范文范本是学习写作过程中必不可少的资源,通过参考范例可以提高写作水平和表达能力。揭示范文魅力:通过阅读这些范文范本,你将深刻体会到文字的魔力和韵味。
数学解题技巧与方法分享(实用19篇)篇一
一要审题。
很多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可取。我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。
二要记。
这里的记有两层意思。第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。如给出对边相等,就用边相等的符号来表示。第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来。
三要引申。
难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论,然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。
四要分析综合法。
1.对顶角相等。
2.平行线里同位角相等、内错角相等。
3.余角、补角定理。
4.角平分线定义。
5.等腰三角形。
6.全等三角形的对应角等等方法。
结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换成证明其他的结论,通常缺少的条件会在第三步引申出的条件和题目中出现,这时再把这些条件综合在一起,很条理的写出证明过程。
五要归纳总结。
很多同学把一个题做出来,长长的松了一口气,接下来去做其他的,这个也是不可取的,应该花上几分钟的时间,回过头来找找所用的定理、公理、定义,重新审视这个题,总结这个题的解题思路,往后出现同样类型的题该怎样入手。
以上是常见证明题的解题思路,当然有一些的题设计的很巧妙,往往需要我们在填加辅助线,分析已知、求证与图形,探索证明的思路。对于证明题,有三种思考方式:
(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。
(2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。
(3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。
数学解题技巧与方法分享(实用19篇)篇二
发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。总之,退到一个你能够解决的程度上,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。
逆向思考,正难则反。
对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展,如果顺向推有困难就逆推,直接证有困难就反证,如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。
面对难题,讲究方法。
对一个疑难问题,确实啃不动时,一个明智的解题方法是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。
学会画图。
画图是一个翻译的过程,把解题时的抽象思维,变成了形象思维,从而降低了解题难度。有些题目,只要分析图一画出来,其中的关系就变得一目了然。尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。因此,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。
先易后难,逐步增加习题的难度。
人们认识事物的过程都是从简单到复杂。简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。我们在学习时,应根据自己的能力,先去解那些看似简单,却很重要的习题,以不断提高解题速度和解题能力。随着速度和能力的提高,再逐渐增加难度,就会达到事半功倍的效果。
限时答题,先提速后纠正错误。
很多同学做题慢的一个重要原因就是平时做作业习惯了拖延时间,导致形成了一个不太好的解题习惯。所以,提高解题速度就要先解决“拖延症”。比较有效的方式是限时答题,例如在做数学作业时,给自己限时,先不管正确率,首先保证在规定时间内完成数学作业,然后再去纠正错误。这个过程对提高书写速度和思考效率都有较好的作用。你习惯了一个较快的思考和书写后,解题速度自然就会提高,及改正了拖延的毛病,也提高了成绩。
熟悉基本的解题步骤和解题方法。
解题的过程,是一个思维的过程。对一些基本的、常见的问题,前人已经总结出了一些基本的解题思路和常用的解题程序,我们一般只要顺着这些解题的思路,遵循这些解题的步骤,往往很容易找到习题的答案。
审题要认真仔细。
对于一道具体的习题,解题时最重要的环节是审题。审题的第一步是读题,这是获取信息量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了。所以,在实际解题时,应特别注意,审题要认真、仔细。
论证演算的方法。
这又可以依其适应面分为两个层次:第一层次是适应面较宽的求解方法,如消元法、换元法、降次法、待定系数法、反证法、同一法、数学归纳法(即递推法)、坐标法、三角法、数形结合法、构造法、配方法等等;第二层次是适应面较窄的求解技巧,如因式分解法以及因式分解里的“裂项法”、函数作图的“描点法”、以及三角函数作图的“五点法”、几何证明里的“截长补短法”、“补形法”、数列求和里的“裂项相消法”等。
数学解题技巧与方法分享(实用19篇)篇三
(1)观察法:有目的有计划的通过视觉直观的发现数学对象的规律、性质和解决问题的途径。
(2)实验法:实验法是有目的的、模拟的创设一些有利于观察的数学对象,通过观察研究将复杂的问题直观化、简单化。它具有直观性强,特征清晰,同时可以试探解法、检验结论的重要优势。
2.比较与分类。
(1)比较法。
是确定事物共同点和不同点的思维方法。在数学上两类数学对象必须有一定的关系才好比较。我们常比较两类数学对象的相同点、相异点或者是同异综合比较。
(2)分类的方法。
分类是在比较的基础上,依据数学对象的性质的异同,把相同性质的对象归入一类,不同性质的对象归为不同类的思维方法。如上图中一次函数的k在不等于零的情况下的分类是大于零和小于零体现了不重不漏的原则。
3.特殊与一般。
(1)特殊化的方法。
特殊化的方法是从给定的区域内缩小范围,甚至缩小到一个特殊的值、特殊的点、特殊的图形等情况,再去考虑问题的解答和合理性。
(2)一般化的方法。
4.联想与猜想。
(1)类比联想。
类比就是根据两个对象或两类事物间存在着的相同或不同属性,联想到另一事物也可能具有某种属性的思维方法。
通过类比联想可以发现新的知识;通过类比联想可以寻求到数学解题的方法和途径:
(2)归纳猜想。
牛顿说过:没有大胆的猜想就没有伟大的发明。猜想可以发现真理,发现论断;猜想可以预见证明的方法和思路。初中数学主要是对命题的条件观察得出对结论的猜想,或对条件和结论的观察提出解决问题的方案与方法的猜想。
归纳是对同类事物中的所蕴含的同类性或相似性而得出的一般性结论的思维过程。归纳有完全归纳和不完全归纳。完全归纳得出的猜想是正确的,不完全归纳得出的猜想有可能正确也有可能错误,因此作为结论是需要证明的。关键是猜之有理、猜之有据。
5.换元与配方。
(1)换元法。
解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。
我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。你可以先观察算式,你可以发现这种要换元法的算式中总是有相同的式子,然后把他们用一个字母代替,算出答案,然后答案中如果有这个字母,就把式子带进去,计算就出来啦。
(2)配方法。
6.构造法与待定系数法。
(1)构造法所谓构造性的方法就是数学中的概念和方法按固定的方式经有限个步骤能够定义的概念和能够实现的方法。常见的有构造函数,构造图形,构造恒等式。平面几何里面的添辅助线法就是常见的构造法。构造法解题有:直接构造、变更条件构造和变更结论构造等途径。
(2)待定系数法:将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决问题的方法叫做待定系数法。
7.公式法与反证法。
(1)公式法。
利用公式解决问题的方法。初中最常用的有一元二次方程求根时使用求根公式的方法;完全平方公式的方法等。如下面一组题就是完全平方公式的应用:
(2)反证法是“间接证明法”一类,即:肯定题设而否定结论,从而得出矛盾,就可以肯定命题的结论的正确性,从而使命题获得了证明。
一、选择题的解法。
1、直接法:根据选择题的题设条件,通过计算、推理或判断,,最后得到题目的所求。
2、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关,在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。
3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。
4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略,每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。
5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。
数学解题技巧与方法分享(实用19篇)篇四
从题目所述的最后结果出发,利用已知条件一步一步向前倒推,直到题目中问题得到解决。
正难则反。
有些数学问题如果你从条件正面出发考虑有困难,那么你可以改变思考的方向,从结果或问题的反面出发来考虑问题,使问题得到解决。
直观画图法。
解奥数题时,如果能合理的.、科学的、巧妙的借助点、线、面、图、表将奥数问题直观形象的展示出来,将抽象的数量关系形象化,可使同学们容易搞清数量关系,沟通“已知”与“未知”的联系,抓住问题的本质,迅速解题。
枚举法。
奥数题中常常出现一些数量关系非常特殊的题目,用普通的方法很难列式解答,有时根本列不出相应的算式来。我们可以用枚举法,根据题目的要求,一一列举基本符合要求的数据,然后从中挑选出符合要求的答案。
巧妙转化。
在解奥数题时,经常要提醒自己,遇到的新问题能否转化成旧问题解决,化新为旧,透过表面,抓住问题的实质,将问题转化成自己熟悉的问题去解答。转化的类型有条件转化、问题转化、关系转化、图形转化等。
整体把握。
有些奥数题,如果从细节上考虑,很繁杂,也没有必要,如果能从整体上把握,宏观上考虑,通过研究问题的整体形式、整体结构、局部与整体的内在联系,“只见森林,不见树木”,来求得问题的解决。
数学解题技巧与方法分享(实用19篇)篇五
一、“学法”指导:
学生在解题(特别是几何证明题)书写上往往存在着条理不清,逻辑混乱等问题,其原因之一是,我们在教学中不大重视对学生进行写法指导。指导写法,应做到:1、要教会学生将文字语言转化为数学符号语言,数学符号中数学演算的前提;2、要将学生在推理的同时学会书写表达,让学生在反复训练中熟练掌握常用的书写格式;3、要训练学生根据已知条件来分析作图,正确地将文字语言转化为直观图形,以便于利用数形结合解决问题。这样一来多形式、多层次去强化训练,让学生过好分析关、书写关,使学生在注意严谨性、逻辑性的过程中形成正确的学习习惯。
二、“记法”指导:
初中学生由于正处在初级的逻辑思维阶段,知记知识时机械记忆的成分较多,理解记忆的成分较少,这就不能适应初中学生的新要求。因此,重视对学生进行记法指导,使其能够容易记忆,这是初中数学教学的必然要求。
教学中,首先要重视改革教学方法,摒弃“满堂灌”,以避免学生“消化不良”,其次要善于结合数学实际,教给学生相应的方法,如通过对知识之间的类比,使学生学会联想记忆,通过在知识编成顺口溜,使学生学会用口诀记忆,通过绘制直观图,使学生在以形助学中学会数形结合记忆;通过发掘知识的本质属性,使学生在形成概念的同时,学会理解记忆;通过归纳概括所学知识,使学生学会接受知识结构系统记忆;通过揭示获取知识的思维过程,使学生学会循序渐近。此外,我们还应该让学生明确各科记忆方法。
学法指导必须与教学改革同走进行,协调开展,持之以恒。我们在数学教学的同时应关于理论联系实际,因人而异,因材施教,充分调动学生的学习积极性。
1.图解分析法这实际是一种模拟法,具有很强的直观性和针对性,数学教学中运用得非常普遍。如工程问题、速度问题、调配问题等,多采用画图进行分析,通过图解,帮助学生理解题意,从而根据题目内容,设出未知数,列出方程解之。(例略)。
2.亲身体验法如讲逆水行船与顺水行船问题。有很多学生都没有坐过船,对顺水行船、逆水行船、水流的速度,学生难以弄清。为了让学生明白,我举骑自行车为例(因为大多数学生会骑自行车),学生有亲身体验,顺风骑车觉得很轻松,逆风骑车觉得很困难,这是风速的影响。并同时讲清,行船与骑车是一回事,所产生影响的不同因素一个是水流速,一个是风速。这样讲,学生就好理解。
同时讲清:顺水行船的速度,等于船在静水中的速度加上水流的速度;逆水行船的速度,等于船在静水中的速度减去水流的速度。
3.直观分析法如浓度问题,首先要讲清百分浓度的含义,同时讲清百分浓度的计算方法。
其次重要的是上课前要准备几个杯子,称好一定重量的水,和好几小包盐进教室,以便讲例题用。
如:一杯含盐15%的盐水200克,要使盐水含盐20%,应加盐多少呢?
分析这个例题时,教师先当着学生的面配制15%的盐水200克(学生知道其中有盐30克),现要将15%的盐水200克配制成20%的盐水,老师要加入盐,但不知加入多少重量的盐,只知道盐的重量发生了变化。这样,就可以根据盐的重量变化列方程。含盐20%的盐水中,含盐的总重量减去原200克含盐15%的总重量,就等于后加的盐重量。
即设应加盐为x克,则(200+x)×20%-200×15%=x。
解此方程,便得后加盐的重量。
去探索、去获取,应该在自己认真学习和研究的基础上去寻求教师和同学的帮助。
学习与思考相结合。
要克服那种死守书本、机械呆板、不知变通的学习方法。
数学解题技巧与方法分享(实用19篇)篇六
结合考纲考点,采取对账的方式,做到点点过关,单元过关。对每一单元的常用公式,定义,要熟练,做到张口就来。对于每个章节的主要解题方法和主要题型等,要做到心中有数。
要多做习题,目的是要从习题中掌握学习的技术和窍门,不同的题有不同的方法,用不同的技巧,尤其是函数中的动点题是现在出题的热点,要多做,但不要做太难的题,以会为主。
同时,不要过于在意刷题的数量,要做到每做一道题,就能搞明白这道题背后运用的公式定理、同类型题目的做题思路,学会举一反三,不仅能提高复习效率,还能更好掌握知识点。
初中数学的学习重点是函数(包括一次函数,正比例函数,反比例函数,二次函数),重点是意义和性质;三角形(包括基本性质,相似,全等,旋转,平移,对称等);四边形(包括平行四边形,梯形,棱形,长方形,正方形,多边形)的性质,定义,面积。
在一轮的专题复习中,一定要注意以上重点,形成自己的知识网,同时梳理各个知识点之间的连接,这样才能轻松应对最后的压轴题。
冲刺阶段里,要重拾做错的题,特别是大型考试中出错的题,通过回归教材,分析出错的原因,从出错的根源上解决问题。错题重做是查漏补缺的.很好途径,这样做可以花较少的时间,解决较多的问题。
当试卷发下来后,应先大致看一下题量,分配好时间,解题时若一道题用时太多还未找到思路,可暂时放过去,将会做的做完,回头再仔细考虑。对于有若干问的解答题,在解答后面的问题时可以利用前面问题的结论,即使前面的问题没有解答出来,只要说清这个条件的出处,也是可以运用的。另外,考试时要冷静,如遇到不会的题目,不妨用一用自我安慰的心理,可以使心情平静,从而发挥出自己的最好水平,当然,安慰归安慰,对于那些一下子做不出的题目,还是要努力思考,尽量能做出多少就做多少,一定的步骤也是有分的。
数学解题技巧与方法分享(实用19篇)篇七
(1)直接推演法:直接从初一数学命题给出的条件出发,运用概念,公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法.
(2)验证法:由初一数学题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代人条件中去验证,找出正确答案.此法称为验证法(也称代入法).当遇到定量命题时,常用此法.
(3)特值法:用合适的特殊元素(如数或图形)代人题设条件或结论中去,从而获得解答.这种方法叫特殊元素法.
(4)排除、筛选法;对于初一数学正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法.
(5)图解法:借助于符合题设条件的图形或图像的性质、特点来判断,作出正确的选择称为图解法.图解法是解选择题常用方法之一。
数学解题技巧与方法分享(实用19篇)篇八
纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
2、以直线或抛物线知识为载体,运用函数与方程思想。
直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。
因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。
3、利用条件或结论的多变性,运用分类讨论的思想。
分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察。
有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。
4、综合多个知识点,运用等价转换思想。
任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换。
中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察。因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略。
5、分题得分。
中考压轴题一般在大题下都有两至三个小题,难易程度是第(1)小题较易,第(2)小题中等,第(3)小题偏难,在解答时要把第(1)小题的分数一定拿到,第(2)小题的分数要力争拿到,第(3)小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。
6、分段得分。
一道中考压轴题做不出来,不等于一点不懂,一点不会,要将片段的思路转化为得分点,因此,要强调分段得分,最大限度地发挥自己的水平,把中考数学的压轴题变成最有价值的压台戏。
数学解题技巧与方法分享(实用19篇)篇九
一、“学法”指导:
学生在解题(特别是几何证明题)书写上往往存在着条理不清,逻辑混乱等问题,其原因之一是,我们在教学中不大重视对学生进行写法指导。指导写法,应做到:1、要教会学生将文字语言转化为数学符号语言,数学符号中数学演算的前提;2、要将学生在推理的同时学会书写表达,让学生在反复训练中熟练掌握常用的书写格式;3、要训练学生根据已知条件来分析作图,正确地将文字语言转化为直观图形,以便于利用数形结合解决问题。这样一来多形式、多层次去强化训练,让学生过好分析关、书写关,使学生在注意严谨性、逻辑性的过程中形成正确的学习习惯。
二、“记法”指导:
初中学生由于正处在初级的逻辑思维阶段,知记知识时机械记忆的成分较多,理解记忆的成分较少,这就不能适应初中学生的新要求。因此,重视对学生进行记法指导,使其能够容易记忆,这是初中数学教学的必然要求。
教学中,首先要重视改革教学方法,摒弃“满堂灌”,以避免学生“消化不良”,其次要善于结合数学实际,教给学生相应的方法,如通过对知识之间的类比,使学生学会联想记忆,通过在知识编成顺口溜,使学生学会用口诀记忆,通过绘制直观图,使学生在以形助学中学会数形结合记忆;通过发掘知识的本质属性,使学生在形成概念的同时,学会理解记忆;通过归纳概括所学知识,使学生学会接受知识结构系统记忆;通过揭示获取知识的思维过程,使学生学会循序渐近。此外,我们还应该让学生明确各科记忆方法。
学法指导必须与教学改革同走进行,协调开展,持之以恒。我们在数学教学的同时应关于理论联系实际,因人而异,因材施教,充分调动学生的学习积极性。
数学解题技巧与方法分享(实用19篇)篇十
选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。
赋予特殊值法。
即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。用特殊值法解题要注意所选取的值要符合条件,且易于计算。
直接求解法。
有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。我们在做解答题时大部分都是采用这种方法。
1.图解分析法这实际是一种模拟法,具有很强的直观性和针对性,数学教学中运用得非常普遍。如工程问题、速度问题、调配问题等,多采用画图进行分析,通过图解,帮助学生理解题意,从而根据题目内容,设出未知数,列出方程解之。(例略)。
2.亲身体验法如讲逆水行船与顺水行船问题。有很多学生都没有坐过船,对顺水行船、逆水行船、水流的速度,学生难以弄清。为了让学生明白,我举骑自行车为例(因为大多数学生会骑自行车),学生有亲身体验,顺风骑车觉得很轻松,逆风骑车觉得很困难,这是风速的影响。并同时讲清,行船与骑车是一回事,所产生影响的不同因素一个是水流速,一个是风速。这样讲,学生就好理解。
总结归纳,对易错题型重点训练,强化知识点。
这项工作,不仅仅是老师的事,更要求学生能够独立进行。
当学生会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,他才真正掌握了这门学科的窍门,才能真正做到“任它千变万化,我自岿然不动”。
数学解题技巧与方法分享(实用19篇)篇十一
有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。只有耐心仔细地审题,准确地把握题目中的关键词与量?如“至少”,“a0”,自变量的取值范围等,从中获取尽可能多的信息,才能迅速找准解题方向。
只有“准”才能得分,只有“准”你才可不必考虑再花时间检查,而“快”是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。如去年第21题应用题,此题列出分段函数解析式并不难,但是相当多的考生在匆忙中把二次函数甚至一次函数都算错,尽管后继部分解题思路正确又花时间去算,也几乎得不到分,这与考生的实际水平是不相符的。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。
要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现“会而不对”“对而不全”的情况,考生自己的估分与实际得分差之甚远。如去年理17题三角函数图像变换,许多考生“心中有数”却说不清楚,扣分者也不在少数。这样的失分情况,的确很冤枉,所以高中不希望我们的同学也犯这样的错误!
一般来说,当我们拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。但是,近年来考题的顺序并不完全是难易的顺序,因此在答题时要合理安排时间!此外,高中学习方法指导名师建议我们的同学,在解答题时都应设置了层次分明的“台阶”,因为看似容易的题也会有“咬手”的关卡,看似难做的题也有可得分之处。所以考试中看到“容易”题不可掉以轻心,看到难题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。
数学解题技巧就为大家介绍到这儿了,在高三阶段,大家也应该要多了解一些高考备考知识,为高考而做准备。
数学解题技巧与方法分享(实用19篇)篇十二
1、直接法:根据选择题的题设条件,通过计算、推理或判断,最后得到题目的所求。
2、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;。
仔细审题。
考试时精力要集中,审题一定要细心。要放慢速度,逐字逐句搞清题意(似曾相识的题目更要注意异同),从多层面挖掘隐含条件及条件间内在联系,为快速解答提供可靠的信息和依据。否则,一味求快,丢三落四,不是思维受阻,就是前功尽弃。
第一要保证不考砸。
第二要正常发挥。正常发挥就是将自己的水平发挥出80%,发挥出80%已经很不简单了,发挥出80%无疑是没考砸。
第三要向更高标准迈进,就是在保证已发挥出80%以后,再向发挥100%努力,再向超常发挥进发。
做题原则“一快一慢”
这里所谓的“一快一慢”指的是审题要慢,做题要快。
题目本身实际上是这道题目的全部信息源,所以在审题的时候一定要逐字逐句地看清楚,力求从语法结构、逻辑关系、数学含义等各方面真正地看清题意。有一些条件看起来没有给出,但实际上细致审题你才会发现,这样就可以收集更多的已知信息,为做题正确率寻求保障。
步步为营。
数学中考阅卷评分实行懂多少知识给多少分的评分办法,叫做“分段评分”或者“踩点给分”——踩上知识点就得分,踩得多就多得分。而考生“分段得分”的基本策略是:会做的题目力求不失分,部分理解的题目力争多得分,能分步做的一定不列综合式,解答过程中,该展示的推理过程和步骤决不省略,一个题目不能完整做出也要尽可能得分。会做的题目若不注意准确表达和规范书写,常常会被“分段扣分”。
数学解题技巧与方法分享(实用19篇)篇十三
方法。
初中数学对于同学们来说会不会很难?接下来就让我们一起来学习一下吧希望可以帮助到同学们。
1、直接法:根据选择题的题设条件,通过计算、推理或判断,,最后得到题目的所求。
2、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;。
在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。
3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。
每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。
使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。
使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。
在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。
为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。
5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。
配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。
6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。
换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。
则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因”
8、综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”
9、演绎法:由一般到特殊的推理方法。
10、归纳法:由一般到特殊的推理方法。
根据它们的某些属性相同或相似,推出它们在其他属性方面也可能相同或相似的推理方法。
类比法既可能是特殊到特殊,也可能一般到一般的推理。
文章。
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
数学解题技巧与方法分享(实用19篇)篇十四
从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。
二、特殊化法。
当填空题的结论或题设条件中提供的信息暗示答案是一个定值时,可以把题中变化的不定量用特殊值代替,即可以得到正确结果。
三、数形结合法。
对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。
四、等价转化法。
将问题等价地转化成便于解决的问题,从而得出正确的结果。
解决恒成立问题通常可以利用分离变量转化为最值的方法求解。
数学解题技巧与方法分享(实用19篇)篇十五
(1)保持清醒。数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。
审题要认真仔细。
对于一道具体的习题,解题时最重要的环节是审题。审题的第一步是读题,这是获取信息量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。
有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了。所以,在实际解题时,应特别注意,审题要认真、仔细。
“慢”一“快”,相得益彰。
有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要慢,解答要快。
审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。
对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。
审题要慢,解答要快。
审题是整个解题过程的基础工程,题目本身是怎样解题的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。
在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行六先六后的战术原则。
排除干扰思绪,使大脑处于空白状态,创设数学情境,进而酝酿数学思维,提前进入角色,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
小题专练防超时。
我们知道,数学试卷占据“半壁江山”的选择题和填空题,自然是三种题型(选择题、填空题、解答题)中的“大哥大”,能否在这两类题型上获取高分,对高考数学成绩影响重大。
因此,考生后期定时、定量、定性地加以训练是非常必要的。要务必在选择题和填空题上加大训练力度,强化训练时间,避免“省时出错”、“超时失分”现象的发生。
回归基础重梳理。
在数学的高考试卷中,四道基础题基本定型,即三选一、三角数列、概率问题、立体几何,这几道大题是高考解答题得分的主阵地。纵观往届考生,相当一部分同学考试分数低,他们丢分不是丢在难题上,而是基础题丢分太多,导致最后的考试分数不理想。
所以,在后期复习过程中,要通过疏理知识,尽量地回归基础,再现知识脉络和基本的数学方法。每天保证做一定量的基础题,不断加大基础解答题训练力度,让学生对这一部分基础题做对、做全,得满分。
重点题型常访谈。
后期复习时,要在有限的时间内使复习获得最大的效益,必须针对重点题型进行重点复习,并且能够做到“焦点访谈”。对于数学的函数与导数、三角函数、数列、立体几何、解析几何、统计概率等几大板块,要做到重点知识重点复习,舍得花时间和下功夫。
在复习过程中,要让学生查找自己在知识或解决问题的能力上是否存在缺陷,如果发现缺陷,就要根据解决问题的方法途径重新整合相关内容,形成知识与方法的经纬图。
数学解题技巧与方法分享(实用19篇)篇十六
根据选择题的题设条件,通过计算、推理或判断,,最后得到题目的所求。
(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。
把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。
如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略;每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。
根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。
指导语,确认题型和要求。二是审查分析题干,确定选择的范围与对象,要注意分析题干的内涵与外延规定。三是辨析选项,排误选正。四是要正确标记和仔细核查。
(2)特值法。在选择支中分别取特殊值进行验证或排除,对于方程或不等式求解、确定参数的取值范围等问题格外有效。
(3)反例法。把选择题各选择项中错误的答案排除,余下的便是正确答案。
(4)猜测法。因为数学选择题没有选错倒扣分的规定,实在解不出来,猜测可以为你创造更多的得分机会。除须计算的`题目外,一般不猜a。
把两个单调区间取了并集等等。
(2)一般第4个填空题可能题意或题型较新,因而难度较大,可以酌情往后放。
(1)仔细审题。注意题目中的关键词,准确理解考题要求。
(2)规范表述。分清层次,要注意计算的准确性和简约性、逻辑的条理性和连贯性。
(3)给出结论。注意分类讨论的问题,最后要归纳结论。
(4)讲求效率。合理有序的书写试卷和使用草稿纸,节省验算时间。
仔细审题是正确理解题目的基本意思,是正确解题的基础。在做应用题过程中,学生审题不清楚、不仔细,是做错题的主要原因。如例1:小青蛙说:“我每天吃30只虫子。”大青蛙说:“我每天比你多吃32只虫子。”问:两只大青蛙和一只小青蛙7天吃多少只虫子?因学生审题不清导致的解题错误大概有以下几类。没仔细分析大青蛙吃多少只虫子,直接列式为:(30+32+32)x7。没看清提问,直接列式:(30+30+32)×7。两种错误皆有,列式为:(30+32)×7。这几种是常见的审题不仔细导致的解题错误,这一类错误往往多见于较简单的应用题解题中。
一个应用题往往会包含多个应用信息,在审题过程中,保持谨慎、严肃的态度,是解决应用的第一步。首先,要仔细审题,清楚了解题目所给的解题信息,结合提问,分析各个数学信息与解题的联系。其次,十分精确把握题意,正确理解题目内涵。这点对小学生来说有点难度,但还是可以做好的。一方面,认真读题,思考题目中语言表达的意思。另一方面,反复领悟题意,将思考过程中的疑问一一解决。再次,注意对题意的推理,认真思考、反复推敲,确保审题的正确性。
审题严谨、审题仔细是做对题的基础,而审题的深度要求则是解决较难应用题的需要。如例2:一条铁丝可围成一个边长为6m的正方形,用同一根铁丝围一个宽为4m的长方形,长方形面积是多少平方米?结合长方形面积公式,这道题的解题首先要求出长方形的长,而要求长方形的长就要知道长方形的周长和宽。
题目明确告诉长方形的宽为4m,而周长就需要学生认真读题、仔细思量。有些同学一见这样的题就慌了,或直接认为周长相等,面积也相等,直接列式:6×6,这一解法表明,学生的第一步解题思路是正确的,只是思考的深度不够,因此解题出现了错误,走上了歧路。因此,只有深入理解题目的意思,才能掌握好题目条件的转化技巧,获得正确的解题思路。
数学解题技巧与方法分享(实用19篇)篇十七
不管是代数题目还是几何题目,将未知量用代数式表示。比如应用题中未知数,几何题中的未知边长等。
第二步寻找相等变化,建立方程关系。
利用我们学得的各种等量变化,建立方程。比如完全平方公式、前面说的几何中的相等变化,把相等关系找到后,用我们第一步得到的代数式,建立方程求解。
绝大部分的几何问题以及部分代数问题可以通过这个思路求解、求证。
这个思路简单来说就是几何问题代数化,代数问题方程化。同学们在做题的过程中多多体会,这个解题思路是一个宏观的指导思想,将很大方面有助于我们快速找到解题的正确方法。
数学解题技巧与方法分享(实用19篇)篇十八
在中考数学的备考中强化知识网络的梳理,并熟练掌握中考考纲要求的知识点。“首先要梳理知识网络,思路清晰知己知彼。其次要掌握数学考纲,对考试心中有谱。掌握今年中考数学的考纲,用考纲来统领知识大纲,掌握好必要的基础知识和过好基本的解题技巧,根据考纲和自己的实际情况来侧重复习。
2、运用数形结合思想。
中考数学压轴题解题技巧之一就是数形结合思想,是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法,或利用数量关系来研究几何图形的性质,解决几何问题的一种数学思想。纵观近几年全国各地的中考压轴题,绝大部分都是与平面直角坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
3、利用条件或结论的多变性,运用分类讨论的思想。
分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察。
有些数学问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考数学压轴题分类讨论思想解题已成为新的热点。
数学解题技巧与方法分享(实用19篇)篇十九
纠错本是非常重要的学习工具。但纠错的内容一定要删繁就简,结合个人的情况,有详有略。如果仅仅只是针对测试时马虎造成的题目,完全可以不写。
但如果是自己没有掌握好的知识或者认为非常重要的知识点,那就一定要记下来,更要写的够详尽、够清楚。纠错本事实上也是一本知识点汇总的秘籍。
2、考试随时“回头看”,省掉检查大麻烦。
考试时做完题要复查,这个复查不同于我们常说的检查。日常学习生活中总会听到:“一边做一边检查是发现不了错误的”说法。其实就初中阶段的数学来说,越往高年级走难度会越大。
这时候90%的学生在考试中已经拿不出来时间再从头开始检查一遍了。这就要求养成一边做题一边自检的习惯。比如,经常将题目要求的“选正确的答案”做成选成错误答案的人特别要注意,每选择一个题目要立刻回头看一眼,这样就能减少很多麻烦。
大题的步骤也是这样。每次做完一道题目,要迅速浏览一眼做题过程。当然,这就需要本人在答题时做到步骤井然有序,以方便快速浏览。做到这一点其实也会减少阅卷老师的烦恼,也大大增加了分步骤得分的可能。
数学大题,说到底其实就是“说理”,以数学概念或数学真理来对某一个结论作出解释说明,所以做题步骤的有序性非常重要。
3、公式理解到位,题目一看就有思路。
理解透彻概念、公式含义。理解不透公式就不知道怎么运用,同时,理解公式后会让人容易抓住一个题目想要考什么。
就拿几何题目来说,许多需要做辅助线的问题,很多孩子想不到,就是想到也不知道该怎么做,该连接那几个点,其实这都是理解不透彻定理、概念引起的。
抓不住题目的灵魂,就不知道该怎么去入手处理,而理解了定理之后就很容易发现其中存在的各种数量或位置关系以及缺少的某个量到底是什么。
4、简单小题别老做,一道大题顶十个。
会做的题无需重复多遍。有些人会觉得课后作业做的非常的累。其实,相同类型的题目做的太多并没有实质性的帮助,相反,重复做作业耗费的时间和精力还会让人厌倦。
多做综合性题目,综合性题目对孩子的帮助远远比某一种类型的题目大。这一点是承接上一条来说的。综合性题目由于涉及到的知识点很多,可以让我们很快速的了解到自己哪里出了问题。
同时,这类题目由于十分需要做到对知识点的融会贯通和活学活用,所以对同学们的帮助是非常大的。“一道题抵得上十道题就是这个道理”。