编辑是一项需要经验和技巧的工作,它能够让文本更加准确、流畅和易读。小编为大家整理了一些独具特色的编辑范文,希望能够给大家的写作提供一些新的思路。
编辑的实用数据分析方法(汇总19篇)篇一
建材行业的数据分析我接触到的一些企业大多数处于较原始的数据分析状态,我曾经见一家企业给我上年销售数据是企业老板摸出一张纸条上面记着只有他自己能看明白的数字,很多建材企业处于避税和商业机密的的原因没有去进行数据的采样、分析,不乏即便是花百万级去做erp的企业也是只用到其中的部分功能,除上述两原因外其中市场变化剧烈性导致数据初始化不稳定、数据链操作人员的执行力下降,最后在工作效率上大打折扣。所以很多建材企业的生产销售数据信息只是集中在极少数高层管理的手中,甚至是脑袋中没有任何纸质或电子档的记录。所以看来在以往的决策过程中对问题的判断大多是采取定性的研究来决策,定量的分析是比较少。由此来进行决策其科学程度是可想而知,其决策的正确性也值得怀疑,但是在过去30年的过程中,由此来决策带来的风险被高速发展的市场环境而弥补消除了。从而数据分析其重要性也不被人重视。
在财务工作中有财务会计和管理会计之分,在财务会计的数据录入基于各种原因的考虑而偏离真实的情况下,也就没有办法在这个数据基础上进行采用管理会计的工具进行决策支持分析了,即使分析也是无效无意义的分析。所以今天我们很多的企业财务管理人员真正的作用是停留在财务会计的层面。那建材企业在面临今天市场竞争日趋规范和激烈的环境下如何去对待数据分析?陈问文认为需要从以下几点去思考和践行。
数据分析可能从前没有给你的企业带来直接的效益,但是今后将是数据的天下,以前没有重视数据分析对企业没有什么影响,但是今后将是得数据分析得天下的时代。从现在开始重视数据分析,从基础做起逐步研究深入。
2、重视数据模型。
数据模型的有很多的现成的工具,这些模型很多是建立在统计学的基础上,很多的专业化公司已经将繁琐的后台运算软件化,读取可视化,你可以输入数据便可得出结论,当然数据模型的最大难点在于输入的变量的准确性,如果变量是准确的,那结果必然可靠,就像我们中国易经八卦最大的难点是信息的准确输入,错误的信息就必然是错误的误导。
3、穷尽数据的准确。
数据的准确性这个也是一个难点,在数据录入如果没有软件化,那是一个重复和繁琐的过程,中间的差错率较高,所以我们在原始数据的准确性上需要下更多的功夫,尽最大可能保证数据录入的准确性,特别是能量化的数据无限接近真实。
大数据时代的来临,中国建材企业在这个时代背景下需要重视数据,研究分析数据,一是帮助你的企业正确决策,从以往的定性分析决策转向定量分析---定性分析决策信息支持这样的程序模式。二是可能在数据的分析中发现了市场新的蓝海。
编辑的实用数据分析方法(汇总19篇)篇二
数据分析过程的主要活动由识别信息需求、收集数据、分析数据、评价并改进数据分析的有效性组成。
识别需求。
识别信息需求是确保数据分析过程有效性的首要条件,可以为收集数据、分析数据提供清晰的目标。识别信息需求是管理者的职责管理者应根据决策和过程控制的需求,提出对信息的需求。就过程控制而言,管理者应识别需求要利用那些信息支持评审过程输入、过程输出、资源配置的合理性、过程活动的优化方案和过程异常变异的发现。
收集数据。
有目的的收集数据,是确保数据分析过程有效的基础。组织需要对收集数。
编辑的实用数据分析方法(汇总19篇)篇三
通常情况下,社会调查数据特点如下。
(1)相关性。
对于一个样本个体而言,它具有本身的多个特征,这些特征之间就具有一定的相关性。对于多个样本而言,个体与个体的特征之间具有相关性。如果样本随时间而变化,那么该样本在不同时刻的特征之间又具有相关性。因此,由于上述多个原因使得社会调查数据具有了复杂的相关性,传统的统计学调查难以解决这样的问题。
(2)离散性。
因为社会调查数据是通过自填式问卷、网络调查数据库等方法得到,所以社会调查数据一般以离散变量为主,且这些数据之间只有标示作用,并没有严格的逻辑关系。
(3)模糊性。
社会调查数据当中不可避免的会接触到各种表达方式和概念,因此,它具有模糊性。因为由自填式问卷或结构式访问的方法得到的社会调查数据具有以上特点,所以在实际应用中基于统计学的处理方法只能笼统的显示数据的部分特性,如频数、离散程度等。对于数据之间的关系只能分析出维数极少的大致的关系。而且利用软件进行数据挖掘时,因为现有的软件中的数据挖掘算法对于数据类型和格式要求较高,所以能应用到的数据挖掘算法很少。就算是数据要求较低的关联分析,其结果也存在大量的冗余。因此,我们需要建立一个合适的社会调查数据的数学模型来完善原先的方法并使跟多的数据挖掘方法可以运用到其中,使得结果更准确。
二、社会调查数据的建模。
研究中我们发现,三维矩阵可适用于社会调查数据的建模。
1三维矩阵的定义。
三维矩阵的定义:由n个p×q阶的矩阵组成的n×p×q阶的矩阵a称为三维矩阵,又称立体阵。ak,i,j表示三维矩阵a的第k层,第i行,第j列上的元素。其中n,p,q分别表示三维矩阵的高度,厚度和宽度。
2三维矩阵模型的建立。
调查问卷的题目一般有三种类型:单选题、多选题和排序题。这三类题目都可以表示成向量的形式,其中每一道单选题、多选题可以表示成一个向量,排序题可以表示成多个向量组成的矩阵。对于单选题和多选题,可以按选项的顺序可以表示成一个向量,其中选中的用“1”表示,未选中的项用“0”表示。对于排序题,可以表示成一个n×n的方阵,,其中n表示该排序题的选项数,。这样,每一题就可以定义为空间中的一个维度,从而所有的题目就可以构成一个n维空间。每份调查问卷的信息用一个m×n矩阵表示(m为题目的最大选项数),其在每一维上的选择称之为一个元素,这样每份问卷的信息就包括了n个元素。以第1,2,3题数据为例,其中第1题为单选题选择“b”,用向量(0,1,0..0)t表示为一个元素,第2题为多选题选择“ace”,用向量(1,0,1,0,1,0..0)t表示为一个元素,第3题为排序题顺序为cbadefihg,用矩阵表示,每一个列向量是一个元素,如图1所示。
那么,假设有一问卷信息用一个大小为m×n的矩阵表示。k份的问卷信息就可以用k个大小为m×n的矩阵表示。将这k个矩阵叠加,形成一个三维矩阵。这个三维矩阵就是我们建立的三维矩阵数学模型,如图2所示。
在图2中我们看到,该三维矩阵数学模型有三个坐标轴,它们分别是题目、人数、选项。题目轴以每一道题为一个单位;人数轴以每一份问卷为一个单位;选项轴的刻度a,b,c,d,e,f等题目选项,其个数为该调查问卷中选项最多的题目的选项个数。在此基础之上,这样的三维矩阵具有以下性质。
(1)在题目轴中选取对应的题目,将三维矩阵面向竖切得到截面1,截面2表示每一道题所有人选择的信息。
(2)在人数轴中选取对应的人,将三维矩阵横切得到横截面1,横截面1表示对应的人选择所有题目的信息。
在得到三维矩阵后,可对它进行像素化处理,置1的元素用黑点代替,置0元素的则空白,在得到像素化三维矩阵后我们可以将三维矩阵沿着人数维度上向下投影,这样就可以得到一个具有浓黑不一的点的平面。通过这些点的浓度,可以知道每一选项选择的人数。接下来我们可用灰度级表示点的浓度,筛选出浓度大于一定程度的点,在此基础上进行后续算法处理。
上述三维矩阵数学模型具有数学三维矩阵的所有性质,可依据调查问卷的需求进行转置,加权、相乘、筛选等数学处理,另外在数学处理的基础上,采用超图理论可以大大丰富了调查问卷的处理方法。
三、基于超图算法的调查问卷分析技术。
超图是离散数学中重要的内容,是对图论的推广。超图是有限集合的子系统,它是一个由顶点的集合v和超边集合e组成的二元对,超图的一条边可以有多个顶点的特性,这与一般的图有很大不同。超图分为有向超图与无向超图两类,在无向超图的每条超边上添加方向后得到的有向二元对就是有向超图。
超图在许多领域有广泛的应用。大家可以利用无向超图表示每一道题的选择情况,先将这每一题的每一个选项设成一个节点,然后将三维矩阵从上向下投影,如果某一题的若干个选项同时被一个人选择,就用一条超边包围这些节点,那么选这些选项的人越多,投影得到的超边就越浓。这样就用超图表示了问卷中每道题的信息,可以进行聚类处理。
利用有向超图,可以将关联规则表示成有向超图的形式,在得到了关联规则后,设实际中得到的关联规则的形式为:前项和后项都是由多个项组成的集合。该文定义一条关联规则由一条有向超边表示,有向超边的头节点表示关联规则的前项,有向超边的尾节点表示关联规则的后项。每条有向超边的头节点和尾节点均可以为多个,如此便成功表示了复合规则,从而可以使用相关算法进行冗余规则检测。
通过基于有向超图的冗余规则检测就可以将关联规则之间存在着的大量冗余检测出,减少挖掘资源的浪费,从而增加了挖掘结果的有效性。
传统的聚类方法都对原始数据计算它们之间的距离来得到相似度,然后通过相似度进行聚类,这样的方法对于低维数据有良好的效果,但是对于高维数据却不能产生很好的聚类效果,因为高维数据的分布有其特殊性。通过超图模型的分割实现对高维数据的聚类却能产生较好的效果。它先将原始数据之间关系转化成超图,数据点表示成超图的节点,数据点间的关系用超边的权重来表示。然后对超图进行分割,除去相应的超边使得权重大的超边中的点聚于一个类中,同时使被除去的超边权重之和最小。这样就通过对超图的分割实现了对数据的聚类。具体的算法流程如下。
首先,将数据点之间的关系转化为超图,数据点表示为超图节点。如果某几个数据点的支持度大于一定阈值,则它们能构成一个频繁集,就将它们用一条超边连接,超边的权重就是这一频繁集的置信度,重复同样的方法就可以得超边和权重。
然后,在基础此上,通过超图分割实现数据的聚类。若设将数据分成k类,则就是对超图的k类分割,不断除去相应的超边,直到将数据分为k类,且每个分割中数据都密切相关为止,同时保持每次被除去的超边权重和最小,最终得到的分割就是聚类的结果。
首先,将数据点之间的关系转化为超图,数据点表示为超图节点。如果某几个数据点的支持度大于一定阈值,则它们能构成一个频繁集,就将它们用一条超边连接,超边的权重就是这一频繁集的置信度,重复同样的方法就可以得超边和权重。
然后,在基础此上,通过超图分割实现数据的聚类。若设将数据分成k类,则就是对超图的k类分割,不断除去相应的超边,直到将数据分为k类,且每个分割中数据都密切相关为止,同时保持每次被除去的超边权重和最小,最终得到的分割就是聚类的结果。
如图3所示是基于超图算法的选题型调查问卷的分析技术的流程图,主要包括4个主要部分,一是用向量表示调查问卷结果,二是将向量表示的调查问卷转化为三维矩阵数学模型表示调查问卷结果,三是使用超图算法进行优化,四是根据要求显示调查问卷结果。
四、结语。
利用三维矩阵的性质对其进行多种数学处理,如竖切、横切、像素化后投影等。在数学处理的基础上,该文又提出超图理论对数据进行聚类和检测冗余规则的分析。
编辑的实用数据分析方法(汇总19篇)篇四
对于产品经理而言,看明白数据是一件很简单的事情,但是要想从数据中挖掘其背后更深层次的内涵,看懂数据背后的逻辑是一件非常不容易的事情。往往一个决策的成功或失败,总能归咎到对数据的理解上。
值得欣慰的是,随着接触到的用户越来越多,对于用户心理模型和业务逻辑的理解越发的透彻,产品经理对数据的理解能力也将越来越强。
1、不配看数据。
产品经理对待数据的态度不应该像市场分析者或财务人员一样。我们看数据,更多是需要了解数据背后用户的行为逻辑和期望需求。这就要求我们看到数据的时候,必须第一时间想象到用户是如何创造出这些数据的,为什么会创造出这样的数据。
作为一个产品设计者首先必须告诉自己:“i’mnotuser”,如此同时还要再把自己模拟成一个平凡的用户,不停的反复的去用自己的产品,和同类产品。我向来认为,一个做移动互联网的产品设计师,不有事没事换手机玩,不是好的产品设计师;一个电子商务的产品设计师,不每周在网上买一件东西,不是一个好的产品设计师。
要想有资格去看数据,通过数据给产品设计提供有效的依据。方法很简单,也很有效:把自己当作一个平凡的用户,不停的用自己的产品,和同类产品。有,且只有这么一个方法。
2、为了看数据而看数据。
和做可用性测试一样,测试之前不能说没有“关注点”,发现什么就是什么。那样什么也发现不了,即使发现了,价值也不大。数据拿到手里,没有目的的去看,不如不看。
在做产品设计的数据分析之前,首先应该搞清楚自己需要什么样的数据来说明什么问题。一个数据对于不同的产品、不同的环境、不同的用户类型,得到的结论应该是不一样的。传统的市场研究中,对于数据的分析往往是根据“硬属性”,比如他们对于用户的分析基本都是根据“人口属性”的数据,他们得到的结论也很少结合现实环境。这样的结论,对于(互联网的)产品设计基本上没有太大的参考价值,特别是如今个性化需求越来越强,用户行为越来越独特的时候,“人口属性”很不能代表用户背后的行为逻辑。
比如,想了解“有购物搜索需求的网民”具备的主要特征,这个时候“年龄、学历、性别、收入、婚姻状况、消费能力、信息获取方式、上网条件、..”可能都是对我有参考价值的数据,但那些才是最重要的呢?分析后很快就可以发现,比较而言“年龄、收入、上网时间、上网条件”都不是最重要的,“消费能力”、“信息获取方式”在这里才是最重要的特征。这些数据背后才更能代表用户的行为逻辑和需求。(如果不是很明白这个结论,稍后再《desingit.》第8篇左右会谈到)。
3、不筛选数据。
做一个优秀的设计者,首先必须善于“提问”。“提问”的水准和设计水平基本成正比。要什么样的数据,什么样的数据可以帮我解决这些问题和疑问?这个很简单,一罗列你可以想到很多很多。但,事实上数据类型到达一定数量后,类型越多,反倒越不利于对于结论的判断。因为,不同数据类型之间会产生相互的干扰,有些时候次要问题可能会战胜主要问题,影响最终的结论。
在实际项目中,解决了主要问题,次要问题可能就会很自然的被稀释了。获取数据也一样,必须搞清楚什么样的数据最能说明这个问题?确定这些会使分析过程的精力更加集中。把主要的几个问题想穿、打透,其他问题很快就会迎刃而解了。
很多时候不是解决不了问题,而是想解决的问题太多;很多时候不是数据不够,而且想要的数据太多。还比如,想要了解如何解决“购物搜索”的需求,其实只要关注好“信息获取方式”、“消费能力”、“决定购买的因素”基本就能解决很多问题,盯着“用户是男是女,8岁还是80岁”,只能是耗费精力。
不去筛选数据,还有一个很大的危害就是:“因为没有筛选,所以不能把关心的数据点看透彻”。
比如,很多人都在夸开心网的推荐做的好,很多用户在上面找到了自己的“同学”,于是定论为“算法的技术好”。其实如果专注关心“开心网为什么打通用户关系这么快”的人,经过详细分析后是不会得到“技术好”这个结论的。根据我的观察,我比较赞成麦田的结论:“开心网把校友录的数据库用进去推荐算法里面了”,我甚至认为开心网的推荐里面不只是用了“校友录”的数据库,还有更多其他数据库。(麦田对于数据的分析虽然是偏市场和运营性的,但其实对于产品设计的促进一样很大,而且他确实是一个观察数据很细,研究数据很深的人)。
4、不关注数据采集的方式和方法。
当我们为某个项目寻找方向或者确定某个决策,需要一些数据的支持,以便了解状况并确定思路。这个时候,不仅需要给出“需要什么样的数据”这个需求,同时还应该包括如何得到这些数据。
很多时候,我们只提出需要什么样的数据,并不去提出要求如何得到这些数据的方式、方法,完全依靠调研者的经验去获取数据,这是不可取的。因为这样来的数据对结果的帮助是不准确的,甚至往往会出现误导。因为调研过程中不同的方式方法,得到的结果会不一样。
不同的方式方法,渠道,得到的数据是不一样的。不同水平的人采集到的数据结果也是不一样的。
往往我很同情国内的同行,大家能找到靠谱的数据真的少的可怜。就拿行业数据来说,基本上国内没有一家第三方机构可以提供靠谱的数据。xx统计局就不说了,比如商业机构艾瑞,他的数据丝毫不具备可信度。最根本的,我们可以去看看尼尔森在欧美(不要看国内的尼尔森,那是同样的不靠谱。跟他们合作过一次,东西做的一塌糊涂)的一些问卷,从问卷设计的逻辑、采集方式、统计方法,甚至包括“埋地雷”的方法,都高出国内这些数据提供商一大截。(比如一个细节:去尼尔森在欧美的一些问卷试试,如果你是玩的心态,很快就会被说“谢谢你参与调查”。因为,他们很快就通过“地雷”判断出你并非真正的采集对象,很快就把你踢走了,而国内的你可以随便玩)。
有些时候,如果实在没有办法,去做小量的抽样数据,也比那这些不靠谱的数据去分析强。
5、只用定量数据,没有定性数据。
还说那个最老土的例子:
沃尔玛每天总重要的事是“想尽一切办法,把货架摆好,让顾客更快的找到,更快的走掉”。事实上,当他们的mba(商业数据分析)人员通过庞大的数据处理系统发现,啤酒和尿布的销售曲线惊人相似的时候,他们其实只能得到一个“结论”。但,这些知识定量的数据,并不能挖掘出本后的顾客行为,以及为什么会造成这个现象。这个时候,如果靠“分析”、“猜测”是不能得到正确结论的,方法只能是去结合“定量”的研究,通过具体观察和调研了走到用户身边,最终才能了解到“因为,在美国一般都是男人去买尿布的,而在沃尔玛就算买1美元的东西也要排队半个钟结帐,男人们这个时候就顺手拿了啤酒犒劳一下自己”。
海量的定性数据,只能告诉我们结论,不能告诉我们背后的原因。同样,如果只有定性的数据,往往看到的现象可能是片面的,结论可能是有偏差的。
有时候,定量更多的是为了定性。
(1)、只关心数据结果,不关心过程。
比如,就知道那个广告的流量大,没注意那个广告比别的大三倍。
(2)、只看大数据,不看小数据。
比如,只发现交易量疯狂增长了,没注意虚假交易疯狂上升了。
(3)、只看数据表象,不看发展过程。
比如,只知道现在的行业分布均衡,没发现曲线的前方已经出现裂痕。
编辑的实用数据分析方法(汇总19篇)篇五
我们在做市场调研前,必须有一个自己的调研思路:我们要调研的对象,需要收集的数据,需要达到的效果等。只有有了明确的目标,才能获得更加有效的数据。
1、通过调研了解市场需求、确定目标用户、确定产品核心,为了更好的制订mrd;。
2、为领导在会议上pk提供论据;。
4、验证我们定的目标客户是不是我们想要的,目标用户想要什么样的产品或服务;。
5、了解我们能不能满足目标用户的需求并且乐于满足目标用户的需求;。
6、找准产品机会缺口,然后衡量各种因素,制定产品战略线路;。
7、调研到最后,目标越明确,需求确明确,也就会觉得,产品越难做,难以打开市场等;。
8、对于全新的产品,调研前pm必须先自己有一个思路,然后通过调研去验证自己的想法的可行性。
二、市场调研的方式方法有哪些?怎样确定调研的维度?
2、做人物角色分析:设置用户场景、用户角色进行模拟分析;。
3、情况推测分析;。
4、调研的维度主要从战略层、范围层、结构层、框架层、视觉层来展开(不同的产品从不同的层次来确定调研的维度)。
ps:对收集到的调研数据,我们需要整理出那些有效的数据,对于无效数据果断丢弃。对有效数据进行细致的处理、分析。
4、深度访谈的数据整理,我们以前会做头脑风暴,建立很多个用户模型,强行量化这些数据。这个方法比较有效,特别在做人群研究的时候。
四、如何书写市场调研报告?
对整理后的数据,我们最终需要形成书面的市场调研文档报告,以最直观的方式呈现给我们的boss,从而获得老板对产品的支持。
1、对市场调研的数据分析后进行的说明总结,用图表或图形的形式最直观呈现;。
2、分析用户当前现状,用户对产品的需求点;。
3、报告的组成有研究背景、研究目的、研究方法、研究结论等相关内容;。
1、数据分析需要掌握数据统计软件和数据分析工具(分析工具如spss等);。
对比分析法:将两个或两个以上的数据进行对比分析,分析其中的差异,从而揭示这些事物发展变化的规律和情况。对比分为横向对比和纵向对比。
结构分析法:被分析研究总体内各部分与总体之间进行对比分析的方法,即总体内各部分所占的指标。
交叉分析法:同时将两个有一定联系的变量及其值交叉排列在一张表内,使各变量值成为不同变量的交叉点,一般采用二维交叉表进行分析。
分组分析法:按照数据特征,将数据进行分组进行分析的方法。
其他还有比如漏斗图分析法、杜邦分析法、矩阵关联分析法等等。
(数据分析方法可以参考:《谁说菜鸟不会数据分析》一书)。
ps:数据分析的方法有很多种,在进行数据分析的时候,选择有效的数据分析方法,能达到事半功倍的效果。
六、数据分析报告如何指导产品经理进行产品设计?
1、根据调研结论确定产品核心功能。
2、把数据分析的结果加入到整个迭代设计的过程中加速产品的迭代更新。
4、通过数据进行分析,得出用户的行为规律,为产品提供支撑。
5、日常的运营分析,及时发现产品问题。
6、产品后期设定一系列的运营指标进行运营监控,然后反馈产品迭代(指标主要包括:1、用户的反馈、2、产品的bug、3、市场的反映、4、产品未来的发展方向、5、点击率、留存率等等)。
编辑的实用数据分析方法(汇总19篇)篇六
常规分析方法不对数据做抽象的处理,主要是直接呈现原始数据,多用于针对固定的指标、且周期性的分析主题。直接通过原始数据来呈现业务意义,主要是通过趋势分析和占比分析来呈现,其分析方法对应同环比及帕累托分析这两类。同环比分析,其核心目的在于呈现本期与往期之间的差异,如销售量增长趋势;而帕累托分析则是呈现单一维度中的各个要素占比的排名,比如各个地市中本期的销售量增长趋势的排名,以及前百分之八十的增长量都由哪几个地市贡献这样的结论。常规分析方法已经成为最为基础的分析方法,在此也不详细介绍了。
统计学分析方法能够基于以往数据的规律来推导未来的趋势,其中可以分为多种规律总结的方式。根据原理多分为以下几大类,包括有目标结论的有指导学习算法,和没有目标结论的无指导学习算法,以及回归分析。
其中有指导的学习算法简单说就是有历史数据里边已经给出一个目标结论,然后分析当各个变量达到什么情况时,就会产生目标结论。比如我们想判断各项指标需要达到什么水平时我们才认定这个人患有心脏病的话,就可以把大量的心脏病人的各项指标数据和没有心脏病的正常人的各项指标数据都输入到系统中,目标结论就是是否有心脏病,变量就是各项指标数据,系统根据这些数据算出一个函数,这个函数能够恰当的描述各个指标的数据与最终这个是否是心脏病人之间的关系,也就是当各个指标达到什么临界值时,这个人就有心脏病的判断,这样以后再来病人,我们就可以根据各项指标的临界值。这个案例中的函数就是算法本身了,这其中的算法逻辑有很多种,包括常见的`贝叶斯分类、决策树、随机森林树以及支持向量机等,有兴趣的朋友可以在网上看看各种算法的逻辑是怎么样的。
另外无指导的学习算法因为没有一个给定的目标结论,因此是将指标之中所有有类似属性的数据分别合并在一起,形成聚类的结果。比如最经典的啤酒与尿布分析,业务人员希望了解啤酒跟什么搭配在一起卖会更容易让大家接受,因此需要把所有的购买数据都放进来,然后计算后,得出其他各个商品与啤酒的关联程度或者是距离远近,也就是同时购买了啤酒的人群中,都有购买哪些其他的商品,然后会输出多种结果,比如尿布或者牛肉或者酸奶或者花生米等等,这每个商品都可以成为一个聚类结果,由于没有目标结论,因此这些聚类结果都可以参考,之后就是货品摆放人员尝试各种聚类结果来看效果提升程度。在这个案例中各个商品与啤酒的关联程度或者是距离远近就是算法本身了,这其中的逻辑也有很多中,包括apriori等关联规则、聚类算法等。
另外还有一大类是回归分析,简单说就是几个自变量加减乘除后就能得出因变量来,这样就可以推算未来因变量会是多少了。比如我们想知道活动覆盖率、产品价格、客户薪资水平、客户活跃度等指标与购买量是否有关系,以及如果有关系,那么能不能给出一个等式来,把这几个指标的数据输入进去后,就能够得到购买量,这个时候就需要回归分析了,通过把这些指标以及购买量输入系统,运算后即可分别得出,这些指标对购买量有没有作用,以及如果有作用,那么各个指标应该如何计算才能得出购买量来。回归分析包括线性及非线性回归分析等算法。
统计学分析方法还有很多,不过在今天多用上述几大类分析方法,另外在各个分析方法中,又有很多的不同算法,这部分也是需要分析人员去多多掌握的。
自建模型是在分析方法中最为高阶也是最具有挖掘价值的,在今天多用于金融领域,甚至业界专门为这个人群起了一个名字叫做宽客,这群人就是靠数学模型来分析金融市场。由于统计学分析方法所使用的算法也是具有局限性的,虽然统计学分析方法能够通用在各种场景中,但是它存在不精准的问题,在有指导和没有指导的学习算法中,得出的结论多为含有多体现在结论不精准上,而在金融这种锱铢必较的领域中,这种算法显然不能达到需求的精准度,因此数学家在这个领域中专门自建模型,来输入可以获得数据,得出投资建议来。在统计学分析方法中,回归分析最接近于数学模型的,但公式的复杂程度有限,而数学模型是完全自由的,能够将指标进行任意的组合,确保最终结论的有效性。
编辑的实用数据分析方法(汇总19篇)篇七
市场调研(marketresearch)是一种把消费者及公共部门和市场联系起来的特定活动一一这些信息用以识别和界定市场营销机会和问题,产生、改进和评价营销活动,监控营销绩效,增进对营销过程的理解。下面是小编为大家收集的关于产品经理做市场调研和数据分析的方法。希望可以帮助大家。
我们在做市场调研前,必须有一个自己的调研思路:我们要调研的对象,需要收集的数据,需要达到的效果等。只有有了明确的目标,才能获得更加有效的数据。
1、通过调研了解市场需求、确定目标用户、确定产品核心,为了更好的制订mrd;。
2、为领导在会议上pk提供论据;。
4、验证我们定的目标客户是不是我们想要的,目标用户想要什么样的产品或服务;。
5、了解我们能不能满足目标用户的需求并且乐于满足目标用户的需求;。
6、找准产品机会缺口,然后衡量各种因素,制定产品战略线路;。
8、对于全新的产品,调研前pm必须先自己有一个思路,然后通过调研去验证自己的想法的可行性。
2、做人物角色分析:设置用户场景、用户角色进行模拟分析;。
3、情况推测分析;。
4、调研的维度主要从战略层、范围层、结构层、框架层、视觉层来展开(不同的产品从不同的层次来确定调研的维度)。
ps:对收集到的调研数据,我们需要整理出那些有效的数据,对于无效数据果断丢弃。对有效数据进行细致的处理、分析。
4、深度访谈的数据整理,我们以前会做头脑风暴,建立很多个用户模型,强行量化这些数据。这个方法比较有效,特别在做人群研究的时候。
对整理后的数据,我们最终需要形成书面的市场调研文档报告,以最直观的方式呈现给我们的boss,从而获得老板对产品的支持。
1、对市场调研的数据分析后进行的说明总结,用图表或图形的形式最直观呈现;。
2、分析用户当前现状,用户对产品的需求点;。
3、报告的组成有研究背景、研究目的、研究方法、研究结论等相关内容;。
1、数据分析需要掌握数据统计软件和数据分析工具(分析工具如spss等);。
对比分析法:将两个或两个以上的数据进行对比分析,分析其中的差异,从而揭示这些事物发展变化的规律和情况。对比分为横向对比和纵向对比。
结构分析法:被分析研究总体内各部分与总体之间进行对比分析的方法,即总体内各部分所占的指标。
交叉分析法:同时将两个有一定联系的变量及其值交叉排列在一张表内,使各变量值成为不同变量的交叉点,一般采用二维交叉表进行分析。
分组分析法:按照数据特征,将数据进行分组进行分析的方法。
其他还有比如漏斗图分析法、杜邦分析法、矩阵关联分析法等等。
(数据分析方法可以参考:《谁说菜鸟不会数据分析》一书)。
ps:数据分析的方法有很多种,在进行数据分析的时候,选择有效的数据分析方法,能达到事半功倍的效果。
1、根据调研结论确定产品核心功能。
2、把数据分析的结果加入到整个迭代设计的过程中加速产品的迭代更新。
4、通过数据进行分析,得出用户的行为规律,为产品提供支撑。
5、日常的运营分析,及时发现产品问题。
6、产品后期设定一系列的运营指标进行运营监控,然后反馈产品迭代(指标主要包括:1、用户的反馈、2、产品的bug、3、市场的反映、4、产品未来的发展方向、5、点击率、留存率等等)。
编辑的实用数据分析方法(汇总19篇)篇八
现象学不仅是哲学而且是方法,现象学从一般意义来说有先验、解释、发生三种,这三种现象学所采用的研究方法一般有先验研究、解释学研究以及体验研究。在大数据背景下,使用者三种方法看待实验室研究,这三种方法能否成功运用,一要看先验研究以及解释学研究中确立的“意向性”,二是这种“意向性”能否成功运用到体验研究。
1大数据实验室的现象学先验研究。
实验室研究一般会被误认为就是实证研究,实验是使用理性的逻辑作用于具体的实物,研究者会受到具体经验以及假设观念理论的影响,并且强调将这些因素“不带偏见”的面对客观事实,在实验室研究中我们必须紧紧地围绕研究对象。在新时代背景下使用现象学先验视角审视大数据实验室研究。
何为先验,康德说:“先验包含了一切质的可能”也就是说,先验就是对具体经验的超越,它包含了具体经验的一切。那么在大数据背景下,实验室的研究是结合世界上所有的数据,包含进了一切的人类知识。大数据下的实验室研究不仅是少数人参与到实验室的研究,而是通过全球化的数据连接,将单个实验室的研究扩展到全球,使实验室研究社会化,它集中人类的知识、智力以及资源进行最优化研究,它囊括了一切人类知识的总量。
从另一个方面来说,现象学的先验研究注重主体性,研究对象要围绕研究人员转,研究人员用自己的视角假设去迫使研究对象显示真相。在大数据背景下,实验室研究人员首先要构建的自己假设前见,确立自己的研究视角,接着再从海量的信息中,抽取符合自己“意向性”的信息。就像胡塞尔所说的“向来人们都认为,我们的一切知识都必须依照对象;但是在这个假定下,想要通过概念先天地构成有关这些对象的东西以扩展我们的知识的一切尝试,都失败了。因此我们不妨试试,当我们假定对象必须依照我们的知识时,我们在形而上学的任务中是否会有更好的进展”。大数据时代背景下,实验室研究人员可以充分自由的构建自己先验世界,再根据自己的先验世界去提取相关的信息,用这些信息去达到对实验对象本质的暴露。传统实验室研究总习惯于根据实验对象来确立所使用的知识及方法,按照确定的步骤进行相关的操作,正因为此,传统实验室研究中总会受到诸多的限制,科研人员的思维以及思想难以有大的突破。现象学中的先验研究,首先在思维上要求研究人员充分的发挥思想的作用,实验室研究中所作的一切都要围绕这个思想服务,而不是让科研人员屈服于研究对象,这种新的研究思维及方式在一定程度会促进重大科学的发生及发现。就像牛顿研究宇宙,试图去理解上帝奥妙的时候,它也是充分的构建自己的先验世界,宇宙构造可能会有多种情况,其发现万有引律,就是一个典型的例了,使用新的路径出发时总会在意外之中有重大发现。
2大数据实验室现象学解释学研究。
解释学现象学重视实验室研究人员凭借研究自己的主见和前见与信息或文本开展对话,使研究刘象围绕研究人员转,但这并不意味着研究人员不顾事实或曲解及歪曲对象甚者编造数据。如果实验室研究人员在实验室研究中发现原有的假设不符合事实,那么实验室研究人员需要调整原来的假设使其符合事实。当然,当我们的假设与实验研究对象出现短时间的不符合时,实验室研究人员不可轻率的抛弃先前的假设和独特的视角,不可围绕着实验对象跑而缺乏主见。
解释学现象学中实验室研究人员的主见或前见在一定程度上有其适当之处。海德格尔指出,“任何解释工作之初都必然有这种先入之见,它作为随着解释就已经‘设定了的’东西是先行给定的,这就是说,是在先行具有、先行视见和先行掌握中先行给定的”,即实验室研究人员在进行相关的解释,是通过这种先行的要素起作用的,把实验室研究中的某一物解析为另一物时,起主要作用是具有以及掌握先行的视见而确定的。伽达默尔接着指出,“前见其实并不意味着一种错误的判断,它的概念包含它可以具有肯定的和否定的价值,他认为前见首先是判断的方式,它并不因为见解上的错误而受到排除,相反,前见是给定于最后考察一切事情中的决定性的要素之前,在胡塞尔和海德格尔那,前见都有其合理性。可以说,前见在大数据下实验室研究具有重大价值,实验室研究人员的确使广大的实验室研究人员与信息数据对话,具有高度的创造性,可以按照自己的前见进行相关的实验活动而不必摇摆不定。正是因为实验室研究人员有了自己的前见,才敢于冒险,不断的激发实验研究人员的创造性,在与数据信息的对话交流中,达到了视界的融合,使研究人员和数据信息两者都重新获得理解。
3大数据实验室的现象学参与式和体验式研究。
在大数据时代背景下,实验室研究人员可以充分地构建自己的先验世界,进行相对应的先验研究。但先验研究因为过于强调研究人员的主体性,在一定程度上会产生唯我中心论,那么此时参与式研究就成为了解决先验研究中不足的一种方法。大数据时代背景下的实验室研究,研究人员根据自己的需求挑选所需的数据信息,经过数据技术的分析,得到所需的结果。但这不意味着在大数据下,实验研究人员仅作为一个旁观者,或只是对象性研究。在面对海量信息得到实验结果后,更重要的是要参与到实验中,根据数据信息所给的步骤结果,真正的动手操作,与实验对象所接触,“知觉”实验刘象,与实验对象之间建立亲密的某种关系。与实验刘象融为一体,将实验对象的发生变化与特定的因素联系在一起,去认真思考,以便达到对大数据所给相关知识的理解。参与式的现象学研究实际上已由原来探求知识的认识论转化为以“知觉”或操作者使用为特点的存在论。
不过,现象学当纯真非主体的做法是体验研究。而实证研究则是多数以逻辑概念思辨或以量化的数据统计,是与体验研究对立的。参与式与体验式在现象学研究中的差别在于,从主体上说参与式研究是自己,是自己参与到实验对象中间;体验式研究则是实验的对象,相当于实验对象自己研究自己,研究者不直接参与到研究对象中去,不干涉研究对象,研究者退居幕后,让实验对象任其自由自在变化的发展。比如说,一个实验研究人员要研究某地人群疾病发生的致病因数,除了经数据信息分析以及在实验室检验和分析样本外,实验研究人员要置身于当地人的生活中去,并对当地人的生活不加以任何形式的干扰,详细记录当地人每天的日常饮居;跟当地人不断的交流情感,倾听当地人与邻居、家人以及亲人的交往故事;观察当地人的劳作,详细了解他们的饮食以及生活的自然环境,将这些因素的联系以及相关的数据数值进行详细的记录。体验式研究不单要求实验室研究人员倾听、了解以及记录实验对象的事,使实验对象的思考和言说显示为“非对象性的言与思”,而且要确使实验研究人员在记录和分析实验报告的'过程中尽可能的避免过度的归纳与概括,进而保持记录的“非对象性的言与思”。
4大数据实验室体验研究的路径。
现象学研究在人文社科类的研究倍受重视,现在我国每年召开一次现象学与科技哲学学术研讨有意将现象学的研究方法引用到科学技术因为传统的实证研究过于重视研究结果,对研会域的结果过于乐观,而对研究的过程相对比较轻视。实证研究者确信他们收集的相关事实经验能理解和说明自己的考察对象。而现象学方法在一定程度上则是对实证研究的不信任和怀疑。现象学对实证研究的质疑主要有:人不能保证自己所听或所看的信息数据就是对象的本质,研究人员所使用的实证研究得出的结论不一定与事实的本质相符,进一步说,我们怎么才能真正认识别者。比如说,实验研究人员可以通过测量一张桌了的重量、宽度、长度以及了解桌了的用途和木质以及颜色等,实验研究人员也可观察一个病人的气色,通过仪器了解病人内部发病的机理,但对桌了和病人自身的秘密实验研究人员却无法去认识。因为研究人员所认识的只不过是从外部特征对桌了或病人的主观解释,都源于研究人员的“主观”意见,对其内在的本质却无从得知。
那么要如何认识对象的本质呢?现象学的体验式研究思路是:。
第一,将自己置身于研究对象本身的特定环境和特定条件下,重视研究对象之间的环境体系及历史的联系和精神的交流。传统的实验室研究中充斥着实验现象、结果、数据以及结论等种种的分析等方面的知识考究,而对于研究对象精神联系,以及实验的情感态度,内心体验却少有考虑。与之相反现象学的体验式研究,更关注研究主体以及研究对象的内心体验或内在的精神联系。实验室研究人员在实验研究的过程中,内在的感情思想以及对问题的思考、实验过程的灵感以及顿悟,这些在现象学体验研究中将受到重视,而不是像实证研究中,为了达到确定的目的,而往往将实验科研人员的这些因素忽视掉。在现象学研究中,它关注实验研究者跟实验对象精神以及情感之间的联系。如果实验对象是人,那么我们将更加注重对象的内心体验,重视对象的内心承受力,对对方予以重视和尊重;如果实验的对象是物,那么我们在做研究的过程中应该将物与所处的环境体系以及相关的历史背景联系起来,以及实验对象对人的情感价值和精神的交融。
第二,对实验对象的体验描述要通过语言及“象”的艺术化来替代概念化而保持其完整性和真实性。在现象学中存在语言表述的困难,因为物即使存在而被认识,也很难言说,现象学所做的努力依然是使物能“言”,现象学的体验研究要依赖实验研究者个性化和艺术化的语言。现象学方法也可以说是带有“艺术性”的方法。从另一角度上来说,现象学这一词重要不在于“现”,而在于“象”。现象学来源于却不直面于现实世界,它是重在用类比中某物“象”某物的思维来阐述和理解现实。“象”虽然不是通过归纳和演绎方法得出,而是使用常规的科学方法去推理演绎得出,但类比的想象可以使人在人与自然对话中获得理解,在观察和实验的过程中可以获得灵感,在先验和经验世界搭建沟通桥梁,从而使实验室研究达到对经验的超越。
第三,实验研究人员与实验对象建立某种紧密的存在关系,放弃实验研究人员的研究态度。为什么要实验研究人员与实验对象建立紧密关系呢?一是因为实验对象无法言说。即使能言说,实验对象的体验也不是最初的真实体验。二是实验研究人员的复述也无法言说。实验研究人员难以复述实验对象的体验,或者说当实验研究人员再次复述实验对象描述的体验时就离实验对象最初的体验更加遥远。从另一个方面来说,即使研究人员用艺术化替代概念化的语言去阐述实验对象的体验,这种阐述不能保证实验对象体验的完整性和真实性。概念化的归纳以及艺术性的总结都不能对实验对象的体验进行描述,体验式的现象学研究的重点是体验而不是研究。当实验研究人员与实验对象在一起时,实验研究的过程就可以理解为要与实验对象建立某种紧密联系,实验研究人员的研究要由认识论中“要认识你”的态度转变为存在论中的“和你在一起”的态度。
5结束语。
对于现象学而言,大数据下的实验室研究在一定意义上说并不完全是实证研究,在一定程度上,实验研究人员应该是实验对象的倾听者、交流者以及陪伴者。那么此时现象学的意向性就体现为精神或情感的关系。从表面上,看精神与情感是来源于观察和了解经验事实的基础上,但真正的精神和情感是来自于人的先验意识。实验研究人员对实验研究的动物有感情与同情心,是因为动物是人类的朋友,而不是动物给他的研究带来多大好处;实验科研人员对某一方面的实验对象现象敏感察觉,是他先天所俱来的内心精神的本能,而不是他对这看了多少书、了解了多少事实的经验。
现象学的体验研究实验研究人员之所以能认识明自实验对象,以及能用语言阐述实验对象的体验,除了实验研究人员具有经验技巧外,还因为实验研究人员在事前就具备了超越事实经验的意向性,这种意向性是指先验的直觉、灵感、情感等。由此看来,现象学的体验研究的要义在于研究人员要具有先验的意向性,也可以说体验研究的前提是先验研究。体验研究者之所以能够在经验事实的混乱复杂中一以贯之的领会和构建内在的体验,在于研究者有强大而又发达的先验意向性。
编辑的实用数据分析方法(汇总19篇)篇九
年龄:25。
身高:160cm。
婚姻状况:未婚。
学历:本科。
毕业院校:xx大学。
专业:汉语言文学。
电脑水平:精通。
英语水平:cet6。
求职意向。
求职类型:全职。
工作地点:不限。
工作岗位:编辑、高级秘书。
教育培训。
2003年9月-2007年7月xx大学汉语言文学本科。
技能专长。
普通话水平测试,水平为一级乙等;
通过全国计算机等级二级access考试,机试优秀;熟悉计算机网络、熟练掌握办公自动化。
工作经历。
2007年6月-2008年9月xx网络科技有限公司网站编辑。
主要负责网站版面的`更新以及专题的策划。在工作的过程中锻炼了独立处事的能力以及沟通能力,体会到团体精神的重要性。
2008年9月-2009年6月xx报社编辑。
自我评价。
扎实的写作功底,能胜任各类文字工作;现于xx报社工作,发表文字超过5万字。曾选修公文写作课程,掌握各种事务文书的写作;责任心强,工作主动认真,有较好的领悟力;有较强的团队精神,有良好的人际关系。
联系方式。
电话:13888888888。
邮箱:
将本文的word文档下载到电脑,方便收藏和打印。
编辑的实用数据分析方法(汇总19篇)篇十
编辑是企业内部新闻信息综合发布工作岗位,工作服务对象既对领导又对基层,每天都通过网络与全体员工“亲密接触”,新闻发布的质量和水平都直接影响到舆情导向和企业形象。为此,我坚持少讲话多做事的原则,认认真真对待每一天的工作。
定向服务与突出重点相结合,创新栏目办好报。年初,围绕部门领导提出的对《__电力报》版面进行重新策划创新的办报思路,积极和对口服务的党政工团各责任部门沟通,对体现精神文明建设的综合板块版面进行调整,重新设置了《科学发展观》、《党员风采》、《基层党建》、《廉政征文》、《员工之声》、《芙蓉花开》、《企业青年》等专栏。在下半年对版面分工进行调整后负责《__》文学版块,接手后有意识的加强了与各单位文学、摄影爱好者联系,配合企业中心工作以及各类大型活动约稿,力争文章和图片主题贴近群众、贴近实际、贴近生活,真实反映出一线员工的思想、工作和学习情况。
二、新闻采写工作。
配合中心工作,认真采写新闻稿件。4月份,作为局新闻工作人员,很荣幸的得到了跟随张书记到__,到我局援川电网重建一线开展学习实践科学发展观活动的机会。在一线的路途和工地上,总被同事们在平凡的工作及言谈中表现出来对对企业的忠诚和热爱、对工作的认真和奉献精神所打动,在完成现场新闻稿之后完成了人物通讯稿件《立在__援建工地上的杆子》,此稿件先后在国家电网报、湖南电力报、__晚报等媒体发表。此外还配合春检、营销服务反违章、学习实践科学发展观活动等工作完成了一些宣传稿件。
同时在平时还留心多看报多学习,广泛借鉴其他报纸的板式风格,争取版面灵活、美观,尽可能扩大报纸的影响面,得到职工更多的关注。
编辑的实用数据分析方法(汇总19篇)篇十一
定向服务与突出重点相结合,创新栏目办好报。年初,围绕部门领导提出的对《××电力报》版面进行重新策划创新的办报思路,积极和对口服务的党政工团各责任部门沟通,对体现精神文明建设的综合板块版面进行调整,重新设置了《科学发展观》、《党员风采》、《基层党建》、《廉政征文》、《员工之声》、《芙蓉花开》、《企业青年》等专栏。在下半年对版面分工进行调整后负责《××》文学版块,接手后有意识的加强了与各单位文学、摄影爱好者联系,配合企业中心工作以及各类大型活动约稿,力争文章和图片主题贴近群众、贴近实际、贴近生活,真实反映出一线员工的思想、工作和学习情况。
二、新闻采写工作。
配合中心工作,认真采写新闻稿件。4月份,作为局新闻工作人员,很荣幸的得到了跟随张书记到××,到我局援川电网重建一线开展学习实践科学发展观活动的机会。在一线的路途和工地上,总被同事们在平凡的工作及言谈中表现出来对对企业的忠诚和热爱、对工作的认真和奉献精神所打动,在完成现场新闻稿之后完成了人物通讯稿件《立在××援建工地上的杆子》,此稿件先后在国家电网报、湖南电力报、××晚报等媒体发表。此外还配合春检、营销服务反违章、学习实践科学发展观活动等工作完成了一些宣传稿件。
编辑的实用数据分析方法(汇总19篇)篇十二
针对现有广播电视新闻专业本科毕业设计(论文)教学中的弊端。从以下几方面进行提升:建立学年论文制度;突出毕业设计(论文)的实践性质;鼓励发展多种形式的毕业设计;强化监督毕业论文(设计)的考评过程;将毕业设计(论文)的教学指导环节进行简化。
毕业设计(论文)这一本科教育最重要也是最后的一环目的在于让本科学生能总结在校期间的学习成果,灵活、合理地运用自身学到的相关专业知识,通过科学系统全面的研究习得解决实际问题能力的教学环节。这个教学环节强化了学生发现问题、分析问题和解决问题的能力,为未来继续开展更深入的科学研究打下基础。所以,毕业设计(论文)的教学质量直接影响所培养学生的质量。
编辑的实用数据分析方法(汇总19篇)篇十三
数据分析是一项复杂而精确的工作,需要科学的方法和有效的技巧。在数据分析的过程中,我对各种数据分析方法进行了学习和实践,积累了一些心得和体会。本文将围绕数据分析方法的应用、数据清洗与处理、模型构建、模型评估以及结果解释五个方面进行阐述,以展示我对数据分析方法的理解和体验。
首先,在数据分析的过程中,选择合适的分析方法是至关重要的。不同类型的数据需要不同的分析方法,而选择适合的方法则需要综合考虑数据特征、分析目的和问题背景等因素。例如,在处理时间序列数据时,可以使用ARIMA模型进行预测;在处理分类问题时,可以使用决策树或逻辑回归等方法。因此,熟悉各种数据分析方法,并能灵活应用,是提高数据分析质量的重要一步。
其次,在数据分析的过程中,数据清洗与处理是一个必不可少的环节。原始数据往往存在噪声、缺失值和异常值等问题,这些问题会对分析结果产生不良影响。因此,对数据进行清洗和处理,以确保数据的准确性和完整性,是有效数据分析的基础。常用的数据清洗方法包括删除重复值、填补缺失值和删除异常值等。通过合理运用这些方法,可以提高数据的质量,为后续分析打下坚实的基础。
第三,在数据分析的过程中,构建可靠的模型是关键。模型的选择和设计直接影响着数据分析的结果和效果。在模型构建之前,需要对数据进行探索性分析,了解数据的分布、特征和规律,以便选择合适的模型。在模型构建时,需要注意选择合适的算法以及调整模型的参数,以提高模型的拟合能力和预测准确性。此外,模型的可解释性也是一个重要的考量因素,合理解释模型的结果可以增加数据分析的可信度。
其次,模型的评估是数据分析的另一个关键环节。模型的好坏取决于其预测的准确性和稳定性,而模型评估可以对模型进行客观的量化评价。常用的模型评估方法包括均方误差、交叉验证和ROC曲线等。这些评估指标能够帮助我们了解和比较不同模型的性能,从而选择最佳的模型进行分析和预测。同时,在评估模型时,还需要考虑模型的复杂度和可解释性,以免过度拟合或过度简化。
最后,在数据分析的过程中,对结果进行解释和应用是至关重要的。数据分析的最终目的是为业务决策提供有效的依据,而解释和应用分析结果是将数据分析结果转化为实际行动的关键一步。在结果解释时,我们需要清晰地描述分析结果的内涵和意义,并且在解释结果时,要注意结果的可信度和有效性,以便为决策者提供科学的建议。同时,我们还需要将分析结果与实际场景结合,探讨如何应用结果来改善业务绩效或解决问题。
总之,数据分析方法的运用需要科学的方法和有效的技巧。在数据分析的过程中,我们应该选择合适的分析方法,进行数据清洗和处理,构建可靠的模型,进行模型评估,并合理解释和应用分析结果。通过不断的学习和实践,我们可以不断提高自己的数据分析能力,并更好地为业务决策提供科学支持。
编辑的实用数据分析方法(汇总19篇)篇十四
一、频数分析:分析比例,掌握基础信息无论是哪种领域的统计分析,频数分析都是最常用的.方法。
在市场调研中,频数分析也是最基础、使用最广泛的方法。一般可用来统计分析样本基本信息,统计比例,如消费者的基本信息,对产品的基本态度,是否愿意购买产品等。
二、描述分析:定量数据对比描述分析适用于分析对比定量数据。
例如对比各维度均值,了解在哪些方面得分较高,哪些方面得分较低,找出优势项或短板项,从而制定出有针对性的改善方案。可用于分析产品满意度、用户需求等。
三、ipa分析:满意度-重要性分析ipa分析,又叫重要性表现程度分析法。
是通过绘制散点图,对比不同项目或维度的重要度和服务表现,从而直观的识别出优势项、劣势项。适用于服务质量、满意度分析、产品竞争力分析等。
四、差异分析:交叉分析,寻找个性差异上面几个方法一般只是初步描述研究结果,想要更深入的探究分析项之间的差异性则要进行差异分析。
编辑的实用数据分析方法(汇总19篇)篇十五
将两个或两个以上的数据进行对比分析,分析其中的差异,从而揭示这些事物发展变化的规律和情况。对比分为横向对比和纵向对比。
被分析研究总体内各部分与总体之间进行对比分析的方法,即总体内各部分所占的指标。
同时将两个有一定联系的变量及其值交叉排列在一张表内,使各变量值成为不同变量的交叉点,一般采用二维交叉表进行分析。
按照数据特征,将数据进行分组进行分析的方法。
除了以上的`4点,其他还有比如漏斗图分析法、杜邦分析法、矩阵关联分析法等等。
数据分析的方法有很多种,在进行数据分析的时候,选择有效的数据分析方法,能达到事半功倍的效果。
编辑的实用数据分析方法(汇总19篇)篇十六
定向服务与突出重点相结合,创新栏目办好报。年初,围绕部门领导提出的对《××电力报》版面进行重新策划创新的办报思路,积极和对口服务的党政工团各责任部门沟通,对体现精神文明建设的综合板块版面进行调整,重新设置了《科学发展观》、《党员风采》、《基层党建》、《廉政征文》、《员工之声》、《芙蓉花开》、《企业青年》等专栏。
在下半年对版面分工进行调整后负责《××》文学版块,接手后有意识的加强了与各单位文学、摄影爱好者联系,配合企业中心工作以及各类大型活动约稿,力争文章和图片主题贴近群众、贴近实际、贴近生活,真实反映出一线员工的思想、工作和学习情况。同时在平时还留心多看报多学习,广泛借鉴其他报纸的板式风格,争取版面灵活、美观,尽可能扩大报纸的影响面,得到职工更多的关注。
编辑的实用数据分析方法(汇总19篇)篇十七
数据分析是当今社会中不可或缺的重要工具之一。随着信息技术的迅猛发展,我们可以从各个领域收集到大量的数据,这些数据蕴含着巨大的潜力和价值。数据分析方法的应用可以帮助我们更好地理解、挖掘和利用这些数据。通过多年的实践,我发现了一些有效的数据分析方法,这些方法对于提高数据分析的准确性和效率具有重要意义。
首先,清晰的问题定义是进行数据分析的基础。在开始任何分析之前,我们必须明确分析的目的和问题。如果问题定义不明确,那么数据分析的结果很可能陷入无法解释和使用的境地。因此,我们应该在分析之前花费足够的时间和精力来了解和详细描述问题。这包括澄清分析的目标、确定关键指标以及收集相关的背景信息。只有在问题定义清晰的情况下,我们才能更好地运用数据分析方法来解决问题。
其次,合理选择和运用合适的数据分析方法是提高分析效果的关键。在数据分析的过程中,我们应该选择和运用适合问题的方法。不同的问题和数据需要不同的方法来进行分析。例如,如果我们想要了解和预测市场趋势,我们可以使用时间序列分析方法。而如果我们想要研究变量之间的关系,我们可以使用回归分析方法。此外,我们还可以结合多个方法,比如聚类分析和因子分析,来探索和发现数据中的隐藏模式和结构。因此,我们需要根据具体情况选择和运用合适的数据分析方法,以取得最佳的效果。
第三,数据质量的保证是数据分析的前提。数据分析的结果和结论依赖于数据的质量。如果数据存在错误、遗漏或不一致,那么结果很有可能是错误或不可靠的。因此,在进行数据分析之前,我们应该首先对数据进行清洗和预处理。这包括删除错误和重复的数据、填充缺失值以及处理异常值。此外,我们还应该对数据进行检查,确保数据的一致性和可靠性。只有在数据质量得到保证的情况下,我们才能对数据进行有效的分析和解释。
第四,数据可视化是提高数据分析效果的重要手段。数据可视化是将数据以图表、图形等形式展示出来的过程。通过数据可视化,我们可以更直观地理解和解读数据,发现数据中的规律和趋势。同时,数据可视化还可以帮助我们将复杂的数据变得更加易于理解和沟通。在数据分析的过程中,我们可以使用各种可视化工具和技术,包括条形图、折线图、散点图等等。因此,数据可视化是提高数据分析效果的重要手段。
最后,数据分析是一个不断学习和改进的过程。数据分析领域变化迅速,新的方法和技术不断涌现。因此,我们应该保持学习和更新的态度,不断改进和提升自己的数据分析能力。这包括学习新的分析方法和工具,掌握新的技术和技巧,以及参与到实际的分析项目中。只有通过不断学习和改进,我们才能更好地应对数据分析的挑战和机遇。
综上所述,数据分析是一项重要且复杂的工作。通过清晰的问题定义、合理选择和运用合适的方法、保证数据质量、使用数据可视化手段以及持续学习和改进,我们可以提高数据分析的准确性和效率。只有通过科学严谨的数据分析,我们才能更好地理解和利用数据,为决策和创新提供有力的支持。
编辑的实用数据分析方法(汇总19篇)篇十八
我是一个土生土长的**的女孩,从小的家庭教育和自身修养,形成了我的性格,细致,沉稳,坚定。安静与活泼并存,幽默与干练同在。
对于理想,我一直抱有同个态度,要做,就要做到最好。为了完成这个目标,便会尽最大的努力去做。
上课期间,我们主修了新闻概论,新闻采访,新闻写作,新闻摄影摄像等一系列相关课程。我也利用课余时间阅读了大量书籍,观赏了很多有价值的电视专题。这些为以后的工作学习打下了基础。
一直对文学有着特殊的感情,进入本专业也与之有一定关联。经过长时间的实践和积累,现在已经可以熟练地运用文字,形成了自己的写作风格。自小便有文章陆续发表。
创新精神时有体现。接受并融入新事物的能力较强。与人交流沟通以诚想待。
看了新闻编辑自我介绍的还看了:
编辑的实用数据分析方法(汇总19篇)篇十九
认识数据分析方法:对数据进行统计分析时,选择正确的分析方法是非常重要的。选择统计分析方法时,必须考虑许多因素,主要有:
(1)统计分析的目的,
(2)所用变量的特征,
(3)对变量所作的假定,
(4)数据的收集方法(即抽样过程)。
选择统计分析方法时一般考虑前两个因素就足够了。
小样本并且两个变量服从双正态分布,则用pearson相关系数做统计分析
大样本或两个变量不服从双正态分布,则用spearman相关系数进行统计分析
2、两个变量均为有序分类变量,可以用spearman相关系数进行统计分析