云南省数学知识点总结(优秀18篇)

时间:2024-11-25 作者:XY字客

知识点总结可以帮助我们建立起自己的知识体系,形成系统化的学习能力。小编为大家整理了一些经典的知识点总结范文,希望能对大家的学习有所帮助。

云南省数学知识点总结(优秀18篇)篇一

直角三角形的判定方法:

判定1:定义,有一个角为90°的三角形是直角三角形。

判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形。(勾股定理的逆定理)。

判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。

判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。

判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么。

判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。

判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)。

云南省数学知识点总结(优秀18篇)篇二

把一个图形绕某一点o转动一个角度的图形变换叫做旋转,其中o叫做旋转中心,转动的角叫做旋转角。

2、性质

(1)对应点到旋转中心的距离相等。

(2)对应点与旋转中心所连线段的夹角等于旋转角。

把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

2、性质

(1)关于中心对称的两个图形是全等形。

(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3、判定

如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

4、中心对称图形

把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。

考点五、坐标系中对称点的特征(3分)

1、关于原点对称的点的特征

两个点关于原点对称时,它们的坐标的符号相反,即点p(x,y)关于原点的对称点为p’(―x,―y)

2、关于x轴对称的点的特征

两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点p(x,y)关于x轴的对称点为p’(x,―y)

3、关于y轴对称的点的特征

两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点p(x,y)关于y轴的对称点为p’(―x,y)

大部分学生在学习中或多或少的都会积累一些问题,这些问题平时我们可能不是很在意,那么到了初二后就会突显出来。首先新生在学习数学的时候常遇到的就是对于知识点的理解不到位,还停留在一知半解的层次上面。有的学生在解答数学题的时候始终不能把握解题技巧,也就是说学生缺乏对待数学的举一反三能力。

还有的学生在解答数学题时效率太低,无法再规定的时间内完成解题,对于初中的考试节奏还没办法适应。一些学生还没有养成一个总结归纳的习惯,不会归纳知识点,不会归纳错题。这些都是导致学生学不好数学的原因。

1、一个图形的面积等于它的各部分面积的和;

2、两个全等图形的面积相等;

5、相似三角形的面积比等于相似比的平方;

7、任何一条曲线都可以用一个函数y=f(x)来表示,那么,这条曲线所围成的面积就是对x求积分。

云南省数学知识点总结(优秀18篇)篇三

:正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、-0.03%这样数叫做负数。它们都是比0小的数。0既不是正数也不是负数。我们可以用正数与负数表示具有相反意义的量。

:有理数的概念和分类:整数和分数统称有理数。有理数的分类主要有两种:

注:有限小数和无限循环小数都可看作分数。

:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。

:绝对值的概念:

(1)几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;

(2)代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零。

注:任何一个数的绝对值均大于或等于0(即非负数).

:相反数的概念:

(2)代数意义:符号不同但绝对值相等的两个数叫做互为相反数。0的相反数是0。

:有理数大小的比较:

有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数。

数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大。

用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。

:有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(3)一个数与0相加,仍得这个数.

:有理数加法运算律:

加法交换律:两个数相加,交换加数的位置,和不变。

加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

:有理数减法法则:减去一个数,等于加上这个数的相反数。

:有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算。

云南省数学知识点总结(优秀18篇)篇四

3、一个数与0相加,仍得这个数。

有理数加法的运算律

1、加法的交换律:a+b=b+a;

2、加法的结合律:(a+b)+c=a+(b+c)

有理数减法法则

减去一个数,等于加上这个数的相反数;即a—b=a+(—b)

有理数乘法法则

1、两数相乘,同号为正,异号为负,并把绝对值相乘;

2、任何数同零相乘都得零;

3、几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。

云南省数学知识点总结(优秀18篇)篇五

平分弦的直径垂直弦,并且平分弦所对的两条弧。

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;

半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。

点在圆外。

点在圆上d=r。

点在圆内d。

定理:不在同一条直线上的三个点确定一个圆。

三角形的外接圆:经过三角形的三个顶点的圆,外接圆的圆心是三角形的三条边的垂直平分线的交点,叫做三角形的外心。

相交d。

相切d=r。

相离dr。

切线的性质定理:圆的切线垂直于过切点的半径;

切线的判定定理:经过圆的外端并且垂直于这条半径的直线是圆的切线;

切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。

三角形的内切圆:和三角形各边都相切的圆为它的内切圆,圆心是三角形的三条角平分线的交点,为三角形的内心。

外离dr+r。

外切d=r+r。

相交r—r。

内切d=r—r。

内含d。

正多边形的中心:外接圆的圆心。

正多边形的半径:外接圆的半径。

正多边形的中心角:没边所对的圆心角。

正多边形的边心距:中心到一边的距离。

弧长。

扇形面积:

侧面积:

全面积。

第五章概率初步。

1、概率意义:在大量重复试验中,事件a发生的频率稳定在某个常数p附近,则常数p叫做事件a的概率。

2、用列举法求概率。

3、用频率去估计概率。

云南省数学知识点总结(优秀18篇)篇六

相似比:相似多边形对应边的比值。

判定:

平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形相似;

如果两个三角形的三组对应边的比相等,那么这两个三角形相似;

如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么两个三角形相似;

如果一个三角形的两个角与另一个三角形的两个角对应相等,那么两个三角形相似。

相似三角形(多边形)的周长的比等于相似比;

相似三角形(多边形)的面积的比等于相似比的平方。

位似图形:两个多边形相似,而且对应顶点的连线相交于一点,对应边互相平行,这样的两个图形叫位似图形,相交的点叫位似中心。

云南省数学知识点总结(优秀18篇)篇七

完成作业前一定要再阅读一遍教材,认真回顾老师在课堂上所讲的内容,然后再去写作业。作业一定要养成独立思考的好习惯,针对一道问题要学会多从不同的方法,不同的角度入手,多从典型题目中探索多种解题方法,从中得到联想和启发。

在较短的时间里进行知识的巩固,对知识的理解及运用的效果是最佳的,反之则效果不会明显,要做到学而时习之。

2、反思。

学生在完成学习任务的基础上还要进行知识的梳理,多树立数学解题的思想,比如分类的思想,整体的思想,方程的思想,数形结合的思想,方程的思想函数的思想等常用的解题思想。同时还要对重点习题多问几个为什么,如果把这些题目中所示的已知条件改变、添加一些条件,结论与条件互换,原来的结论还存在吗?只有多多练习才会做到游刃有余。

3、整理。

对于数学学习中,如试卷、作业中出现的错误,一定要及时弄懂,分析好自己做错题目的原因,最好在错题本中及时记录下来,每隔一段时间就巩固一下。在学习中绝对不能让同样的错误出现第二次。

数学是人类文化的重要组成部分,良好的数学素养是当代社会每个公民应该具备的基本素养。作为促进学生全面发展教育的重要组成部分,数学教学既要是学生掌握现代生活和学习中所需要的数学知识与技能,更要发挥数学在培养人的思维能力和创造能力。学习数学要做到有方法、有计划与合理的安排,只有做到循序渐进,才会获得最终的胜利。

云南省数学知识点总结(优秀18篇)篇八

2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(2)角平分线上的点到角两边距离相等。

(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(5)轴对称图形上对应线段相等、对应角相等。

3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)。

4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

5.等腰三角形的判定:等角对等边。

6.等边三角形角的特点:三个内角相等,等于60°,

7.等边三角形的判定:三个角都相等的三角形是等腰三角形。

有一个角是60°的等腰三角形是等边三角形。

有两个角是60°的三角形是等边三角形。

8.直角三角形中,30°角所对的直角边等于斜边的'一半。

9.直角三角形斜边上的中线等于斜边的一半。

本章内容要求学生在建立在轴对称概念的基础上,能够对生活中的图形进行分析鉴赏,亲身经历数学美,正确理解等腰三角形、等边三角形等的性质和判定,并利用这些性质来解决一些数学问题。

云南省数学知识点总结(优秀18篇)篇九

1、定义:顶点在圆上,角的两边都与圆相交的角。(两条件缺一不可)

2、定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

3、推论:1)在同圆或等圆中,相等的圆周角所对的弧相等。

2)直径(半圆)所对的圆周角是直角;900的圆周角所对的弦为直径

4、圆内接四边形的性质定理:圆内接四边形的对角互补。(任意一个外角等于它的内对角)

补充:1、两条平行弦所夹的弧相等。

2、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。

3、同弧所对的(在弧的同侧)圆内部角其次是圆周角,最小的是圆外角。

1.数据13,10,12,8,7的平均数是10.

2.数据3,4,2,4,4的众数是4.

3.数据1,2,3,4,5的中位数是3.

1.大于0的数叫做正数。

2.在正数前面加上负号“-”的数叫做负数。

3.整数和分数统称为有理数。

4.人们通常用一条直线上的点表示数,这条直线叫做数轴。

5.在直线上任取一个点表示数0,这个点叫做原点。

6.一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。

7.由绝对值的定义可知:

一个正数的绝对值是它本身;

一个负数的绝对值是它的相反数;

0的绝对值是0。

8.正数大于0,0大于负数,正数大于负数。

9.两个负数,绝对值大的反而小。

10.有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

(3)一个数同0相加,仍得这个数。

11.有理数的加法中,两个数相加,交换交换加数的位置,和不变。

12.有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

13.有理数减法法则:减去一个数,等于加上这个数的相反数。

14.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。

15.有理数中仍然有:乘积是1的两个数互为倒数。

16.一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。

17.三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

18.一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

19.有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

20.两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

云南省数学知识点总结(优秀18篇)篇十

1、课前预习:首先上课前要做预习,课前预习能提前了解将要学习的知识。

2、记笔记:指的是课堂笔记,每节课时间有限,老师一般讲的都是精华部分。

3、课后复习:通预习一样,也是行之有效的方法。

4、涉猎课外习题:多涉猎一些课外习题,学习它们的解题思路和方法。

5、学会归类总结:学习数学记得东西很多,如果单纯的记忆每个公式,不但增加记忆量而且容易忘。

6、建立纠错本:把经常出错的.题目集中在一起。

7、写考试总结:考试总结可以帮助找出学习之中不足之处,以及知识的薄弱环节。

8、培养学习兴趣:兴趣是最好的老师,只有有了兴趣才会自主自发的进行学习,学习效率才会提高。

云南省数学知识点总结(优秀18篇)篇十一

1.概率与统计:包括概率、统计、概率的意义、一维和二维正态分布、样本和抽样分布、参数估计、假设检验、方差分析、回归分析等。

2.微积分:包括极限、导数、微分、不定积分、定积分、常微分方程、偏微分方程、差分方程等。

3.线性代数:包括矩阵、向量、线性方程组、矩阵的相似对角化、二次型、线性空间、线性变换、矩阵的行列式、矩阵的逆矩阵、矩阵的秩、向量组的相关性、向量组的极大线性无关组等。

4.概率论与数理统计:包括随机事件与概率、概率的基本性质与运算法则、古典概型、条件概率、独立性、随机变量与分布函数、正态分布、二维随机变量与分布函数、条件概率与相互独立性、期望、方差、协方差与相关系数、矩、中心极限定理等。

5.平面几何:包括点和距离、平行和垂直、三角形、四边形、圆和扇形、平面图形和空间图形等。

6.平面解析几何:包括点与线的坐标、直线的方程与性质、圆的标准方程与性质、椭圆的标准方程与性质、双曲线的标准方程与性质、抛物线的标准方程与性质、参数方程与极坐标方程等。

7.集合与函数:包括集合与集合运算、函数与映射、函数图像与性质、指数与指数幂、对数与对数运算、函数图像变换等。

8.三角函数:包括三角函数的概念与图像、同角三角函数基本关系式、正弦函数和余弦函数的图像与性质、正切函数的图像与性质、两角和与差的正弦、余弦和正切函数、二倍角公式等。

9.数列:包括数列的概念与表示、等差数列与等比数列的概念与性质、数列的通项公式与通项公式求法、数列的求和公式、数列的极限等。

10.立体几何:包括多面体和旋转体的体积和表面积、平面基本性质、直线和平面、平面和平面、直线、平面之间的位置关系、平行和垂直的判定和性质、以及角度和平面角、距离等。

以上是高中数学知识点总结,具体的学习方法和应对考试技巧需要根据个人情况来制定。

云南省数学知识点总结(优秀18篇)篇十二

(1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。

(2)梯形中位线定义:连接梯形两腰中点的线段叫做梯形的中位线。

注意:

(1)要把三角形的中位线与三角形的中线区分开。三角形中线是连接一顶点和它的对边中点的线段,而三角形中位线是连接三角形两边中点的线段。

(2)梯形的中位线是连接两腰中点的线段而不是连结两底中点的线段。

(3)两个中位线定义间的联系:可以把三角形看成是上底为零时的梯形,这时三角形的中位线就变成梯形的中位线。

(1)三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.

(2)梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.

三角形有三条中位线,首尾相接时,每个小三角形面积都等于原三角形的四分之一,这四个三角形都互相全等。

云南省数学知识点总结(优秀18篇)篇十三

1、买文具---(小面额的人民币)。

2、买衣服---(大面额的人民币)。

3、小小商店---(进行有关钱款的简单计算)。

买文具(小面额的人民币)。

1、认识各种小面额的人民币。

2、体会小面额人民币之间的换算关系。

3、从实际问题中理解“付出的钱、应付的钱、应找回的钱”三者之间的关系。

4、在购物情景中进行有关钱款的简单计算。

买衣服(大面额的人民币)。

1、让学生在活动中认识大面额的人民币,能从相同点和不同点上辨认。

2、会计算大面额人民币之间的换算。

3、在购物活动中体会大面额人民币的作用,运用人民币的兑换知识,初步掌握付钱的方法。

小小商店。

1、在购物情景中会进行有关钱款的简单计算。

2、通过购物中的活动,了解付费的方式是多样化的。

3、通过购物的活动,巩固复习100以内的加减法计算。

4、购物中能解决一些简单的实际问题。

云南省数学知识点总结(优秀18篇)篇十四

经过一点可以作无数个圆。

经过两点也可以作无数个圆,且圆心都在连结这两点的线段的垂直平分线上。

定理:过不共线的三个点,可以作且只可以作一个圆。

推论:三角形的三边垂直平分线相交于一点,这个点就是三角形的外心。

三角形的三条高线的交点叫三角形的垂心。

1.2垂径定理。

圆是中心对称图形;圆心是它的对称中心。

圆是周对称图形,任一条通过圆心的直线都是它的对称轴。

定理:垂直于弦的直径平分这条弦,并且评分弦所对的两条弧。

推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧。

推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧。

推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧。

1.3弧、弦和弦心距。

定理:在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等。

二圆与直线的位置关系。

2.1圆与直线的位置关系。

如果一条直线和一个圆没有公共点,我们就说这条直线和这个圆相离。

定理:经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线。

定理:圆的切线垂直经过切点的半径。

推论1:经过圆心且垂直于切线的直线必经过切点。

推论2:经过切点且垂直于切线的直线必经过圆心。

直线和圆的位置关系只能由相离、相切和相交三种。

2.2三角形的内切圆。

定理:三角形的三个内角平分线交于一点,这点是三角形的内心。

2.3切线长定理。

2.4圆的外切四边形。

定理:圆的外切四边形的两组对边的和相等。

定理:如果四边形两组对边的和相等,那么它必有内切圆。

三圆与圆的位置关系。

3.1两圆的位置关系。

经过两个圆的圆心的直线,叫做两圆的连心线,两个圆心之间的距离叫做圆心距。

定理:两圆的连心线是两圆的对称轴,并且两圆相切时,它们切点在连心线上。

(1)两圆外离dr+r。

(2)两圆外切d=r+r。

(3)两圆相交r-r。

(4)两圆内切d=r-r(rr)。

(5)两圆内含dr)。

特殊情况,两圆是同心圆d=0。

3.2两圆的公切线。

定理:两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等。

云南省数学知识点总结(优秀18篇)篇十五

1、平面的基本性质:

公理1如果一条直线的两点在一个平面内,那么这条直线在这个平面内;。

公理2过不在一条直线上的三点,有且只有一个平面;。

公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

2、空间点、直线、平面之间的位置关系:

直线与直线—平行、相交、异面;。

直线与平面—平行、相交、直线属于该平面(线在面内,最易忽视);。

平面与平面—平行、相交。

3、异面直线:

平面外一点a与平面一点b的连线和平面内不经过点b的直线是异面直线(判定);。

所成的角范围(0,90)度(平移法,作平行线相交得到夹角或其补角);。

两条直线不是异面直线,则两条直线平行或相交(反证);。

异面直线不同在任何一个平面内。

求异面直线所成的角:平移法,把异面问题转化为相交直线的夹角。

二、空间中的平行关系。

1、直线与平面平行(核心)。

定义:直线和平面没有公共点。

判定:不在一个平面内的一条直线和平面内的一条直线平行,则该直线平行于此平面(由线线平行得出)。

2、平面与平面平行。

定义:两个平面没有公共点。

判定:一个平面内有两条相交直线平行于另一个平面,则这两个平面平行。

性质:两个平面平行,则其中一个平面内的直线平行于另一个平面;如果两个平行平面同时与第三个平面相交,那么它们的交线平行。

3、常利用三角形中位线、平行四边形对边、已知直线作一平面找其交线。

三、空间中的垂直关系。

1、直线与平面垂直。

定义:直线与平面内任意一条直线都垂直。

判定:如果一条直线与一个平面内的两条相交的直线都垂直,则该直线与此平面垂直。

性质:垂直于同一直线的两平面平行。

推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面。

2、平面与平面垂直。

定义:两个平面所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线所成的角)。

判定:一个平面过另一个平面的垂线,则这两个平面垂直。

性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

云南省数学知识点总结(优秀18篇)篇十六

(一)、有趣的“0”“一年级0”可以表示没有,“0”可以参加计算,“0”在数中起到占位作用,“0”可以表示起点,表示0度。

(二)、基数与序数表示物体的多少时,用的是基数;表示物体排列的次序时,用的是序数。基数与序数不同,基数表示物体的多少,序数表示物体的排列次序。

(一)、数简单图形数零乱放置的物体或数某一类图形的个数时,应先将所有物体依次标上序号,可以按照序号,顺序观察,数准指定的图形。注意对于同一个物体,从不同的角度去观察,观察的结果也会不同。因此在数简单图形时,要善于从不同的角度观察问题、分析问题。

(二)、数复杂图形数复杂图形时可以按大小分类来数。

(三)、数数按条件的要求去数。

比一比当比较的2个对象整齐的排列时,很容易采用连线比的方法比较出谁多谁少。如果比较的2个对象是杂乱排列的,可以通过数数目的方法进行比较。也可以采用分段比的方法。

(一)、摆一摆要善于寻找不同的方法。

(二)、移一移。

(一)、图形变化的规律观察图形的变化,可以从图形的形状、位置、方向、数量、大小、颜色等方面入手,从中寻找规律。

(二)、数列的规律数列就是按一定规律排成的一列数。怎样寻找已知数列的规律,并按规律填出指定的某个数是解题的关键。

(三)、数表的规律把一些数按照一定的规律,填在一个图形固定的位置上,再把按照这一规律填出的图形排列起来。从给出的图形中寻找规律,按照规律填图是解题的关键。

(一)、填数字给出的算式是一组,不同算式中相同图形中所填的数字是相同的。在做这些题时,不要为只填出一个答案而满足,应找出所有的答案。如果不必要一一列出时,应给以说明,这才是完整、正确的解答。

(二)、填符号比较2个数的大小,首先要比较2个数的位数,位数多的数大;其次,当2个数的位数相同时,从高位比起,相同数位上的数大的那个数就大。当2个数各个相同数位上的数都分别相同时,这2个数相等。

(1)同一个数分别加上(或减去)1个相等的数,所得的结果相等;

(2)同一个数分别加上2个不同的数,所加的哪个数大,那个算式的结果就大;

(3)同一个数分别减去2个不同的数,所减的哪个数小,那个算式的结果就大;

(4)2个不同的数减去同一个数,哪个被减数大,那个算式的结果就大。七、说道理做数学题,每一步都要有理由,要把道理想清楚,说出来。

应用题一道简单的应用题,是由已知条件和所求问题组成的。一般先说题意,再列算式。

云南省数学知识点总结(优秀18篇)篇十七

集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求)、在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。

一般有1~2个客观题和1个解答题,其中客观题主要考查直线斜率、直线方程、圆的方程、直线与圆的位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,解答题则主要考查直线与椭圆、抛物线等的位置关系问题,经常与平面向量、函数与不等式交汇,考查一些存在性问题、证明问题、定点与定值、最值与范围问题等。

云南省数学知识点总结(优秀18篇)篇十八

经过一点可以作无数个圆。

经过两点也可以作无数个圆,且圆心都在连结这两点的线段的垂直平分线上。

定理:过不共线的三个点,可以作且只可以作一个圆。

推论:三角形的三边垂直平分线相交于一点,这个点就是三角形的外心。

三角形的三条高线的交点叫三角形的垂心。

1.2垂径定理。

圆是中心对称图形;圆心是它的对称中心。

圆是周对称图形,任一条通过圆心的直线都是它的对称轴。

定理:垂直于弦的直径平分这条弦,并且评分弦所对的两条弧。

推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧。

推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧。

推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧。

1.3弧、弦和弦心距。

定理:在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等。

二圆与直线的位置关系。

2.1圆与直线的位置关系。

如果一条直线和一个圆没有公共点,我们就说这条直线和这个圆相离。

定理:经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线。

定理:圆的切线垂直经过切点的半径。

推论1:经过圆心且垂直于切线的直线必经过切点。

推论2:经过切点且垂直于切线的直线必经过圆心。

直线和圆的位置关系只能由相离、相切和相交三种。

2.2三角形的内切圆。

定理:三角形的三个内角平分线交于一点,这点是三角形的内心。

2.3切线长定理。

2.4圆的外切四边形。

定理:圆的外切四边形的两组对边的和相等。

定理:如果四边形两组对边的和相等,那么它必有内切圆。

三圆与圆的位置关系。

3.1两圆的位置关系。

经过两个圆的圆心的直线,叫做两圆的连心线,两个圆心之间的距离叫做圆心距。

定理:两圆的连心线是两圆的对称轴,并且两圆相切时,它们切点在连心线上。

(1)两圆外离dr+r。

(2)两圆外切d=r+r。

(3)两圆相交r-rdr)。

(4)两圆内切d=r-r(rr)。

(5)两圆内含dr)。

特殊情况,两圆是同心圆d=0。

3.2两圆的公切线。

定理:两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等。

相关范文推荐

    电商客服目标和工作(通用23篇)

    范文范本可以帮助写作者正确把握文章的结构和逻辑,使作品更加合理和有序。范文范本涵盖了不同领域和不同时期的经典作品,帮助我们了解和认识不同文化和时代的文学成就。

    电商客服目标工作(精选17篇)

    通过阅读范文范本,我们可以学习到各种不同类型的作文写法和表达方式。小编为大家准备了一些优秀范文样本,希望对大家的写作有所帮助。非常感谢您给我到贵公司从事工作的机

    心理咨询师的儿童心理咨询心得(实用18篇)

    范文范本可以帮助我们更好地理解和消化掌握知识,将学到的理论知识应用到实践中。以下是小编为大家整理和收集的范例文章,供大家参考和学习。近年来,心理咨询师行业迅速兴

    法律援助中心案例分析(热门13篇)

    范本是我们写作的参考点,通过分析范本,我们可以了解到写作的规范和要点。5.以下是小编为大家整理的范文范本,希望能为大家提供一些写作的素材和思路,使大家的写作更加

    家长参与学校综合实践活动(通用20篇)

    综合实践能够培养学生的观察力、思考力和解决问题的能力,是学生实践能力的重要组成部分。以下是小编为大家收集的综合实践案例,供大家参考和学习。本学期我校在实施综合实

    数学家数学知识点总结(汇总20篇)

    知识点总结是对学习中掌握的知识进行回顾、归纳和总结的一种方式,可以巩固学习成果,提高学习效果。下面是小编为大家搜集整理的知识点总结范文,供大家参考和学习。

    团队精神演讲稿题目推荐(实用17篇)

    读范文可以帮助我们丰富写作素材,写出更有逻辑性的文章。下面是一些精选的范文范本,让我们一起来看看写作的精彩之处。所谓团队精神,简单来说就是大局意识、协作精神和服

    猎头顾问的选人用人工作自查报告(优秀17篇)

    自查报告是对自己经历和成长的记录和归纳,有助于我们再次审视和回顾所经历的一切,进一步明确自身的职业发展规划。小编整理了一些精选的自查报告样例,希望能够帮助大家更

    人事主管的选人用人工作自查报告(优质16篇)

    自查报告可以促使我们对自己的行为和思维进行梳理和整理,以便更好地改进和提高。以下是一些精选的自查报告范文,希望能为大家提供一些有用的参考和借鉴。按照市委组织部《

    自然文化的沉浮(汇总18篇)

    范文可以展示出一个完整的写作思路和结构,对我们的写作有很大的启发作用。下面是一些优秀的范文范本,供大家参考和借鉴,帮助写作者提高自己的写作水平。日前文昌开展首个