最新高考数学核心考点精准秒杀解析(优秀五篇)

时间:2024-12-20 作者:储xy

每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧

高考数学核心考点精准秒杀解析篇一

(1)棱柱:

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如五棱台

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

(4)圆柱:

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:

定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:

定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

高考数学核心考点精准秒杀解析篇二

1.对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=-f(x),那么f(x)为奇函数;

2.对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=f(x),那么f(x)为偶函数;

3.一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b-f(a-x),则y=f(x)的图象关于点(a,b)成中心对称;

4.一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a-x),则它的图象关于x=a成轴对称。

5.函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;

6.由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).

<

高考数学核心考点精准秒杀解析篇三

一个推导

利用错位相减法推导等比数列的前n项和:

sn=a1+a1q+a1q2+…+a1qn-1,

同乘q得:qsn=a1q+a1q2+a1q3+…+a1qn,

两式相减得(1-q)sn=a1-a1qn,∴sn=(q≠1).

两个防范

(1)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.

(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.

三种方法

等比数列的判断方法有:

(1)定义法:若an+1/an=q(q为非零常数)或an/an-1=q(q为非零常数且n≥2且n∈n_,则{an}是等比数列.

(2)中项公式法:在数列{an}中,an≠0且a=an·an+2(n∈n_,则数列{an}是等比数列.

(3)通项公式法:若数列通项公式可写成an=c·qn(c,q均是不为0的常数,n∈n_,则{an}是等比数列.

注:前两种方法也可用来证明一个数列为等比数列.

高考数学核心考点精准秒杀解析篇四

①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).

②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.

⑶特殊棱锥的顶点在底面的射影位置:

①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.

②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.

③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.

④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.

⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.

⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.

⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;

⑧每个四面体都有内切球,球心

是四面体各个二面角的平分面的交点,到各面的距离等于半径.

[注]:i.各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)

ii.若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直.

简证:ab⊥cd,ac⊥bd

bc⊥ad.令得,已知则.

iii.空间四边形oabc且四边长相等,则顺次连结各边的中点的四边形一定是矩形.

iv.若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形.

简证:取ac中点,则平面90°易知efgh为平行四边形

efgh为长方形.若对角线等,则为正方形.

高考数学核心考点精准秒杀解析篇五

(1)先看“充分条件和必要条件”

当命题“若p则q”为真时,可表示为p=>q,则我们称p为q的充分条件,q是p的必要条件。这里由p=>q,得出p为q的充分条件是容易理解的。

但为什么说q是p的必要条件呢?

事实上,与“p=>q”等价的逆否命题是“非q=>非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。

(2)再看“充要条件”

若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作p<=>q

回忆一下初中学过的“等价于”这一概念;如果从命题a成立可以推出命题b成立,反过来,从命题b成立也可以推出命题a成立,那么称a等价于b,记作a<=>b。“充要条件”的含义,实际上与“等价于”的含义完全相同。也就是说,如果命题a等价于命题b,那么我们说命题a成立的充要条件是命题b成立;同时有命题b成立的充要条件是命题a成立。

(3)定义与充要条件

数学中,只有a是b的充要条件时,才用a去定义b,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。

显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。

“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。

(4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。

相关范文推荐

    监委会主任辞职报告(3篇)

    报告是指向上级机关汇报本单位、本部门、本地区工作情况、做法、经验以及问题的报告,报告书写有哪些要求呢?我们怎样才能写好一篇报告呢?下面我给大家整理了一些优秀的报

    最新离婚协议书简洁版 简洁离婚协议书(大全10篇)

    在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。那么我们该如何写一篇较为完美的范文呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。离婚协议

    安全工作总结(五篇)

    随着社会一步步向前发展,报告不再是罕见的东西,多数报告都是在事情做完或发生后撰写的。报告对于我们的帮助很大,所以我们要好好写一篇报告。下面是我给大家整理的报告范

    装修公司工作总结(6篇)

    总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它有助于我们寻找工作和事物发展的规律,从而掌握并运用这些规律,是时候写一份总

    教师个人工作总结简短7篇(精选)

    总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,因此,让我们写一份总结

    线上拜年心得体会(模板11篇)

    心得体会是我们对自己、他人、人生和世界的思考和感悟。心得体会可以帮助我们更好地认识自己,通过总结和反思,我们可以更清楚地了解自己的优点和不足,找到自己的定位和方

    家长感悟心得体会及收获(汇总8篇)

    心得体会是指个人在经历某种事物、活动或事件后,通过思考、总结和反思,从中获得的经验和感悟。心得体会可以帮助我们更好地认识自己,了解自己的优点和不足,从而不断提升

    最新餐饮企业文化标语口号(大全8篇)

    每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。相信许多人会觉得范文很难写?接下来小编就给大家介绍一下

    2023年小学学校工作总结秋季(优秀四篇)

    工作学习中一定要善始善终,只有总结才标志工作阶段性完成或者彻底的终止。通过总结对工作学习进行回顾和分析,从中找出经验和教训,引出规律性认识,以指导今后工作和实践

    2023年村年终工作总结主持词(四篇)

    总结不仅仅是总结成绩,更重要的是为了研究经验,发现做好工作的规律,也可以找出工作失误的教训。这些经验教训是非常宝贵的,对工作有很好的借鉴与指导作用,在今后工作中