高一教案是教师在进行教学过程中对课堂教学实施过程和教学效果进行记录和评估的依据。高一教案范文可以帮助教师更好地把握教学进度和学生的学习需求。
高一数学必修一教案人教版(实用17篇)篇一
一、教学目标:
1、识记消费的不同类型,消费结构的含义以及恩格尔系数的含义。
2、理解影响消费水平的因素,最主要的是收入水平和物价水平;理解钱货两清的消费,贷款消费以及租赁消费时商品所有权和使用权的变化。
教学重难点。
教学重点、难点:
影响消费水平的因素。
恩格尔系数的变化的含义。
教学过程。
教学内容:
(一)情景导入:
学生活动:就日常生活的体验得出相应的回应,例如:买文具、食堂吃饭、买零食、买衣服、电话费等日常消费活动。
教师活动:多媒体课件展示丰富多彩的消费活动,其中主要集中于学生可能并有实际经验的消费内容。
所以我们这节课就影响消费的因素及消费的类型相关讨论。
(二)情景分析:
探究活动一:如何安排生活费?
学生活动:互相安排并讨论各自的消费活动或消费内容,发现其中的区别。
(1)收入。
教师活动:设问解疑。
同学们是否发现各自的消费有什么不同?而造成这个区别的原因在此主要是什么?
教师讲解:收入是消费的前提与基础。在其他条件不变的情况下,人们的可支配收入越多,对各种商品和服务的消费量就越大。收入增长较快的时期,消费增长也较快;反之,当收入增长速度下降时,消费增幅也下降。当前收入直接影响消费,预期消费则影响消费信心,当预期消费乐观时,消费信心就强;预期消费较低时,消费信心就弱。所以,要提高居民的生活水平,必须保持经济的稳定增长,增加居民收入。
(2)物价水平。
教师活动:影响消费的因素除了收入水平还有没有其他了呢?
学生活动:就材料进行相应的讨论,得出初步的结论,消费活动还受到物价水平的影响。
教师讲解:消费品价格的变化会影响人们的购买能力。人们在一定时期的总收入是有限的,如果消费品价格上涨,会引起购买力下降,因而消费需求就降低。反之,则购买力提高,消费需求就增加。因此,物价的稳定对保持人们的消费水平,安定生活和稳定社会具有重要意义。正是由于这个原因,稳定物价才成为国家宏观调控的重要目标。
教师:虽然我们是用同学们的消费活动做的说明,但要明白家庭消费的影响因素也是同样的道理。我们在考察了总体消费状况的前提下,接着来讨论一个具体的消费案例:
探究活动二:小君的苦恼。
(1)按交易方式不同,可分钱货两清的消费、贷款消费和租赁消费。
教师活动:按交易方式不同,可分钱货两清的消费、贷款消费和租赁消费。
租赁消费也是一种比较常见的消费方式,我们可以通过租赁的方式使商品的所有权不发生变更,而获得该商品在一定期限的使用权。
贷款消费是一种新兴的消费方式,主要用于购买大宗耐用消费品及服务。因为这些消费品超出消费者当前的支付能力,因而预支自己未来的收入,来满足当前的需要。也就是我们常说的“花明天的钱,园今天的梦”。贷款消费的交易方式,其消费品的所有权与使用权没有完全转移。在消费者按照约定按时还贷的前提下,消费品的所有权与使用权逐渐发生转移,直至还完贷款为止,其所有权与使用权才彻底转移到消费者手里。
贷款消费不仅满足了消费者的生活需要,提高了消费者的生活质量,而且促进了经济的发展,特别是我国经济发展进入买方市场后,贷款消费对扩大内需,拉动经济的增长起来重要的作用。所以,我们要转变传统的消费观念,以积极的态度来对待贷款消费,通过贷款消费满足来满足当前的需要,通过生活质量。当然,在贷款消费是也要考虑自己的偿还能力,还要讲究信用,按时还贷。
学生活动:就相关情境进行讨论,做出自己的选择并给出相应的解释理由。
(2)按消费对象分,消费分为有形商品消费和劳务消费。
教师活动:按消费对象分,消费分为有形商品消费和劳务消费,有形商品消费消费的是有形的商品,而劳务消费消费的是无形的服务。
万事大吉了!大家知道小君已经达到哪种消费层次了吗?
生存资料消费?发展资料消费?享受资料消费?
学生活动:讨论并回答相应问题,得出享受资料消费的结论。
(3)按消费的目的不同,可分为生存资料消费、发展资料消费和享受资料消费。
教师活动:按消费的目的不同,可分为生存资料消费、发展资料消费和享受资料消费。其中生存资料消费是最基本的消费,满足较低层次的衣食住用行的需要;发展资料消费主要指满足人们发展德育、智育等方面需要的消费;享受资料消费满足人们享受的需要。随着经济水平的提高,发展资料和享受资料消费将逐渐增加。
探究活动三:考查自己家里的消费结构。
学生活动:认真阅读并讨论得出结论家庭消费的不同内容体现了不同的消费水平。
(1)消费结构。
教师活动:多媒体展示近几年社会的消费现状,例:假日旅游、电子产品、汽车等。引导学生通过不同层面的直观感受来了解消费结构的变化。
要了解家庭消费水平先要知道一个概念就是消费结构,是指人们各类消费支出在消费总支出中所占的比重。消费结构会随着经济的发展、收入的变化而不断变化,变化的方向遵循由生存需要到发展需要再到享受需要的顺序。
(2)恩格尔系数。
教师活动:恩格尔系数指食品支出占家庭总支出的比重,用公式表示:恩格尔系数=食品支出费用/各项消费总支出费用×100%。一般恩格尔系数越大,越影响其他消费支出,特别是影响发展资料和享受资料的增加,限制消费层次和消费质量的提高,因此生活水平就越低,相反恩格尔系数减小,生活水平就提高,消费结构会逐步改善。恩格尔系数是消费结构研究中的重要概念,在国际上受到普遍承认和重视。
国际上甚至用它作为区分国际间消费结构层次高低的最一般标准。联合国粮农组织在20世纪70年代中期提出划分穷国富国的标准:恩格尔系数在60%以上为绝对贫困国家;50%~59%的国家为勉强度日(我们称之为温饱型);在40%~49%为小康水平;在20%~39%为富裕水平;20%以下为极富裕国家。
我国这几年经济结构有了很大改善,消费水平不断提高。
(三)情景回归:
教师组织学生反思总结本节课的主要内容,并进行当堂检测,了解教学反馈。
将本文的word文档下载到电脑,方便收藏和打印。
高一数学必修一教案人教版(实用17篇)篇二
了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.
(2)一元二次不等式。
会从实际情境中抽象出一元二次不等式模型.
通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.
会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.
(3)二元一次不等式组与简单线性规划问题。
会从实际情境中抽象出二元一次不等式组.
了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.
会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.
高一数学必修一教案人教版(实用17篇)篇三
1、教材(教学内容)。
2、设计理念。
3、教学目标。
情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美、
4、重点难点。
重点:任意角三角函数的定义、
难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透、
5、学情分析。
6、教法分析。
7、学法分析。
本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函数的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标。
高一数学必修一教案人教版(实用17篇)篇四
(1)理解函数的概念;。
(2)了解区间的概念;。
2、目标解析。
(2)了解区间的概念就是指能够体会用区间表示数集的意义和作用;。
【问题诊断分析】在本节课的教学中,学生可能遇到的问题是函数的概念及符号的理解,产生这一问题的原因是:函数本身就是一个抽象的概念,对学生来说一个难点。要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培养学生的抽象概况能力,其中关键是理论联系实际,把抽象转化为具体。
【教学过程】。
问题1:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距离地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2.
1.1这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示?
1.2高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么?
设计意图:通过以上问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依赖关系,从问题的实际意义可知,在t的变化范围内任给一个t,按照给定的对应关系,都有的一个高度h与之对应。
问题2:分析教科书中的实例(2),引导学生看图并启发:在t的变化t按照给定的图象,都有的一个臭氧层空洞面积s与之相对应。
问题3:要求学生仿照实例(1)、(2),描述实例(3)中恩格尔系数和时间的关系。
设计意图:通过这些问题,让学生理解得到函数的定义,培养学生的归纳、概况的能力。
高一数学必修一教案人教版(实用17篇)篇五
三、在细胞质中,除了细胞器外,还有呈胶质状态的细胞质基质。
细胞质:包括细胞器和细胞质基质。
四、电子显微镜下看到的是亚显微结构,普通显微镜下看到显微结构。
光镜能看到:细胞质,线粒体,叶绿体,液泡,细胞壁。
实验:用高倍显微镜观察叶绿体和线粒体。
健那绿染液是将活细胞中线粒体染色的专一性染料,可以使活细胞中的线粒体呈现蓝绿色。
材料:新鲜的藓类的叶(叶片薄,直接观察)。
菠菜叶稍带叶肉的下表皮(上表皮起保护作用,几乎无叶绿体;下表皮海绵组织,有气孔保卫细胞,有叶绿体)。
五、分泌蛋白的合成和运输。
有些蛋白质是在细胞内合成后,分泌到细胞外起作用,这类蛋白叫分泌蛋白。如消化酶(催化作用)、抗体(免疫)和一部分激素(信息传递)。
核糖体内质网高尔基体细胞膜。
(合成肽链)(加工成蛋白质)(进一步加工)(囊泡与细胞膜融合,蛋白质释放)。
分泌蛋白从合成至分泌到细胞外利用到的细胞器?
答:核糖体、内质网、高尔基体、线粒体。
分泌蛋白从合成至分泌到细胞外利用到的结构?
核糖体、内质网、高尔基体、线粒体、细胞核、囊泡、细胞膜。
六、生物膜系统。
1、概念:细胞膜、核膜,各种细胞器的膜共同组成的生物膜系统。
2、作用:使细胞具有稳定内部环境物质运输、能量转换、信息传递;为各种酶提供大量附着位点,是许多生化反应的场所;把各种细胞器分隔开,保证生命活动高效、有序进行。
3、内质网膜内连核膜外连细胞膜还和线粒体膜直接相连。
经过囊泡与高尔基体膜间接相连。
高一数学必修一教案人教版(实用17篇)篇六
一、除了高等植物成熟的筛管细胞和哺乳动物成熟的红细胞等极少数细胞外,真核细胞都有细胞核。植物的导管细胞是死细胞(主要运输水分、无机盐),筛管主要运输有机物。
二、细胞核控制着细胞的代谢和遗传。
三、细胞核的结构。
2.染色质(主要由dna和蛋白质组成,dna是遗传信息的载体。
4.核孔(实现核质之间频繁的物质交换和信息交流)核孔有选择透过性,上面有载体,大分子物质(蛋白质和mrna)出入细胞需要能量和载体,细胞代谢越旺盛,核孔越多,核仁体积越大。
四、细胞分裂时,细胞核解体,染色质高度螺旋化,缩短变粗,成为光学显微镜下清晰可见的圆柱状或杆状的染色体。分裂结束时,染色体解螺旋,重新成为细丝状的染色质。染色质(分裂间期)和染色体(分裂时)是同样的物质在细胞不同时期的两种存在状态。
五、细胞既是生物体结构的基本单位,又是生物体代谢和遗传的基本单位。
高一数学必修一教案人教版(实用17篇)篇七
(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2.过程与方法。
(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观。
(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点。
重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具。
(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪。
四、教学思路。
(一)创设情景,揭示课题。
1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。
2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
(二)、研探新知。
1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。
4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。
8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。
1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)。
2.棱柱的何两个平面都可以作为棱柱的底面吗?
3.课本p8,习题1.1a组第1题。
5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
四、巩固深化。
练习:课本p7练习1、2(1)(2)。
课本p8习题1.1第2、3、4题。
五、归纳整理。
由学生整理学习了哪些内容。
六、布置作业。
课本p8练习题1.1b组第1题。
课外练习课本p8习题1.1b组第2题。
1.2.1空间几何体的三视图(1课时)。
高一数学必修一教案人教版(实用17篇)篇八
1、使学生掌握的概念,图象和性质。
(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域。
(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质。
(3)能利用的性质比较某些幂形数的大小,会利用的图象画出形如的图象。
2、通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法。
教材分析。
(1)是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究。
(2)本节的教学重点是在理解定义的基础上掌握的图象和性质。难点是对底数在和时,函数值变化情况的区分。
(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究。
教法建议。
(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是。
(2)对底数的限制条件的理解与认识也是认识的重要内容。如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来。
关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象。
高一数学必修一教案人教版(实用17篇)篇九
用坐标法解决几何问题的步骤:
第二步:通过代数运算,解决代数问题;
第三步:将代数运算结果“翻译”成几何结论、
重点与难点:直线与圆的方程的应用、
问 题设计意图师生活动
生:回顾,说出自己的看法、
2、解决直线与圆的位置关系,你将采用什么方法?
生:回顾、思考、讨论、交流,得到解决问题的方法、
问 题设计意图师生活动
3、阅读并思考教科书上的例4,你将选择什么方 法解决例4的'问题
生:自 学例4,并完成练习题1、2、
生:建立适当的直角坐标系, 探求解决问题的方法、
8、小结:
(1)利用“坐标法”解决问对知识进行归纳概括,体会利 师:指导 学生完成练习题、
生:阅读教科书的例3,并完成第
问 题设计意图师生活动
题的需要准备什么工作?
(2)如何建立直角坐标系,才能易于解决平面几何问题?
(3)你认为学好“坐标法”解决问题的关键是什么?
高一数学必修一教案人教版(实用17篇)篇十
1. 阅读课本 练习止.
2. 回答问题
(1)课本内容分成几个层次?每个层次的中心内容是什么?
(2)层次间的联系是什么?
(3)对数函数的定义是什么?
(4)对数函数与指数函数有什么关系?
3. 完成 练习
4. 小结.
二、方法指导
1. 在学习对数函数时,同学们应从熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.
一、提问题
1. 对数函数的自变量和函数分别在指数函数中是什么?
2.两个函数如果互为反函数,则他们的值域,定义域有什么关系?
3.是否所有的函数都有反函数?试举例说明.
二、变题目
1. 试求下列函数的反函数:
(1) ; (2) ;
(3) ; (4) .
2. 求下列函数的定义域:
(1) ; (2) ; (3) .
3. 已知 则 = ; 的定义域为 .
1.对数函数的'有关概念
(1)把函数 叫做对数函数, 叫做对数函数的底数;
(2)以10为底数的对数函数 为常用对数函数;
(3)以无理数 为底数的对数函数 为自然对数函数.
2. 反函数的概念
在指数函数 中, 是自变量, 是 的函数,其定义域是 ,值域是 ;在对数函数 中, 是自变量, 是 的函数,其定义域是 ,值域是 ,像这样的两个函数叫做互为反函数.
3. 与对数函数有关的定义域的求法:
4. 举例说明如何求反函数.
一、课外作业: 习题3-5 a组 1,2,3, b组1,
二、课外思考:
1. 求定义域: .
2. 求使函数 的函数值恒为负值的 的取值范围.
高一数学必修一教案人教版(实用17篇)篇十一
教学目标。
1、理解平面向量的坐标的概念;。
2、掌握平面向量的坐标运算;。
3、会根据向量的坐标,判断向量是否共线.
教学重难点。
教学重点:平面向量的坐标运算。
教学难点:向量的坐标表示的理解及运算的准确性.
教学过程。
平面向量基本定理:。
什么叫平面的一组基底?
平面的基底有多少组?
引入:。
1.平面内建立了直角坐标系,点a可以用什么来。
表示?
2.平面向量是否也有类似的表示呢?
高一数学必修一教案人教版(实用17篇)篇十二
1、使学生了解奇偶性的概念,回会利用定义判定简单函数的奇偶性。
2、在奇偶性概念形成过程中,培养学生的观察,归纳能力,同时渗透数形结合和非凡到一般的思想方法。
3、在学生感受数学美的同时,激发学习的爱好,培养学生乐于求索的精神。
重点是奇偶性概念的形成与函数奇偶性的判定。
难点是对概念的熟悉。
投影仪,计算机。
引导发现法。
一。引入新课。
前面我们已经研究了函数的单调性,它是反映函数在某一个区间上函数值随自变量变化而变化的性质,今天我们继续研究函数的另一个性质。从什么角度呢?将从对称的角度来研究函数的性质。
(学生可能会举出一些数值上的对称问题,等,也可能会举出一些图象的对称问题,此时教师可以引导学生把函数具体化,如和等。)。
学生经过思考,能找出原因,由于函数是映射,一个只能对一个,而不能有两个不同的,故函数的图象不可能关于轴对称。最终提出我们今天将重点研究图象关于轴对称和关于原点对称的问题,从形的特征中找出它们在数值上的规律。
二。讲解新课。
2、函数的奇偶性(板书)。
学生开始可能只会用语言去描述:自变量互为相反数,函数值相等。教师可引导学生先把它们具体化,再用数学符号表示。(借助课件演示令比较得出等式,再令,得到,详见课件的使用)进而再提出会不会在定义域内存在,使与不等呢?(可用课件帮助演示让动起来观察,发现结论,这样的是不存在的)从这个结论中就可以发现对定义域内任意一个,都有成立。最后让学生用完整的语言给出定义,不准确的地方教师予以提示或调整。
(1)偶函数的定义:假如对于函数的定义域内任意一个,都有,那么就叫做偶函数。(板书)。
(给出定义后可让学生举几个例子,如等以检验一下对概念的初步熟悉)。
提出新问题:函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢?(同时打出或的图象让学生观察研究)。
学生可类比刚才的方法,很快得出结论,再让学生给出奇函数的定义。
(2)奇函数的定义:假如对于函数的定义域内任意一个,都有,那么就叫做奇函数。(板书)。
(由于在定义形成时已经有了一定的熟悉,故可以先作判定,在判定中再加深熟悉)。
例1。判定下列函数的奇偶性(板书)。
(1);(2);
(3);;
(5);(6)。
(要求学生口答,选出12个题说过程)。
解:(1)是奇函数。(2)是偶函数。
(3),是偶函数。
学生经过思考可以解决问题,指出只要举出一个反例说明与不等。如即可说明它不是偶函数。(从这个问题的解决中让学生再次熟悉到定义中任意性的重要)。
从(4)题开始,学生的答案会有不同,可以让学生先讨论,教师再做评述。即第(4)题中表面成立的=不能经受任意性的考验,当时,由于,故不存在,更谈不上与相等了,由于任意性被破坏,所以它不能是奇偶性。
可以用(6)辅助说明充分性不成立,用(5)说明必要性成立,得出结论。
(3)定义域关于原点对称是函数具有奇偶性的必要但不充分条件。(板书)。
由学生小结判定奇偶性的步骤之后,教师再提出新的问题:在刚才的几个函数中有是奇函数不是偶函数,有是偶函数不是奇函数,也有既不是奇函数也不是偶函数,那么有没有这样的函数,它既是奇函数也是偶函数呢?若有,举例说明。
例2。已知函数既是奇函数也是偶函数,求证:。(板书)(试由学生来完成)。
(4)函数按其是否具有奇偶性可分为四类:(板书)。
例3。判定下列函数的奇偶性(板书)。
(1);(2);(3)。
由学生回答,不完整之处教师补充。
解:(1)当时,为奇函数,当时,既不是奇函数也不是偶函数。
(2)当时,既是奇函数也是偶函数,当时,是偶函数。
(3)当时,于是,
当时,,于是=,
综上是奇函数。
教师小结(1)(2)注重分类讨论的使用,(3)是分段函数,当检验,并不能说明具备奇偶性,因为奇偶性是对函数整个定义域内性质的刻画,因此必须均有成立,二者缺一不可。
三。小结。
1、奇偶性的概念。
2、判定中注重的问题。
四。作业略。
五。板书设计。
2、函数的奇偶性例1.例3.
(1)偶函数定义。
(2)奇函数定义。
(3)定义域关于原点对称是函数例2。小结。
具备奇偶性的必要条件。
(4)函数按奇偶性分类分四类。
(1)定义域为的任意函数都可以表示成一个奇函数和一个偶函数的和,你能试证实之吗?
(2)判定函数在上的单调性,并加以证实。
在此基础上试利用这个函数的单调性解决下面的问题:
高一数学必修一教案人教版(实用17篇)篇十三
教学目标。
熟悉两角和与差的正、余公式的推导过程,提高逻辑推理能力。
掌握两角和与差的正、余弦公式,能用公式解决相关问题。
教学重难点。
熟练两角和与差的正、余弦公式的正用、逆用和变用技巧。
教学过程。
复习。
两角差的余弦公式。
用-b代替b看看有什么结果?
高一数学必修一教案人教版(实用17篇)篇十四
掌握三角函数模型应用基本步骤:
(1)根据图象建立解析式;
(2)根据解析式作出图象;
(3)将实际问题抽象为与三角函数有关的简单函数模型·。
·利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型·。
一、练习讲解:《习案》作业十三的第3、4题。
(精确到0·001)·。
米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?
本题的解答中,给出货船的`进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。
练习:教材p65面3题。
三、小结:1、三角函数模型应用基本步骤:
(1)根据图象建立解析式;
(2)根据解析式作出图象;
(3)将实际问题抽象为与三角函数有关的简单函数模型·。
2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型·。
四、作业《习案》作业十四及十五。
高一数学必修一教案人教版(实用17篇)篇十五
教学目标。
3.让学生深刻理解向量在处理平面几何问题中的优越性.
教学重难点。
教学重点:用向量方法解决实际问题的基本方法:向量法解决几何问题的“三步曲”.
教学难点:如何将几何等实际问题化归为向量问题.
教学过程。
由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图形的许多性质,如平移、全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来,因此,可用向量方法解决平面几何中的一些问题,下面我们通过几个具体实例,说明向量方法在平面几何中的运用。
思考:
运用向量方法解决平面几何问题可以分哪几个步骤?
运用向量方法解决平面几何问题可以分哪几个步骤?
“三步曲”:
(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;。
(3)把运算结果“翻译”成几何关系.
高一数学必修一教案人教版(实用17篇)篇十六
细胞膜、细胞壁、细胞核、细胞质均不是细胞器。
一、细胞器之间分工。
1.线粒体:细胞进行有氧呼吸的主要场所。双层膜(内膜向内折叠形成脊),分布在动植物细胞体内。
2.叶绿体:进行光合作用,“能量转换站”,双层膜,分布在植物的叶肉细胞。
3.内质网:蛋白质合成和加工,以及脂质合成的“车间”,单层膜,动植物都有。分为光面内质网和粗面内质网(上有核糖体附着)。
4.高尔基体:对来自内质网的蛋白质进行加工、分类和包装,单层膜,动植物都有,植物细胞中参与了细胞壁的形成。
5.核糖体:无膜,合成蛋白质的主要场所。生产蛋白质的机器。
包括游离的核糖体(合成胞内蛋白)和附着在内质网上的核糖体(合成分泌蛋白)。
6.溶酶体:内含有多种水解酶,能分解衰老、损伤的细胞器,吞噬并杀死侵入细胞的病毒或病菌,单层膜。
溶酶体吞噬过程体现生物膜的流动性。溶酶体起源于高尔基体。
7.液泡:主要存在与植物细胞中,内有细胞液,含糖类、无机盐、色素和蛋白质等物质,可以调节植物细胞内的环境,充盈的液泡还可以使植物细胞保持坚挺。与植物细胞的渗透吸水有关。
8.中心体:动物和某些低等植物的细胞,由两个相互垂直排列的中心粒及周围物质组成,与细胞的有丝分裂有关,无膜。一个中心体有两个中心粒组成。
二、分类比较:
1.双层膜:叶绿体、线粒体(细胞核膜)。
单层膜:内质网、高尔基体、液泡、溶酶体(细胞膜、类囊体薄膜)。
无膜:中心体、核糖体。
2.植物特有:叶绿体、液泡动物特有(低等植物):中心体。
3.含核酸的细胞器:线粒体、叶绿体(dna)线粒体、叶绿体、核糖体(rna)。
4.增大膜面积的细胞器:线粒体、内质网、叶绿体。
5.含色素:叶绿体、液泡。
6.能产生atp的:线粒体、叶绿体(细胞质基质)。
7.能自主复制的细胞器:线粒体、叶绿体、中心体。
8.与有丝分裂有关的细胞器:核糖体、线粒体、高尔基体(形成细胞壁)、中心体。
9.发生碱基互补配对:线粒体、叶绿体、核糖体。
10.与主动运输有关:核糖体、线粒体。
高一数学必修一教案人教版(实用17篇)篇十七
1、知识目标:使学生理解指数函数的定义,初步掌握指数函数的图像和性质。
2、能力目标:通过定义的引入,图像特征的观察、发现过程使学生懂得理论与实践的辩证关系,适时渗透分类讨论的数学思想,培养学生的探索发现能力和分析问题、解决问题的能力。
3、情感目标:通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。