圆锥的体积教学设计一等奖 圆锥的体积教学设计及说课稿模板(五篇)

时间:2024-12-22 作者:储xy

人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧

人教版圆锥的体积教学设计圆锥的体积教学设计及反思篇一

(1)掌握锥体的等积定值,锥体的体积公式。

(2) 理解"割补法"求体积的思想,培养学生发现问题,解决问题的能力。

公式的推导过程,即"割补法"求体积。

三棱柱模型、多媒体

1、复习祖暅 原理及柱体的体积公式。

2、等底面积等高的任意两个锥体的体积。

(类比于柱体体积公式的得出)。首先研究等底面积等高的任意两个锥体体积之间的关系。

取任意两个锥体,设它们的底面积都是s,高都是h。

∵s1/s=h12/,

∴s1/s=s2/s,s1=s2。

根据祖日恒 原理,这两个锥体的体积相等,由此得到下面的定理:

定理,等底面积等高的两个锥体的体积相等。

3、三棱锥的体积公式

为研究三棱锥的体积,可类比于初中三角形面积的求法。

在初中,学习三角形的面积公式之前,已知有平行四边形的面积公式,为此,将δabc"补"成和它同底等高的平行四边形abdc,然后沿其对角线bc,将平行四边形"分"成两个三角形,由对称性,得到的δabc的面积为平行四边形面积的一半,即为:sδabc=1/2ah,(a其底边长,h为高)

能否将三棱锥"补"成一个底面积为s,高为h的三棱柱呢?

[可以]以aa'为侧棱,以δabc为底面补成一个三棱柱。

也采用"分"的方法,这个三棱柱可分成怎样的三棱锥呢?

(图形没有打印)

[引导学生观察分析]将三棱柱分割成三个三棱锥,如图就是三棱锥1,和另两个三棱锥2、3。

三棱锥1、2的底δaba'、δb'a'b的面积相等,高也相等(顶点都是c)。三棱锥2、3的底δb'cb'、δc'b'c的面积相等,高也相等。(顶点都是a')。

最后,因为和一个三棱锥等底面积等高的任何锥体都和这个三棱锥的体积相等,所以得到下面的定理。

定理:如果一个锥体(棱锥、圆锥)的底面积是s,高是h,那么它的体积是:v锥体=1/3sh。

4、锥体体积公式的应用。

练习1:正四棱锥底面积是s,侧面积为q,则其体积为: 。

练习2:圆锥的全面积为14πcm2,侧面展开图的中心角为60°,则其体积为 。

练习3:边长为a的正方形,以它的一个顶点为圆心,边长为半径画弧,沿弧剪下一个扇形,用这个扇形围成一个圆锥筒,求它的体积。

5、课堂小结:1°割补法求三棱锥的思想。

2°锥体的体积公式。

人教版圆锥的体积教学设计圆锥的体积教学设计及反思篇二

1、知识技能目标:

2、思维能力目标:

◆提高学生实践操作、观察比较、抽象概括及逻辑推断的能力,发展空间观念。

3、情感态度目标:

◆培养学生的合作意识和探究意识;

◆使学生获得成功的体验,体验数学与生活的联系。

难点:探索圆锥体积方法和推导过程。

教学过程:

1 圆锥有什么特征?指名学生回答。

2 说一说圆柱体积的计算公式。

(1)已知 s、h 求 v

(2)已知 r、h 求 v

(3)已知 d、h 求 v

3 我们已经认识了圆锥又学过圆柱体积的计算公式,那么圆锥的体积又该如何计算呢?今天我们就来学习圆锥体积的计算。

板书课题:圆锥的体积

1、师:请大家回忆一下,我们是怎样得到圆柱体积的计算公式的?

指名学生叙述圆柱体积的计算公式的推导过程:(学生:圆柱---转化长方体- 长方体的体积公式----推导圆柱体公式)

〈1〉学生独立操作

〈2〉教师教具演示巩固学生的操作效果,cai课件演示

a 屏幕上出示等底、等高

b 等底、不等高

c 等高、不等底

实验报告单

实验器材

实验结果

等底不等高的圆锥、圆柱

等高不等底的圆锥、圆柱

等底等高的圆锥、圆柱

〈3〉引导学生发现:

圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积等于和它等底等高圆柱体积的 1/3 (板书 )

用字母表示圆锥的体积公式.v锥=1/3sh

做一做:

填空:

等底等高的圆锥和圆柱,圆柱的体积是圆锥的体积的( ),圆锥的体积是圆柱的体积的( )已知圆锥的体积是9立方分米,圆柱的体积是( );如果圆柱的体积是12立方分米,那么圆锥的体积是( )。

(二)运用公式,尝试练习

1、要求圆锥的体积,必须知道哪两个条件?为什么要乘 1/3 ?

试一试:

2、思考:求圆锥的体积,还可能出现那些情况?

(如果已知圆锥的高和底面半径如果已知圆锥的高和底面半径(或直径、周长),怎样求圆锥的体积呢?)

练一练

3、求下面的体积。(只列式不计算)

(1)底面半径是2 厘米,高3厘米。

3.14×22×3

(2)底面直径是6分米,高6分米 。

3.14×(6 ÷2)2 ×6

(3)底面周长是12.56厘米,高是6厘米

3.14×(12.56 ÷6.28)2 ×6

2、求下面各圆锥的体积如图(单位厘米)

(1)底面直径是8分米,高9分米 (2)底面半径3分米和高7分米

a、底面积和高

b、底面半径和高

c、底面直径和高

d、底面周长和高

1、判断:

⑴、圆锥的体积等于圆住体积的1/3。( )

⑵把一个圆柱切成一个圆锥,这个圆锥的体积是圆柱体积的1/3 ( )

2、填空

⑴一个圆锥与一个圆柱等底等高,已知圆锥的体积是 18 立方米,圆柱的体积是( )。

⑵一个圆锥与一个圆柱等底等体积,已知圆柱的高是 12 厘米, 圆锥的高是( )。

⑶一个圆锥与一个圆柱等高等体积,已知圆柱的底面积是 314 平方米,圆锥的底面积是( )。

3、拓展练习

工地上有一些沙子,堆起来近似于一个圆锥,通过测量它的直径是4厘米高是1.2厘米,这堆沙子大约多少立方米?(得数保留两位小数)

(引导学生说出怎样测量沙堆的底面的周长、直径、和高。)

用两根竹竿平行地放在沙堆两侧,测得两根竹竿间的距离,就是直径。将一根竹竿过沙堆的顶部水平位置,另一根竹竿竖直与水平竹竿成直角即可量得高。

人教版圆锥的体积教学设计圆锥的体积教学设计及反思篇三

一、复习导入。

1、怎样计算圆柱的体积?(板书公式)

2、一个圆柱的底面积是60平方米,高15米,它的体积是多少立方米?

3、出示一个圆锥,请学生说说圆锥的特征。

4、导入:前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积应怎样计算呢?今天这节课我们就来研究这个问题。(板书课题)

二、动手测量,大胆猜想。

1、动手测量,找圆锥和圆柱的底和高的关系。

2、学生动手测量,教师巡视。给予指导。

3、交流得出结论:圆柱和圆锥等底等高。

4、猜想等底等高的圆柱和圆锥的体积之间有什么关系?

三、实验操作,推导出圆锥体积计算公式。

1、实验操作。

师:圆锥的体积到底与等底等高的圆柱的体积之间有什么关系呢?我们就用实验来验证我们的猜想。每个小组都准备了米或沙,打算怎么实验,商量好办法后再操作。

2、学生分组实验,教师巡视。

3、汇报交流,你们组是怎么做实验的?通过实验你发现了什么?

4、强调等底等高。

5小结:不是任何一个圆锥的体积都是任何一个圆柱体积的1/3,必须有前提条件。(板书结论)

6、练习(出示)

(1)一个圆柱的体积是1.8立方分米,与它等底等高的圆锥的体积是()立方分米。

(2)一个圆锥的体积是1.8立方分米,与它等底等高的圆柱的体积是()立方分米。

7、得出圆锥的体积计算公式。

三、巩固练习。

1、计算下面圆锥的体积。(只列式不计算)

底面积是6.28平方分米,高是9分米。

底面半径是6厘米,高是4.5厘米。

底面直径是4厘米,高是4.8厘米。

底面周长是12.56厘米,高是6厘米。

2、填空。

a圆锥的体积=(),用字母表示是()。

b圆柱体积的与和它()的圆锥的体积相等。

c一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是()立方分米。

d一个圆锥的底面积是12平方厘米,高是6厘米,体积是()立方厘米。

3、判断。(用手势表示)

a圆柱体的体积一定比圆锥体的体积大()

c正方体、长方体、圆锥体的体积都等于底面积×高。()

d等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米。()

四、全课小结。

师:今天这结课学习了什么?通过今天的学习研究你有什么收获?

五、解决实际问题。

在建筑工地上,有一个近似圆锥形状的沙堆,测得底面直径是4米,高1.5米。每立方米沙大约重1.7吨,这堆沙约重多少吨?(得数保留整吨数)

人教版圆锥的体积教学设计圆锥的体积教学设计及反思篇四

1、圆柱的体积公式是什么?用字母怎样表示?

2、求下列各圆柱的体积。(口答)

(1)底面积是5平方厘米,高是6厘米。

(2)底面半径4分米,高是10分米。

(3)底面直径2米,高是3米。

师:刚才我们复习了圆柱的体积公式并应用这个公式计算出了圆柱的体积,那么圆柱和圆锥有什么关系呢?这节课我们就来研究圆锥的体积。

师:圆锥的底面是什么形状的?什么是圆锥的高?请拿出一个同学们自己做的圆锥讲一讲。

生:圆锥的底面是圆形的。

生:从圆锥的顶点到底面圆心的距离是圆锥的高。

师:你能上来指出这个圆锥的高吗?

师:很好,因为圆锥的高我们一般无法到里面去测量,所以常常这样量出它的高。

师:你们看到过哪些物体是圆锥形状的?(略)

师:对。在生活中有很多圆锥形的物体。

师:刚才我们已经认识了圆锥。现在我们再来研究圆锥的体积。请同学们拿出一对等底等高圆锥和圆柱。想一想用什么办法能研究出等地等高的圆锥和圆柱的体积之间存在什么关系,然后把你的想法放在小组中交流,再分工进行实验。下面我们采用实验的方法来推导圆锥体的体积公式(边说边演示),先在圆锥内装满水,然后把水倒入圆柱内,看看几次可将圆柱倒满。现在我们分小组做实验,大家边做边讨论实验要求,如有困难可以看书第23页。

出示小黑板:

2、圆锥的体积怎么算?体积公式是怎样的?

学生分组做实验,老师巡回指导。

生:圆锥的体积是同它等底等高的圆柱体权的1/3。

师:得出这个结论的同学请举手。(略)你们是怎么得出这个结论的呢?

生:我们先在圆锥内装满沙,然后倒人圆柱内。这样倒了三次,正好将圆柱装满。所以,圆锥的体积是同它等底等高的圆柱体积的1/3。

师:说得很好。那么圆锥的体积怎么算呢?

生:可以先算出与它等底等高的圆柱的体积,用底面积乘以高,再除以3,就是圆锥的体积。

师:谁能说说圆锥的体积公式。

生:圆锥的体积公式是v=1/3sh。

师:老师也做了一个同样实验请同学认真看一看。想一想有什么话对老师说吗?请看电视。

师:请大家把书翻到第42页,将你认为重要的字、词、句圈圈划划,并说说理由。

生:我认为"圆锥的体积v等于和它等底等高的圆柱体积的三分之一。"这句话很重要。

生:我认为这句话中"等底等高"和"三分之一"这几个字特别重要。

师:大家说得很对,那么为什么这几个字特别重要?如果底和高不相等的圆锥和圆柱有没有三分之一这个关系呢?我们也来做个实验。大家还有两个是等底不等高的圆锥和圆柱,请同学们用刚才做实验的方法试试看。

师:等底不等高或者等高不等底的圆锥体积不是圆柱体积的1/3。师:可见圆锥的体积等于圆柱体积的.三分之一的关键条件是等地等高。

师:下面我们就根据"等底等高的圆锥体积是圆柱体积的1/3"这个关系来解决下列问题。

(两名学生板演,老师巡视)

师:这位同学做的对不对?

生:对!

师:和他做的一-样的同学请举手。(绝大多数同学举手)

师:那么这位同学做错在哪里呢?(指那位做错的同学做的)

生:他漏写了1/3。用底面积乘以高算出来的是圆柱的体积,圆锥的体积还要再乘以1/3。

师:对了。刚才我们通过实验知道了圆锥的体积等于同它等底等高的圆柱体积的三分之一,从而推导出圆锥的体积计算公式,即v=1/3sh。我们在用这个公式计算圆锥的体积时,要特别注意,1/3不能漏掉。

(1)、一个圆锥的底面积是25平方分米,高是9分米,它体积是多少?

(2)、求圆锥的体积(看图)

(3)、一个圆锥的底面直径是20厘米,高是8厘米,它体积是多少?(图)师:三题都填对了。接下来我要考考你们,看是不是掌握了今天的知识。

2、填空。

(1) 一个圆锥的体积是8立方分米,底面积是2平方分米,高( )分米、。(2)圆锥形的容器高12厘米,容器中盛满水,如将水全部倒入等底的圆柱形的器中,水面高是( )厘米。

3、选择

(1) 两个体积相等的等底的圆柱和圆锥,圆锥的高一定是圆柱高的( ) 。

(2) 把一段圆柱形的木棒削成一个最大的圆锥,削去部分的体积是圆锥体积的( )。

师:今天,我们学习了什么内容?怎样计算圆锥的体积?

对,这节课我们认识了圆锥,并推导出了圆锥的体积计算公式。回去以后,先回忆一下今天学过的内容,想一想,在运用v=1/3sh这个公式算圆锥体积时,要特别注意什么。

课外作业:有一个高9厘米,底面积是20平方厘米的圆柱内装满水,用一个与它等底等高的圆锥挤压,最多能挤出多少水?圆柱内还剩多少水?(边做实验边讨论)

1、使学生理解和掌握求圆锥体积的计算公式,并能正确求出圆锥的体积。

2、培养学生初步的空间观念、逻辑思维能力、动手操作能力。

3、向学生渗透知识间"相互转化"的辩证唯物主义思想,在联系实际中对学生进行学习目的方面的思想教育。

圆锥的体积计算。

圆锥的体积公式推导。

圆锥的体积是与它等底等高的圆柱体积的三分之一。

多媒体、等底等高的圆柱和圆锥空心实物各一个,水若干。

空心圆锥和圆柱实物各一个,沙土若干。

人教版圆锥的体积教学设计圆锥的体积教学设计及反思篇五

教学目的:

1.使学生理解和掌握求圆锥体积的计算公式,并能正确求出圆锥的体积。

2.培养学生初步的空间观念、逻辑思维能力、动手操作能力。

3.向学生渗透知识间"相互转化"的辩证唯物主义思想,在联系实际中对学生进行学习目的方面的思想教育。

教学重点:

圆锥的体积计算。

教学难点:

圆锥的体积公式推导。

教学关键:

圆锥的体积是与它等底等高的圆柱体积的二分之一。

教具准备:

投影仪、小黑板、等底等高的圆柱和圆锥空心实物各一个。圆台、棱台实物各一个。

学具准备:

教学过程:

一、复习

1.圆柱的体积公式是什么?

师:刚才我们复习了圆柱的体积公式并应用这个公式计算出了圆柱的体积,那么圆柱和圆锥有什么关系呢?这节课我们就来研究圆锥的体积。

板书:圆锥的体积

[说明:设疑激趣,激发学生探求新知识的欲望。l

二、新课教学

师:请大家把书翻到第48页,想一想:圆锥的底面是什么形状的?什么是圆锥的高?(生看书)

投影出示下图:

师:圆锥的底面是什么形状?

生:圆锥的底面是圆形的。

师:对。什么是圆锥的高呢?

生:从圆锥的顶点到底面圆心的距离是圆锥的高。

师:你能上来指出这个圆锥的高吗?

师:很好,因为圆锥的高我们一般无法到里面去测量,所以常常这样量出它的高。

师演示:将刚才出示的圆锥图上的高往外移,标上字母h,如图所示:

师:有人认为,(指母线)这条就是圆锥的高,你们说对吗?为什么?

生:我认为不对,因为高是指从圆锥的顶点到底面圆心的距离,它不在圆心上,所以不是圆锥的高。

师:说得很好。在我们日常生活中,你们看到过哪些物体是圆锥形状的?(略)

师:对。在生活中有很多圆锥形的物体。(出示实物图)如:沙堆、粮堆、铅锤,还有圆柱型铅笔用卷刀卷过的部分等等。谁上来指一指这支铅笔圆锥型部分?(略)

投影出示下列图形:

生:我认为②、③、④三个图是圆锥,①、⑤两个图不是。

师:第②、③两个图与第④个图并不一样,为什么说它们也是圆锥呢?

生:我想第②个图是倒放的圆锥,第③个图是斜放的圆锥。

师:说得有道理。你能不能将这个圆锥摆正。

(一名学生到前面旋转投影片,将圆锥图形一一摆正)

师:拿出实物模型(圆台、棱台)。说:大家看,①、⑤两个图其实就是这两个物体,它们究竟叫什么呢?等你们以后学了更多的知识就知道了。

师:刚才我们已经认识了圆锥。现在我们再来研究圆锥的体积(出示教具)。这是一个空心圆锥,这是一个空心圆柱。它们之间有什么关系呢?我们先来比较它们的底面。(师演示:将圆锥和圆柱的底面合在一起,完全重合。)

生:它们的底面是相等的。

师:我们再来比较它们的高。(师演示:用一把直尺架在两者之间,然后分别量一量它们的高。)

生:它们的高也是相等的。

师:那也就是说,这两个圆柱和圆锥是等底等高的。下面我们采用实验的方法来推导圆锥体的体积公式(边说边演示),先在圆锥内装满水,注意大拇指不要伸进去,然后把水倒入圆柱内,看看几次可将圆柱倒满。现在我们分小组做实验,大家边做边讨论实验要求,如有困难可以看书第23页。

出示小黑板:

3.圆锥的体积怎么算?体职公式是怎样的?

学生分组做实验,老师巡回指导。

师:我们先来回答第一个问题。在你们做实验用的

器材中,圆锥的底面和圆柱的底面有什么关系?它们的高有什么关系?

生:在实验器材中,圆锥的底面和圆柱的底面是相等的,它们的高也是相等的。

师:得出这个结论的同学请举手。(略)你们是怎么得出这个结论的呢?

生:我们先在圆锥内装满水,然后倒人圆柱内。这样倒了三次,正好将圆柱装满。所以,圆锥的体积是同它等底等高的圆柱体积的1/3。

师:说得很好。那么圆锥的体积怎么算呢?

生:可以先算出与它等底等高的圆柱的体积,用底面积乘以高,再除以3,就是圆锥的体积。

师:谁能说说圆锥的体积公式。

生:圆锥的体积公式是v=1/3sh。

师:请大家把书翻到第49页,将你认为重要的字、词、句圈圈划划,并说说理由。

生:我认为"圆锥的体积v等于和它等底等高的圆柱体积的三分之一。"这句话很重要。

生:我认为这句话中"等底等高"和"三分之一"这几个字特别重要。

师:大家说得很对,那么为什么这几个字特别重要?如果底和离不相等的圆锥和圆柱有没有三分之一这个关系呢?我们也来做个实验。这两个是等底不等高的圆锥和圆柱,边两个是等高不等底的圆锥和圆柱,我请两个同学上来用刚才做实验的方法试试看。

(请两名学生上讲台示范实验)

师:现在大家看清楚了吗?等底不等高或者等高不等底的圆锥体积不是圆柱体积的1/3。

生齐答:不是。

师:下面我们就根据"等底等高的圆锥体积是圆柱体积的1/3"这个关系,口答三道题目。师:出示小黑板,口算。

求与下面圆柱等底等高的圆锥体的体积。

1.圆柱体的体积是3立方厘米;

2.圆柱体的体积是2.4立方分米;

3.圆柱体的体积是1/2立方米;"

生答略。

师:大家回答得很好。接下来,请大家用圆锥的体积计算公式来解答一道应用题。师出示第50页例1。

(两名学生板演,老师巡视)

师:这位同学做的对不对?

生:对!

师:和他做的一-样的同学请举手。(绝大多数同学举手)

师:那么这位同学做错在哪里呢?(指那位做错的同学做的)

生:他漏写了1/3。用底面积乘以高算出来的是圆柱的体积,圆锥的体积还要再乘以1/3。

师:对了。刚才我们通过实验4知道了圆锥的体积等于同它等底等高的圆柱体积的三分之一,从而推导出圆锥的体积计算公式,即v=1/3sh。我们在用这个公式计算圆锥的体积时,要特别注意,1/3不能漏掉。

三、巩固练习

师:现在我们一起来做填表练习。

出示小黑板:

1. 填表:

底面积s (平方米) 高h(米) 圆锥的体积(立方米)

15 9 ()

16 0.6 ()

师:两题都填对了。接下来我要考考你们,看是不是掌握了今天的知识。

2.求下面各圆锥的体积。

(1)半径是3米,高是2米。

(2)直径是4分米,高是6分米。

(3)周长是6,28厘米,高是3厘米。

3.有一个高9厘米,底面积是20平方厘米的圆柱内装满水,用一个与它等底等高的圆锥挤压,最多能挤出多少水?圆柱内还剩多少水?(边做实验边讨论)

师:这节课我们认识了圆锥,并推导出了圆锥的体积计算公式。回去以后,先回忆一下今天学过的内容,想一想,在运用v=1/3sh这个公式算圆锥体积时,要特别注意什么。

相关范文推荐

    2023年表达创新的名句 表示创新(4篇)

    每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?以下是我为大家搜

    教学设计方案和教案的区别(大全5篇)

    确定目标是置顶工作方案的重要环节。在公司计划开展某项工作的时候,我们需要为领导提供多种工作方案。方案的格式和要求是什么样的呢?以下就是小编给大家讲解介绍的相关方

    一年级静夜思教学设计一等奖优质(六篇)

    在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧一年级静夜思教学设计

    离别死亡的句子533句简短 死去离别的句子优质(五篇)

    在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下

    最新六年级上册教学反思数学 六年级上册教学反思报告总结(四篇)

    在当下这个社会中,报告的使用成为日常生活的常态,报告具有成文事后性的特点。报告的格式和要求是什么样的呢?下面我给大家整理了一些优秀的报告范文,希望能够帮助到大家

    最新《认识线段》教学设计及反思(三篇)

    范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以

    最新认识线段教学课件 认识线段教学方法通用(3篇)

    人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。相信许多人会觉得范文很难写?接下来小编就给大

    最新回复感谢祝福的话语(十篇)

    在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。回复感谢祝福

    停车场承包经营合同(实用七篇)

    现今社会公众的法律意识不断增强,越来越多事情需要用到合同,合同协调着人与人,人与事之间的关系。拟定合同的注意事项有许多,你确定会写吗?下面是小编为大家带来的合同

    最新消化心得体会总结(实用15篇)

    我们在一些事情上受到启发后,可以通过写心得体会的方式将其记录下来,它可以帮助我们了解自己的这段时间的学习、工作生活状态。那么心得体会该怎么写?想必这让大家都很苦