在编写教学工作计划时,我们应该根据学生的学习习惯和认知规律,制定相应的教学活动。教学工作计划可以帮助教师更好地把握教学进度和学生的学习情况。
一元一次不等式组教案大全(17篇)篇一
2、如果累计购物超过50元但不超过100元,则在乙商场购物花费小。
3、如果累计购物超过100元,又有三种情况:
(1)什么情况下,在甲商场购物花费小?
(2)什么情况下,在乙商场购物花费小?
(3)什么情况下,在两家商场购物花费相同?
握学生的创新潜能,使不同层次的学生都能得到发展。
这些问题能培养学生思维的深刻性和灵活性,优化学生的思维品质。
引导学生用数学眼光去观察周围的生活现象,思考能否用数学知识、方法、观点和思想去。
一元一次不等式组教案大全(17篇)篇二
尊敬的各位老师:
对于本节课,我将从教什么、怎么教、为什么这么教来阐述本次说课。
新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材。
教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,先谈谈我对教材的理解。
在本节课之前学生已经掌握了一元一次方程的相关知识和不等式的性质,所以,本节课类比一元一次方程的解法,利用不等式的性质解一元一次不等式。另外,本节课为后续学习解一元一次不等式组奠定基础。
不等式在日常生产生活中的应用很广泛,它与数、式、方程、函数甚至几何图形有着密切的联系,它几乎渗透到初中数学的每一部分。所以,本节课在数学领域中起着非常重要的地位。
二、说学情。
合理把握学情是上好一堂课的基础,本次课所面对的学生群体具有以下特点。
本学段的学生逐渐掌握抽象概念和复杂的概念系统,能作科学定义,抽象逻辑思维逐步占优势。
本阶段的学生类比推理能力都有了一定的发展,并且在生活中已经遇到过很多关于一元一次方程的具体的事例,所以在生活上面有了很多的经验基础。为本节课的顺利开展做好了充分准备。
三、说教学目标。
根据以上对教材的.分析以及对学情的把握,我制定了如下三维目标:
(一)知识与技能。
认识一元一次不等式,会解简单的一元一次不等式,类比一元一次方程的步骤,总结归纳解一元一次不等式的基本步骤。
(二)过程与方法。
通过对比解一元一次方程的步骤,学生自己总结归纳一元一次不等式步骤的过程,提高归纳能力,并学会类比的学习方法。
(三)情感态度价值观。
通过数学建模,提高对数学的学习兴趣。
四、说教学重难点。
本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点:
(一)教学重点。
掌握一元一次不等式的概念,会解一元一次不等式并能够在数轴上表示出来。
(二)教学难点。
一元一次不等式组教案大全(17篇)篇三
在本节课的教学中个人的优点:
1、整体的思路比较清晰:先从实际生活中遇到的问题出发引出一元一次不等式组的概念(同时也体现了数学是源于生活的),然后通过练习进行辨析,并让学生自己归纳注意点(巩固概念),再接下去是应用新知、巩固新知、再探新知、巩固新知、探究活动、知识梳理、布置作业,整个流程比较流畅、自然。
2、精心处理教材:我选的例题和练习刚好囊括了解由两个一元一次不等式组成的不等式组,在取各不等式的解的公共部分时的四种不同情况,以便为后面的归纳小结做好准备。
3、教态自然、大方、亲切。能给学生以鼓励,能较好地激发学生的学习兴趣;比如在知识梳理环节高金凤同学区分了解一元一次不等式组其实和解二元一次方程组是不一样的,它们是有本质的区别的,我觉得她非常善于总结、类比和思考,所以我及时予以肯定。
在本节课的教学中个人的缺点:
5、在知识梳理环节有同学提出疑问:若出现两个一样的不等式它的公共部分怎么找?若有三个不等式组成的一元一次不等式组它的解又是怎样的?能否直接就在数轴上画出它的公共部分等问题时有些没能及时给学生以肯定,有些引导不够到位。
一元一次不等式组教案大全(17篇)篇四
学习目标:
2、会解由两个一元一次不等式组成的一元一次不等式组,能借助数轴正确的表示一元一次不等式组的解集。
3、通过探讨一元一次不等式组的`解法以及解集的确定,渗透转化思想,进一步感受数形结合在解决问题中的作用。
4、体验不等式在实际问题中的作用,感受数学的应用价值。
学习重点:
一元一次不等式组教案大全(17篇)篇五
作与交流,涌现出多样化的解题思路。教师及时予以引导、归纳和总结,让学生感知不等式的建模。
完整的解题过程的展现,有利于培养学生有条理地思考和表达的习惯。
问题1:这个问题比较复杂。你该从何入手考虑它呢?
分组活动。先独立思考,再组内交流,然后各组汇报讨论结果。
一元一次不等式组教案大全(17篇)篇六
3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。
教学过程(师生活动)设计理念。
(多媒体展示商场购物情景)通过买电脑这个学生非常熟悉的生活实例,引起学生浓厚的学习兴趣,感受到数学来源于生活,生活中更需要数学。
一元一次不等式组教案大全(17篇)篇七
科学合理的教学方法能使教学效果事半功倍,达到教与学的和谐完美统一。
基于此,我准备采用的教法讲授法、讨论法。德国教育学家第斯多慧:差的教师只会奉送真理,好的教师则交给学生如何发现真理,老师的教是为了不教,这才是教学的最高境界,所以我采用的学法是练习法、自主合作法。
六、说教学过程。
在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。
(一)新课导入。
首先是导入环节,我采用复习旧知的导入方法。我会让学生回忆不等式的概念以及一元一次方程的概念,明确指出今天学习的内容是《一元一次不等式》。
这样的设计既可以考查学生对之前知识的掌握情况,还能够为今天学习一元一次方程的概念打下基础。而且开门见山的导入方式能够快速地进入主题。
(二)新知探索。
接下来是新知探索环节,首先我请学生类比不等式以及一元一次方程的概念,给一元一次不等式下定义。
能够总结出:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。
接下来让学生回忆上节课学习的不等式x-726如何解决的,通过学生回忆总结可以得到:通过“不等式的两边都加7,不等号的方向不变”而得到的。
接下来提问学生有没有更加简便的方法解不等式?让学生类比解一元一次方程的步骤进行解题。可以得到相当于可以用“移项”,来解决。
在这个过程中,强调每一个步骤,在第二题最后一步,强调当不等式的两边同时乘以(或除以)同一个负数时,不等号的方向改变。
从而我们归纳:解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为xa的形式。
《数学课程标准》指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”。根据这一教学理念,在本环节中,我组织学生进行了自主探究活动,让学生在保持高度学习热情和探究欲望的活动过程中,始终以愉悦的心情,亲身经历和体验知识的形成过程。培养学生的探究能力、分析思维能力,激发他们的创新意识、参与意识。
(三)课堂练习。
之所以这样设计是因为练习是掌握知识、形成技能、发展思维的重要手段,针对本课的教学重点和难点,上述练习,目的是让学生进一步巩固对新知的理解。可以深化教学内容,培养思维的灵活性。
(四)小结作业。
最后一个环节为小结作业环节,关于课堂小结,我打算让学生自己来总结今天的收获。
这样既发挥了学生的主体性,又可以提高学生的总结概括能力,让我在第一时间得到学习反馈,及时加以疏导。
通过这样的方式能够为本节课学习的知识进行进一步的巩固。
七、说板书设计。
我的板书设计遵循简洁明了突出重点的意图,这是我的板书设计:
一元一次不等式组教案大全(17篇)篇八
一元一次不等式(组)的主要内容是一元一次不等式解法及其简单应用。这是继一元一次方程和二元一次方程组的学习之后,又一次数学建模思想的教学,是培养学生分析问题和解决问题能力的重要内容。
本单元的教学设计主要是改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和经验,实施开放性教学。数学来源于生活,又应用于生活。因此我们在认识不等式的教学过程中大量地运用现实生活情景:如天气预报、猜猜我几岁等实际情境引入与学生共同探索,让学生在探索中发现新的知识,认识不等式,让学生意识到不等关系和相等关系都是现实生活中的重要数量关系,意识到数学就在我们身边,离我们是那么的近,增强学生学习的兴趣与自信心。而不等式的基本性质和解一元一次不等式,是一些基本的`运算技能,也是学生以后学习一元二次方程、函数,以及进一步学习不等式知识的基础。由于函数、方程、不等式度是刻画现实世界中量与量之间变化规律的重要模型,因此,我们在一元一次不等式的应用教学中通过旅游优惠、购物优惠等具体例子渗透这三者之间的内在联系,帮助学生从整体上认识不等式,感受函数、方程、不等式的作用,进一步提高学生分析问题解决问题的能力,增强学生学数学、用数学的意识。
经过分析我终于找到了答案,急于求成。在上课时只想到要展示三项技能可忘记了学生的渐进舒展的规律。还没等学生得以舒展时,就进入下一个环节。导致学生没能舒展开。同时复习课上的练习应在于精而不在于多,由于讲求多练,导致学生没有真正把知识练透,削弱了复习的效果。
一元一次不等式组教案大全(17篇)篇九
回顾本节课,我有以下感受:
先从实际生活中遇到的问题出发引出一元一次不等式组的概念(同时也体现了数学是源于生活的),然后通过练习进行辨析,并让学生自己归纳注意点(巩固概念),再接下去是应用新知、巩固新知、再探新知、巩固新知、探究活动、知识梳理、布置作业,整个流程比较流畅、自然。
我选的例题和练习刚好囊括了解由两个一元一次不等式组成的不等式组,在取各不等式的解的公共部分时的四种不同情况,以便为后面的归纳小结做好准备。
比如在知识梳理环节安楠同学区分了解一元一次不等式组和解二元一次方程组是不一样的,它们是有本质的区别的,我觉得她非常善于总结、类比和思考,所以我及时予以肯定。
致使拖了堂,当然这也存在着经验不足,在做课件时没预先设计的问题;如果我再上一次这个内容我会把探究活动直接作为学生课后探究的问题,而且在小结后我将让学生利用本节课所学知识解决引例中的问题,让学生领会到数学也是应用于生活的,让学生能体会到所学知识的用处,借此也可引出下一节课,起到抛砖引玉的作用。
若出现两个一样的不等式它的公共部分怎么找?若有三个不等式组成的一元一次不等式组它的解又是怎样的?能否直接就在数轴上画出它的公共部分等问题时有些没能及时给学生以肯定,有些引导不够到位。
一元一次不等式组教案大全(17篇)篇十
我从教材分析、学情分析、教学目标、教学手段、教学过程这五个方面来进行说明。
《一元一次不等式组》是华东师大版义务教育课程标准实验教科书数学七年级下册第八章第三节,我把本节内容分为两个课时,第一课时是一元一次不等式组的概念及解法,第二课时是不等式组的实践与探索。今天,我说课的内容是第一课时。
《数学课程标准》对本节的要求是:充分感受生活中存在着大量的不等关系,了解不等式组的意义;会解简单的一元一次不等式组,并会用数轴确定解集。
《一元一次不等式》的主要内容是一元一次不等式(不等式组)的解法及其简单应用。是在学习了有理数的大小比较、等式及其性质、一元一次方程的基础上,开始学习简单的数量之间的不等关系,进一步探究现实世界数量关系的重要内容,是继一元一次方程和二元一次方程组之后,又一次数学建模思想的学习,也是后继学习一元二次方程、函数及进一步学习不等式的重要基础,具有承前启后的重要作用。
《一元一次不等式组》是本章的最后一节,是一元一次不等式知识的综合运用和拓展延伸,是进一步刻画现实世界数量关系的数学模型,是下一节利用一元一次不等式组解决实际问题的关键。因此,我把本节课的教学重点确定为一元一次不等式组的解法。
数学课程应当从学生熟悉的现实生活开始,沿着数学发现过程中人类的活动轨迹,从生活中的问题到数学问题,从具体问题到抽象概念,从特殊关系到一般规则,逐步通过学生自己的发现去学习数学、获取知识。
得到抽象化的数学知识之后,再及时地把它们应用到新的现实问题上去。按照这样的途径发展,数学教育才能较好地沟通生活中的数学与课堂上的数学的联系,才能有益于学生理解数学,热爱数学和使数学成为生活中有用的本领。
本节课,既有概念教学又有解题教学,而概念教学,应该从生活、生产实例或学生熟悉的已有知识引入,引导学生通过观察、比较、分析、综合,抽取共性,得到概念的本质属性。
在此基础上归纳概括出概念的定义,并引导学生弄清定义中每一个字、词的确切含义。华师版的教科书中,只设计了一个问题情境,我感觉还不够,不能从一个问题抽象出概念的本质。因此,在这里我又增加了一个问题情境,以增加对不等式组概念的理解,加强数学应用意识的培养。
从学生学习的心理基础和认知特点来说,学生已经学习了一元一次不等式,并能较熟练地解一元一次不等式,能将简单的实际问题抽象为数学模型,有一定的数学化能力。
但学生将两个一元一次不等式的解集在同一数轴上表示会产生一定的困惑。这个年龄段的学生,以感性认识为主,并向理性认知过渡,所以,我对本节课的设计是通过两个学生所熟悉的问题情境,让学生独立思考,合作交流,从而引导其自主学习。
基于对学情的分析,我确定了本节课的教学难点是:正确理解不等式组的解集。
在教材分析和学情分析的基础上,结合预设的教学方法,确定了本节课的教学目标如下:
1.通过实例体会一元一次不等式组是研究量与量之间关系的重要模型之一。
4.培养学生分析、解决实际问题的能力。
5.通过实际问题的解决,体会数学知识在生活中的应用,激发学生的学习兴趣。能在解决问题过程中勤于思考、乐于探究,体验解决问题策略的多样性,体验数学的价值。
本节课采用多媒体教学,利用多媒体教学信息容量大、操作简单、形象生动、反馈及时等优点,直观地展示教学内容,这样不但可以提高学习效率和质量,而且容易激发学生学习的兴趣,调动积极性。
本节课的教学流程如下:实际问题——一元一次不等式组——解集——解法——应用。
本节课我设计了五个活动。
问题1.
小宝和爸爸,妈妈三人在操场上玩跷跷板,爸爸体重为72千克,体重只有妈妈一半的小宝和妈妈一同坐在跷跷板的另一端,这时爸爸的一端仍然着地.后来,小宝借来一副质量为6千克的哑铃,加在他和妈妈坐的一端,结果爸爸被跷起离地.猜猜小宝的体重约是多少?在这个问题中,如果设小宝的体重为x千克.
(1)从跷跷板的状况你可以找出怎样的不等关系?
(2)你认为怎样求x的范围,可以尽可能地接近小宝的体重?
我提出问题(1),学生独立思考,回答问题。
考察学生对应用一元一次不等式解决实际问题的能力,并引出新知。
教师提出问题(2),学生小组合作、探索交流,回答问题。
我预计学生对于这个问题会产生两种不同的看法:一种方法是利用估算的方法将特殊值代入来求出适合不等式组的特殊解;另一种方法是求出两个不等式的解集,并分别将这两个解集在数轴上表示。因此教师应引导学生进一步理解本题的实际意义,能将两个不等式的解集综合分析。
这里是通过对数量关系的分析、抽象,突出数学建模思想的教学,注重对学生进行引导,让学生充分发表意见,并鼓励学生提出不同的解法。
问题2.
教师提出问题,学生独立思考,回答问题。
教学效果预估与对策:预计学生对三角形三边关系可能有所遗忘,教师应给予提示。
设计意图:这是一个与三角形相关的问题,要求学生能综合运用已有的知识,独立思考、自主探索、尝试解决,促使学生在探索和解决问题的过程中获得体验、得到发展,学会新的东西,发展自己的思维能力。
通过上面两个实际问题的'探究,归纳概括出一元一次不等式组的概念和一元一次不等式组解集的概念。
即:把两个(或两个以上)一元一次不等式合在一起,就得到了一个一元一次不等式组。
同时满足不等式(1)、(2)的未知数x应是这两个不等式解集的公共部分。在同一数轴上表示出这两个解集,找到公共部分,就是所列不等式组的解集。
不等式组中几个不等式的解集的公共部分,叫做这个不等式组的解集。
师生活动:在活动一的基础上,将学生得出的结论进行归纳总结。教师要注意倾听学生叙述问题的准确性和全面性。
教学效果预估与对策:估计多数学生在经历了上述的探索过程后,能够对这个结论有所认识,但是未必能够全面得出结论。因此,教师要耐心加以引导。
通过学生的自主探究,合作交流,培养学生的总结归纳能力。
例题。
解下列不等式组,并把它们的解集在数轴上表示出来:
师生活动:师生共同完成,教师板书。
练习1:
练习2:
师生活动:教师展示多媒体课件,学生独立完成。
设计意图:培养学生分析、解决实际问题的能力。
练习3:
求不等式组的解集。
练习4:
求不等式组的正整数解。
师生活动:教师展示多媒体课件,学生独立完成。
设计意图:这两道习题的设置让学生进一步理解一元一次不等式组解集的概念,会用数轴表示一元一次不等式组的解集。
我提出了三个问题:
1.通过本课的学习,你学到了哪些新的知识?
3.在学习这些知识的过程中,你的经验与教训是什么?
在学生回答的基础上,教师作如下的归纳总结:
1.学习一元一次不等式组是数学知识拓展的需要,也是现实生活的需要,不等式组的知识源于生活实际,要学会分析现实世界中量与量的不等关系,解一元一次不等式组。
2.将一元一次不等式组的解集在数轴上表示可以加深对一元一次不等式组解集的理解,也便于直观地得到一元一次不等式组的解集,体现了数形结合的数学思想方法。
在课堂小结的过程中,教师提出问题,学生回答,互相补充.。
教学效果预估与对策:预计学生在利用本节知识解决所提出的问题的过程中,能够总结出经验和教训,有所收获。教师要加以引导,师生之间相互加以完善。
设计意图:学生通过第一个问题,可以回顾出本节课所学到的知识;通过第二个问题,使学生在与一元一次不等式的对比中加深对一元一次不等式组的理解,并形成知识网络。通过第三个问题,培养学生克服困难的自信心、意志力,并获得成功的体验,有助于学生全面认识数学的价值。
1.教材p53练习1、2、4;
2.p55复习题a组5、6。
教师布置作业,学生记录作业.。
估计大部分学生可以较为顺利完成作业1;作业2具有一定的难度,需要学生首先进行判断,如果思维上存在障碍,可降低思维难度。
作业的设计,可以让学生巩固所学知识,让学生在这个环节中,进一步理解和体会数学建模思想在实际问题中的应用。
一元一次不等式组教案大全(17篇)篇十一
5、在知识梳理环节有同学提出疑问:若出现两个一样的不等式它的公共部分怎么找?若有三个不等式组成的一元一次不等式组它的解又是怎样的?能否直接就在数轴上画出它的公共部分等问题时有些没能及时给学生以肯定,有些引导不够到位。
一元一次不等式组教案大全(17篇)篇十二
在讲完不等式的性质后,我们根据学生情况安排三个课时学习解一元一次不等式,我们的设想是:第一课时:在简单理解不等式的基本性质的基础上,类比一元一次方程的解法,学习如何解一元一次不等式,注意其中的区别与联系(即类比思想),学会用数轴直观的表示不等式的解集(数形结合思想);第二课时:)(熟练解一元一次不等式;第三课时:一元一次不等式的应用。
在教学过程中,由于通过简单的类比解方程,学生很快掌握了解不等式的方法,而且对比起方程,不等式题目的形式较简单,计算量不大,所以能引起学生的兴趣,动笔解答。
但是巡堂时发现出现以下问题:
在两边同时乘以或者除以负数时,不等号忘记改变方向。
1、去括号的问题。
2、去分母的问题。
3、系数化1的问题。
解决方案:
1、在课堂巡堂时,检查每个学生的练习,发现问题及时纠正。
2、发挥学生的力量,开展“生帮生”的活动。
3、课余对还未掌握的学生进行课后个别辅导。
一元一次不等式组教案大全(17篇)篇十三
4.会利用一元二次不等式,对给定的与一元二次不等式有关的`问题,尝试用一元二次不等式解法与二次函数的有关知识解题.
二、过程与方法
1.采用探究法,按照思考、交流、实验、观察、分析得出结论的方法进行启发式教学;
2.发挥学生的主体作用,作好探究性教学;
3.理论联系实际,激发学生的学习积极性.
三、情感态度与价值观
1.进一步提高学生的运算能力和思维能力;
2.培养学生分析问题和解决问题的能力;
3.强化学生应用转化的数学思想和分类讨论的数学思想.
1.从实际问题中抽象出一元二次不等式模型.
2.围绕一元二次不等式的解法展开,突出体现数形结合的思想.
1.深入理解二次函数、一元二次方程与一元二次不等式的关系.
启发、探究式教学
复习引入
师:上一节课我们通过具体的问题情景,体会到现实世界存在大量的不等量关系,并且研究了用不等式或不等式组来表示实际问题中的不等关系。回顾下等比数列的性质。
生:略
师:某同学要把自己的计算机接入因特网,现有两种isp公司可供选择,公司a每小时收费1.5元(不足1小时按1小时计算),公司b的收费原则是第1小时内(含恰好1小时,下同)收费1.7元,第2小时内收费1.6元以后每小时减少0.1元(若用户一次上网时间超过17小时,按17小时计算)那么,一次上网在多少时间以内能够保证选择公司a的上网费用小于等于选择公司b所需费用。
学生自己讨论
点题,板书课题
新课学习
1.一元二次不等式
只有一个未知数,并且未知数的最高次数是2的不等式。
2.三个“二次”之间的关系及一元二次不等式的解法
师在前面我们已经学习过一元二次不等的解法,发现一元二次方程及对应的二次函数有关系,那么同学们课本打开到p77填表格。
生略
师学生讨论归纳出解一元二次不等式的步骤
一看:看二次项系数的正负,并且变形为
二算:,判断正负,有根则求并画出对应的函数图象
三写:写出原不等式的解集
练习反馈
[例题剖析]
例1解下列不等式
(1)(2)
(3)(4)
(5)(6)
课本80页练习
例2已知不等式的解集为试解不等式
变式:
已知
课堂
小结
1.三个“二次的关系”
2.解二次不等式的步骤
作业布置
课本第80页习题3.2a组第1.2.4题b组1
练习调配
一元一次不等式组教案大全(17篇)篇十四
本节课教学设计上较合理,知识点循序渐进,符合初中生的学习心理特点。本节课先让学生明白一元一次不等式的变形,再回顾一元一次方程的解的步骤,进一步理解和掌握一元一次不等式的解的步骤。在理解的基础上,通过例题加深,让学生经历了回顾、动手操作、提出问题、判断、找方法、合作交流等过程。另一方面,能够体现出用新教材的思想,体现了学生的主体地位,体现了新的教学理念。
在学习本节时,要与一元一次方程结合起来,用比较、类比的转化的数学思想方法来学习,弄清其区别与联系。
(1)从概念上来说:两者化简后,都含有一个未知数,未知数的次数是1,系数不等于零;但一元一次不等式表示的是不等关系,一元一次方程表示的是相等关系。
(2)从解法上来看:两者经过变形,都把左边变成含未知数(如x)的一次单项式,右边变成已知数,解法的五个步骤也完全相同;但不等式两边都乘(或除)以同一个负数时,不等号要变号,而方程两边都乘(或除)以同一个负数时,等号不变。
(3)从解的情况来看:
1、为加深对不等式解集的理解,应将不等式的解集在数轴上直观地表示出来,它可以形象认识不等式解集的几何意义和它的无限性.在数轴上表示不等式的解集是数形结合的具体体现。
2、熟练掌握不等式的基本性质,特别是性质3。不等式的性质是正确解不等式的基础。
一元一次不等式组教案大全(17篇)篇十五
[学习重点]掌握解一元一次不等式的步骤;会用一元一次不等式解决简单的实际问题.
[学习难点]寻找实际问题中的不等关系,建立数学模型.
[学习过程]。
一、 春耕。
1. 不等式的基本性质有哪些?
2、解下列不等式,并把解集在数轴上表示出来。
(1)3x2x+1; (2)-4x3.
二、夏耘:
这个问题较复杂,从何处入后考虑它呢?
甲商店优惠方案的起点为购物款达___元后;
乙商店优惠方案的起点为购物款过___元后.
我们是否应分情况考虑?可以怎样分情况呢?
(1)如果累计购物不超过50元,则在两店购物花费有区别吗?
(3)如果累计购物超过100元,那么在甲店购物花费小吗?
三、秋收:
1.某校校长暑假将带领该校市级优秀学生乘旅行社的车去a市参加科技夏令营,甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优惠”.乙旅行社说:“包括校长在内全部按全票的6折优惠”,若全票价为240元.
(2)当学生数是多少时,两家旅行社的收费一样?
(3)就学生数x讨论哪家旅行社更优惠.
2.某商店出售茶壶和茶杯,茶壶每只20元,茶杯每只5元,该商店有两种优惠办法:
(1) 买一只茶壶送一只茶杯;
(2) 按总价的92%付款.现有一顾客需购买4只茶壶,茶杯若干只(不少于4只).
请问:顾客买同样多的茶杯时,用哪一种优惠办法购买省钱?
四、冬藏(补充练习):
1.有一批货物,如月初售出,可获利1000元,并可将本利之和再去投资,到月末获1.5%的利息;如月末售出这批货,可获利1200元,但要付50元保管费.问这批货在月初还是月末售出好.
2.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划用水超出部分每吨收费0.8元.如果单位自建水泵房抽水,每月需交500元管理费,另外每月一吨水再交0.28元,已知每抽一吨水需成本0.07元.问该单位是用自来水公司的水合算,还是自建水泵房抽水合算.
3.错题回顾。
一元一次不等式组教案大全(17篇)篇十六
本节课较好的方面:
1、本节课能结合学生的实际情况明确学习目标,注意分层教学的开展;。
2、课程内容前后呼应,前面练习能够为后面的例题作准备。
3、能安排有当堂训练等对学生学习的知识进行检查;。
不足方面:
1、引入部分练习所用时间太长,讲评一元一次不等式的概念太繁琐,导致了后段时间不够,部分内容不能完成。
2、课容量少,害怕学生听不懂、学不会,所以上课时喜欢给学生反复讲,结果课堂上大部分时间由我占据而留给学生自由思考的时间较少。
3、对于后进生,课堂上由于时间的关系,很少关注。
感悟:只有当学生真正获得了课堂上属于自己学习的主权时,他们个性的形成与个体的发展才有了可能。本课在现场操作与反馈中,与教学设想仍有一定的差距,许多地方还停留在表面形态,我将和我的学生在这一探索过程中不断努力前行,总之,我在课堂上还是要尝试着少说,给学生留些自由发展的空间。但在课前,教师必须做足课堂的准备工作。
一元一次不等式组教案大全(17篇)篇十七
《一元一次不等式组》是华东师大版义务教育课程标准实验教科书数学七年级下册第八章第三节,是一元一次不等式知识的综合运用和拓展延伸,是进一步刻画现实世界数量关系的数学模型,是下一节利用一元一次不等式组解决实际问题的关键。是继一元一次方程、二元一次方程组和一元一次不等式之后,又一次数学建模思想的学习,也是后继学习一元二次方程、函数的重要基础,具有承前启后的重要作用。
说
教学。
目标。
(一)、知识与能力。
2.会解一元一次不等式组,并教会学生通过在数轴上表示不等式的解集得到不等式组的解集。
(二)、过程与方法。
1.创设情境,通过实例引导学生考虑多个不等式联合的解法。并。
总结。
一元一次不等式组的解与一元一次不等式的解之间的关系。2.通过对典型例题的分析加深对结一元一次不等式组的认识。
(三)、情感、态度与价值观。
1.通过数轴的表示不等式组的解,渗透数形结合这一重要的思想方法。2.在解不等式组的过程中让学生体会数学解题的直观性和简洁性的数学美。
说教学重、难点。
重点1.一元一次不等式组的概念,会用数轴表示一元一次不等式组解集的情况。2.一元一次不等式组的解法。
(四)、说教学方法。
本节课采用多媒体教学,利用多媒体教学信息容量大、操作简单、形象生动、反馈及时等优点,直观地展示教学内容,这样不但可以提高学习效率和质量,而且容易激发学生学习的兴趣,调动积极性。
(五)、说学生的学法:
学生已经学习了一元一次不等式,并会解简单的一元一次不等式,知道了用数轴表示一元一次不等式的解集分三步进行:画数轴、定界点、走方向。本节我们要学习一元一次不等式组,因此由一元一次不等式猜想一元一次不等式组的概念学生易于接受,同时能更好的培养学生的类比推理能力。本节所选例题也真正的实现了低起点小台阶,循序渐进,能使学生更好的掌握知识。
六、说教学过程:
本节课我设计了七个活动。
活动一创设情境导入新课。
1、通过多媒体图片(选择材料通俗易懂,易引起学生的兴趣)引入一元一次不等式组的概念:。
活动二引领学生探索新知。
通过上面实际问题的探究,归纳概括出一元一次不等式组的概念和一元一次不等式组解集的概念。
活动三范例讲解学以致用。
例1:借助数轴,求下列不等式组的解集:
(1)、(2)、(3)、(4)、(分析由课件展示)。
例2:解不等式组:(1)(学生板演,教师对照多媒体点评)。
活动四:反馈练习巩固提高。
课堂练习:p48练习(学生板演,教师点评)。
设计意图:这四道习题的设置让学生进一步理解一元一次不等式组解集的概念,会用数轴表示一元一次不等式组的解集。
活动五数形结合总结规律。
(1)、多媒体演练。
(2)、总结规律:
1.同大取大,2、.同小取小;。
3、大小小大中间找,4、大大小小解不了。
活动六:反思小结,体验收获。
这节课我们学到了什么?谈谈自己的体会?
多媒体设计表格总结。
活动七:知识反馈,布置作业。
布置作业:为了让不同的人有不同的收获,我把作业分为选做题和必做题。
(一)、课本p49习题3。
(二)、选做题:能力提升。
1、若不等式组无解,则m的取值范围是。
2、若方程组的解是负数,求的取值范围。
七、教学设计说明与反思:
本节知识与前一节的知识联系比较紧密,在教学中要特别注意本节内容与一元一次不等式的知识的联系,让学生经历知识的拓展过程,并能通过数轴让学生直观地认识一元一次不等式组的解集,使其了解数形结合的作用。另外,在教学过程中加强对不等式组解集含义的讲述,让学生做到较深刻的理解,并熟练掌握用数轴表示不等式的解集,从而进一步引入利用观察法、归纳法即可掌握求不等式解集的办法。