,在开(关)门过程中特殊四边形的变化。

针对教学内容、学生特点及设计方案,预计下列学习效果:

利用多媒体信息技术图文并茂、形象直观的特点,通过学生自主测量、分析、整理数据并总结其性质,培养学生收集、描述和分析数据的能力,并达到初步理解特殊四边形性质的目标。

在问题引入、了解整体、测量个体、总结性质的过程中,符合事物的认识规律及探究新知识的一般方法,初步形成感性认识上升到理性认识的辩证唯物主义思想。

由于个体差异,针对教学目标难以达到的个别学生,根据教学的进展,通过师生之间、学生之间的对话交流及时指导,使教学目标得以实现。

八年级数学教案推荐(精选18篇)篇十三

《正方形》这节课是九年义务教育人教版数学教材八年级下册第十九章第二节的内容。纵观整个初中教材,《正方形》是在学生掌握了平行线、三角形、平行四边形、矩形、菱形等有关知识及简单图形的平移和旋转等平面几何知识,并且具备有初步的观察、操作等活动经验的基础上出现的。既是前面所学知识的延续,又是对平行四边形、菱形、矩形进行综合的不可缺少的重要环节。

本节课的重点是正方形的概念和性质,难点是理解正方形与平行四边形、矩形、菱形之间的内在联系。根据大纲要求,本节课制定了知识、能力、情感三方面的目标。

(一)知识目标:

1、要求学生掌握正方形的概念及性质;

2、能正确运用正方形的性质进行简单的计算、推理、论证;

(二)能力目标:

1、通过本节课培养学生观察、动手、探究、分析、归纳、总结等能力;

2、发展学生合情推理意识,主动探究的习惯,逐步掌握说理的基本方法;

(三)情感目标:

1、让学生树立科学、严谨、理论联系实际的良好学风;

2、培养学生互相帮助、团结协作、相互讨论的团队精神;

3、通过正方形图形的完美性,培养学生品格的完美性。

该段学生具有一定的独立思考和探究的能力,但语言表达能力方面稍有欠缺,所以在本节课的教学过程中,特意设计了让学生自己组织语言培养说理能力,让学生们能逐步提高。

针对本节课的特点,采用"实践--观察--总结归纳--运用"为主线的教学方法。

通过学生动手,采取几种不同的方法构造出正方形,然后引导学生探究正方形的概念。通过观察、讨论、归纳、总结出正方形性质定理,最后以课堂练习加以巩固定理,并通过一道拔高题对定义、性质理解、巩固加以升华。

本节课重点是从培养学生探索精神和分析归纳总结能力为出发点,着重指导学生动手、观察、思考、分析、总结得出结论。在小组讨论中通过互相学习,让学生体验合作学习的乐趣。

第一环节:相关知识回顾。

以提问的形式复习平行四边形、矩形、菱形的定义及性质之后,引导学生发现矩形、菱形的实质是由平行四边形角度、边长的变化得到的。并启发学生考虑,若这两种变化同时发生在平行四边形上,则会得到什么样的图形?让学生们通过手上的学具演示以上两种变化,从而得出结论。

第二环节:新课讲解通过学生们的发现引出课题“正方形”

1、正方形的定义:引导学生说出自己变化出正方形的过程,并再次利用课件形象演示出由平行四边形的边、角的变化演变出正方形的过程。请同学们举手发言,归纳总结出正方形定义:一组邻边相等,且一个角是直角的平行四边形是正方形。再由此定义启发学生们发现正方形的三个必要条件,并且由这三个条件通过重新组合即一组邻边相等与平行四边形组成菱形再加上一个角是直角可得到正方形的另两个定义:一个角是直角的菱形是正方形;一组邻边相等的矩形是正方形。此内容借助课件演示其变化过程,进一步启发学生发现,正方形既是特殊的菱形,又是特殊的矩形,从而总结出正方形的性质。

2、正方形的性质定理1:正方形的四个角都是直角,四条边都相等;

定理2:正方形的两条对角线相等,并且互相垂直、平分,每条对角线平分一组对角。

以上是对正方形定义和性质的学习,之后是进行例题讲解。

4、课堂练习:第一部分采用三道有关正方形的周长、面积、对角线、边长计算的填空题,目的是对正方形性质的进一步理解,并考察学生掌握的情况。

第二部分是选择题,通过体现生活中实际问题,来提升学生所学的知识,并加以综合练习,提高他们的综合素质,使他们充分认识到数学实质是来源于生活并要服务于生活。

5、课堂小结:此环节我是通过图框的形式小结正方形和前阶段所学特殊四边形之间的内在联系,通过对所学几种四边形内在联系体现正方形完美的本质,渲染学生们应追求象正方形一样方正的品质,从而要努力学习以丰富的知识充实自己,达到理想中的完美。

6、作业设计:作业是教材159页,第12、14两小道证明题,通过此作业让同学们进一步巩固有关正方形的知识。

八年级数学教案推荐(精选18篇)篇十四

1.理解分式的基本性质.

2.会用分式的基本性质将分式变形.

二、重点、难点。

1.重点:理解分式的基本性质.

2.难点:灵活应用分式的基本性质将分式变形.

3.认知难点与突破方法。

教学难点是灵活应用分式的基本性质将分式变形.突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。

三、例、习题的意图分析。

1.p7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。

2.p9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。

教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。

3.p11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。

“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5。

四、课堂引入。

1.请同学们考虑:与相等吗?与相等吗?为什么?

2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?

3.提问分数的基本性质,让学生类比猜想出分式的基本性质.

五、例题讲解。

p7例2.填空:

[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.

p11例3.约分:

[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.

p11例4.通分:

[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.

(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.

[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变.

解:=,=,=,=,=。

六、随堂练习。

1.填空:

(1)=(2)=。

(3)=(4)=。

2.约分:

3.通分:

(1)和(2)和。

(3)和(4)和。

4.不改变分式的值,使下列分式的分子和分母都不含“-”号.

七、课后练习。

1.判断下列约分是否正确:

(1)=(2)=。

(3)=0。

2.通分:

(1)和(2)和。

3.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号.

八、答案:

六、1.(1)2x(2)4b(3)bn+n(4)x+y。

2.(1)(2)(3)(4)-2(x-y)2。

3.通分:

(1)=,=。

(2)=,=。

(3)==。

(4)==。

八年级数学教案推荐(精选18篇)篇十五

调查中,所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。

例如,某班10名女生的考试成绩是总体,每一名女生的考试成绩是个体。

从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。

例如,要调查全县农村中学生学生平均每周每人的零花钱数,由于人数较多(一般涉及几万人),我们从中抽取500名学生进行调查,就是抽样调查,这500名学生平均每周每人的零花钱数,就是总体的一个样本。

将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数称为这组数据的中位数。

一组数据中出现次数最多的数据就是这组数据的众数。

例如:求一组数据3,2,3,5,3,1的众数。

解:这组数据中3出现3次,2,5,1均出现1次。所以3是这组数据的众数。

又如:求一组数据2,3,5,2,3,6的众数。

解:这组数据中2出现2次,3出现2次,5,6各出现1次。

所以这组数据的众数是2和3。

【规律方法小结】。

(1)平均数、中位数、众数都是描述一组数据集中趋势的量。

(2)平均数反映一组数据的平均水平,与这组数据中的每个数据都有关,是最为重要的量。

(3)中位数不受个别偏大或偏小数据的影响,当一组数据中的个别数据变动较大时,一般用它来描述集中趋势。

(4)众数只与数据出现的频数有关,不受个别数据影响,有时是我们最为关心的统计数据。

探究交流。

1、一组数据的中位数一定是这组数据中的一个,这句话对吗?为什么?

解析:不对,一组数据的中位数不一定是这组数据中的一个,当这组数据有偶数个时,中位数由中间两个数的平均数决定,若中间两数相等,则这组数据的中位数在这组数据之中,反之,中位数不在这组数据之中。

总结:

(1)中位数在一组数据中是唯一的,可能是这组数据中的一个,也可能不是这组数据中的数据。

(2)求中位数时,先将数据按由小到大的顺序排列(或按由大到小的顺序排列)。若这组数据是奇数个,则最中间的数据是中位数;若这组数据是偶数个,则最中间的两个数据的平均数是中位数。

(3)中位数的单位与数据的单位相同。

(4)中位数与数据排序有关。当一组数据中的个别数据变动较大时,可用中位数来描述这组数据的集中趋势。

课堂检测。

基本概念题。

1、填空题。

(1)数据15,23,17,18,22的平均数是;

(4)为了考察某公园一年中每天进园的人数,在其中的30天里,对进园的人数进行了统计,这个问题中的总体是________,样本是________,个体是________。

基础知识应用题。

2、某公交线路总站设在一居民小区附近,为了了解高峰时段从总站乘车出行的人数,随机抽查了10个班次的乘车人数,结果如下:20,23,26,25,29,28,30,25,21,23。

(1)计算这10个班次乘车人数的平均数;

(2)如果在高峰时段从总站共发车60个班次,根据前面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少。

八年级数学教案推荐(精选18篇)篇十六

1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。

2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。

算术平方根的概念。

根据算术平方根的概念正确求出非负数的算术平方根。

这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.

1、提出问题:(书p68页的问题)

你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)

这个问题相当于在等式扩=25中求出正数x的值.

一般地,如果一个正数x的平方等于a,即=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为,读作根号a,a叫做被开方数.规定:0的算术平方根是0.

也就是,在等式=a (x0)中,规定x = .

2、试一试:你能根据等式:=144说出144的算术平方根是多少吗?并用等式表示出来.

3、想一想:下列式子表示什么意思?你能求出它们的值吗?

建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如表示25的算术平方根。

4、例1求下列各数的算术平方根:

(1)100;(2)1;(3) ;(4)0.0001

p69练习1、2

怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?

方法1:课本中的方法,略;

方法2:

可还有其他方法,鼓励学生探究。

问题:这个大正方形的边长应该是多少呢?

大正方形的边长是,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?

建议学生观察图形感受的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.

1、这节课学习了什么呢?

2、算术平方根的具体意义是怎么样的?

3、怎样求一个正数的算术平方根

p75习题13.1活动第1、2、3题

八年级数学教案推荐(精选18篇)篇十七

教学目标:

1、知识目标:了解图案最常见的构图方式:轴对称、平移、旋转……,理解简单图案设计的意图。认识和欣赏平移,旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案。

2、能力目标:经历收集、欣赏、分析、操作和设计的过程,培养学生收集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力。

3、情感体验点:经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识,培养学生积极进取的生活态度。

重点与难点:

重点:灵活运用轴对称、平移、旋转……等方法及它们的组合进行的图案设计。

难点:分析典型图案的设计意图。

疑点:在设计的图案中清晰地表现自己的设计意图。

教具学具准备:

提前一周布置学生以小组为单位,通过各种渠道收集到的图案、图标的剪贴、临摹以及。多种常见的图案及其形成过程的动画演示。

教学过程设计:

1、情境导入:在优美的音乐中,逐个展示生活中常见的典型图案,并让学生试着说一说每种图案标志的对象。(展示课本图3—23)。

明确在欣赏了图案后,简单地复习旋转的概念,为下面图案的设计作好理论准备。对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向。其中图(1)、(2)、(3)、(4)、(5)、(6)都可以通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)、(3)、(5)也可以通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),而图(2)可以通过平移形成。

2、课本。

1欣赏课本75页图3—24的图案,并分析这个图案形成过程。

评注:图案是密铺图案的代表,旨在通过对典型图案的分析欣赏,使学生逐步能够进行图案设计,同时了解轴对称、平移、旋转变换是图案制作的基本手段。例题解答的关键是确定“基本图案”,然后再运用平移、旋转关系加以说明,注意旋转中心可以为图形上某一特征的点。

评注:可以取其中的任何一个为基本图案,然后通过变换得到。而且变化方式也可以是:左下角的图案通过轴对称变换得到左上图和右下图。

(二)课内练习。

(1)以小组为单位,由每组指定一个同学展示该组搜集得到的图案,并在全班交流。

(2)利用下面提供的基本图形,用平移、旋转、轴对称、中心对称等方法进行图案设计,并简要说明自己的设计意图。

(三)议一议。

生活中还有那些图案用到了平移或旋转?分析其中的一个,并与同伴进行交流。

(四)课时小结。

本课时的重点是了解平移、旋转和轴对称变换是图案设计的基本方法,并能运用这些变换设计出一些简单的图案。

通过今天的学习,你对图案的设计又增加了哪些新的认识?(可以利用平移、旋转、轴对称等多种方法来设计,而且设计的图案要能表达自己的创作意图,再就是图案的设计一定要新颖,独特,这样才能使人过目不忘,达到标志的效果。)。

进一步搜集身边的各种标志性图案,尝试着重新设计它,并结合实际背景分析它的设计意图。

八年级数学教案推荐(精选18篇)篇十八

1、理解极差的定义,知道极差是用来反映数据波动范围的一个量.

2、会求一组数据的极差.

1、重点:会求一组数据的极差.

2、难点:本节课内容较容易接受,不存在难点、

从表中你能得到哪些信息?

比较两段时间气温的高低,求平均气温是一种常用的方法、

这是不是说,两个时段的气温情况没有什么差异呢?

根据两段时间的气温情况可绘成的折线图、

观察一下,它们有区别吗?说说你观察得到的结果、

本节课在教材中没有相应的例题,教材p152习题分析。

问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大、问题2涉及前一个学期统计知识首先应回忆复习已学知识、问题3答案并不唯一,合理即可。

相关范文推荐

    学校培优辅差工作总结(热门15篇)

    写月工作总结要认真客观,不仅仅是为了完成上级交代的任务,更要对自己进行自我激励和改进。小编精心挑选了一些优秀的月工作总结范文,希望对大家写作有所帮助。

    职业发展的个人总结(精选22篇)

    个人总结是对自己在一段时间内的学习、成长和进步进行概括和总结的一种方式。小编为大家搜集整理了一些个人总结的经典案例,供大家参考和借鉴。伴随着新年钟声的临近,我们

    学生近视问题调查报告(模板17篇)

    通过调查报告的撰写,我们可以更深入地了解某一问题的原因和影响,从而提出相应的解决方案。同时,我们也可以从范文中学习到一些写作技巧和表达方法。自从上了高年级之后,

    教师的教学秘书工作总结(优质17篇)

    教学工作总结的目的是为了进一步完善教学策略,提升学生的学习成果和教学质量。小编为大家整理了一些优秀的教学工作总结范文,供大家参考和借鉴。教学秘书的工作主要是服务

    森林运动会的魅力与魔力(实用15篇)

    每年的运动会都是同学们期待已久的盛事,大家都非常兴奋地参与其中。以下是一些运动会参赛心得和感受,希望对学生们的比赛有所启发和鼓励。下个礼拜就是一年一度的动物运动

    学生的学期工作计划锦集(优质15篇)

    学期工作计划是规划学习和工作生活的重要方式,能够帮助我们合理安排时间和任务。学期工作计划是指在一个学期的时间内,为了达成学习、工作或生活的各项目标,而做出的详细

    秘书的个人工作任务总结(模板20篇)

    在个人总结中,我们可以将过去的经验和教训转化为今后的成长动力和借鉴。如果你正在为写个人总结而苦恼,不妨看看下面这些范文,或许可以给你一些启发。回首我来酒店的这两

    超声医学科医生个人述职报告范文分享(优秀19篇)

    通过写述职报告,可以准确地反映出个人在工作中的能力和水平。小编为大家筛选了一些优秀的述职报告样本,供大家参考,希望能帮助大家写好自己的报告。尊敬的各位院领导:大

    热爱地球的三分钟演讲稿(热门20篇)

    三分钟是一个黄金时间段,我们可以在这段时间内迅速做出反应或者做出改变。以下是小编为大家收集的三分钟效率提升方法,希望能对大家有所启发。同学们,老师们:同学们,当

    人力资源管理在医学研究中的应用(专业14篇)

    人力资源管理要注重人才的引进、培养和留用,以保持企业的竞争力和持续发展。接下来是一些人力资源管理实践中的注意事项和案例分析,供您参考和借鉴。自二十世纪七十年代兴