教学工作计划是教师掌握教学内容和进度的重要工具之一。以下是小编为大家整理的教学工作计划范文,仅供参考,希望对大家制定教学计划有所帮助。通过阅读范文,可以更好地理解教学工作计划的结构和要点,并借鉴范文中的优秀经验和做法,提升自己的教学设计水平。让我们一起来看看吧。
绝对值专题课教案(热门16篇)篇一
一、学习与导学目标:
情感态度:通过创设情境,初步感悟学习绝对值的必要性,促进责任心的形成。
二、学程与导程活动:
a、创设情境(幻灯片或挂图)。
1、两辆汽车,其一向东行驶10km,另一向西行驶8km。为了区别,可规定向东行驶为正,则分别记作+10km和-8km。但在计算出租车收费,汽车行驶所耗的汽油,起主要作用的是汽车行驶的路程,而不是行驶的方向。此时,行驶路程则分别记作10km和8km。
再如测量误差问题、排球重量谁更接近标准问题……。
2、在讨论数轴上的点与原点的距离时,只需要观察它与原点相隔多少个单位长度,与位于原点何方无关。
b、学习概念:
1、我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue),记作︱a︱(幻灯片)。因此,上述+10,-8的绝对值分别是10,8。
如在数轴上表示数-6的点和表示数6的点与原点的距离都是6,所以,-6和6的绝对值都是6,记作︱-6︱=6,︱6︱=6。(互为相反数的两个数的绝对值相同)。
2、尝试回答(1)︱+2︱=,︱1/5︱=,︱+8.2︱=;
(2)︱-3︱=,︱-0.2︱=,︱-8.2︱=;
(3)︱0︱=。(幻灯片)。
思考:你能从中发现什么规律?引导学生得出:(幻灯片)。
性质:一个正数的绝对值是它本身;
一个负数的绝对值是它的相反数;
如果用字母a表示有理数,上述性质可表述为:
当a是正数时,︱a︱=a;。
当a是负数时,︱a︱=-a;。
当a=0时,︱a︱=0。
解答课本p19/7及p15练习,由p19/7体会绝对值在实际中的应用,由练习1体会上面的三个等式,由练习2中提到的绝对值大小、数轴,引出问题:
在引入负数以后,如何比较两个数的大小,尤其是两个负数的大小?
3、让我们仍然回到实际中去看看有怎样的启发,引导阅读p16(幻灯片)。
显然,结合问题的实际意义不难得到:-4-3-2-1012……。
因此,在数轴上你有何发现?生讨论后发现:从左往右表示的数越来越大。
再找几个量试试是否如此?这些数的绝对值的大小如何?(可利用p19/6,8为素材)。
通过以上探究活动得到:正数大于0,0大于负数,正数大于负数;
两个负数,绝对值大的反而小。
4、师生活动比较下列各对数的大小:p17例,p18练习。
5、师生小结归纳(幻灯片)。
三、笔记与板书提纲:
1、幻灯片。
2、师生板演练习p15/1。
四、练习与拓展选题:
p19/4,5,9,10。
绝对值专题课教案(热门16篇)篇二
师:字母可表示任意的数,可以表示正数,也可以表示负数,也可以表示0.
教师引导学生用数学式子表示正数、负数、0,并再提问:这时的绝对值分别是多少?
学生活动:分组讨论,教师加入讨论,学生互相补充回答。
教师板书:
师强调:这种表示方法就相当于前面三句话,比较起来后者更通俗易懂。
【教法说明】用字母表示规律是难点。这时教师放手,让学生有目的地考虑、分析,共同得出结论。
(四)归纳小结。
师:这节课我们学习了绝对值。
(1)一个数的绝对值是在数轴上表示这个数的点到原点的距离;(2)求一个数的绝对值必须先判断是正数还是负数。
回顾反馈:
(出示投影2)。
1.-3的绝对值是在_____________上表示-3的点到__________的距离,-3的绝对值是____________.
2.绝对值是3的数有____________个,各是___________;绝对值是2.7的数有___________个,各是___________;绝对值是0的数有____________个,是____________.
八、随堂练习。
1.判断题。
(1)数的绝对值就是数轴上表示数的点与原点的距离()(2)负数没有绝对值()。
2.填表。
九、布置作业。
课本第50页2、4.
绝对值专题课教案(热门16篇)篇三
一教材分析:
教材所处的地位及作用:
本节课选自新人教版七年级数学上册§1.2节,是学生进入初中阶段后,在学习了正、负数、数轴以及相反数的基础上,对绝对值进行探究、学习的一个课题。绝对值是本章的一个重点,是比较有理数大小的又一工具,也是以后学习有理数混和运算的基础。另外,这一节课与前面所学的知识有千丝万缕的联系:绝对值的几何意义是在数轴的基础上得出的,代数意义又是运用前面所学的相反数知识来解决的。因此,这节课是一节承上启下的课。
二学情分析:
七年级学生刚刚跨入少年期,他们在身体发育、知识经验、心理品质方面,依然保留这小学生的天真活泼、对新生事物很感兴趣,求知欲望强、具有强烈的好奇心与求知欲,直观思维已比较成熟,但理性思维的发展还很有限,于是我用学生常见的行程问题导入这节课。
三教学目标:
知识目标:
(1)是学生掌握有理数的绝对值概念及表示方法。
(2)使学生熟练掌握有理数绝对值的求法和有关计算问题。
能力目标:
(1)在绝对值概念形成的过程中,渗透数形结合等思想方法,并注意培养学生的概括能力(2)能根据一个数的绝对值表示“距离”,初步理解绝对值的概念。
(3)给出一个数,能求出它的绝对值。
情感态度与价值观:
从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性。
四教学重点、难点:
根据学生的实际和本节课的要求,确定以下重、难点:
重点:给出一个数会求它的绝对值。
难点:绝对值的几何意义,代数意义的导出;负数的绝对值是它的相反数。
五教学方法与教学手段:
教法分析:
基于本节课内容的特点和七年级学生的心理特征,我在我在教学中选择互动是学习模式,与学生建立平等融洽的关系,营造自主探究与合作交流的氛围,共同演示、操作、观察、练习等活动中运用多媒体来提高教学效果,验证结论,激发学生学习兴趣。
学法分析:
教学过程是师生互相交流的过程,教师起引导作用,学生在教师的启发下充分发挥主体性作用。结合七年级学生的特点,让学生自己通过观察、类比、猜想、归纳,共同探讨交流,利用课件和图片自主探索等方式,激发学习兴趣,培养应用意识和发散思维。
六教学过程:
创设情境。
2)它们行驶的路程的远近相同吗?
思考:-8与8是相反数,把它们在数轴上表示出来,它们有什么相同之处和不同之处?(让学生充分发挥主体作用,()从自己的视点去观察、归纳、总结得出绝对值的几何意义。)2、形成概念:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值(absoutevalue),记作:|a|.
3、例题讲解。
例1求下列各数的绝对值。
-19,0,-2.3,+0.56,-6,+6,。
练习:求下列各数的绝对值。
|9||-2.5||-9||2.5||0|议一议:上述各数的绝对值与这些数本身有什么关系?(通过练习求三种类型数的绝对值,得出绝对值的代数意义。)4、引出法则:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.
议一议:
(1)当a是正数(a0)时,|a|=____;。
(2)当a是负数(a0)时,|a|=__;。
(3)当a=0时,(a=0)时|a|=__.
想一想:
(1)绝对值是3的数有几个?各是什么?
(2)绝对值是0的数有几个?各是什么?
(3)绝对值是-2的数是否存在?若存在,请说出来?
判断。
(1)+7的绝对值与-7的绝对值互为相反数。()(2)既不是正数也不是负数的有理数的绝对值是零。()(3)数a的绝对值就是数轴上表示数a的点与原点的距离。()(4)绝对值最小的数是0.()。
如何求一个数的绝对值。
作业布置。
必做题:
写出下列各数的绝对值:
-125,+23,-3.5,0,-0.05。
上面的数中那个数的绝对值最大?那个数的绝对值最小?
选做题:(通过这一活动可以拓宽学生的知识视野,1、让学生了解一点分类讨论的思想;2、把所学应用于生活)1、已知|x|=3,|y|=4,求x+y的值。
2、正式排球比赛对所用的排球重量是有严格规定的,现检查5个排球的重量,超过规定重量的克数记作正数,不足规定重量的克数记作负数,检查结果如下表:
+15。
-10。
+30。
-20。
-40。
问题:
(1)指出哪个排球的质量好一些(即重量最接近规定质量)?
绝对值专题课教案(热门16篇)篇四
借助于数轴理解相反数和绝对值的概念,会求一个数的绝对值,能借助绝对值比较两个负数的大小。
【过程与方法】。
通过自主探索、小组讨论、合作交流探索得到绝对值的过程,培养学生发现和解决问题的能力,锻炼学生合作交流的意识。
【情感态度与价值观】。
体会到数学和生活之间的联系,提升学生学习数学的自信心和乐趣。
二、教学重难点。
【教学重点】。
【教学难点】。
求一个数的绝对值和相反数;借助绝对值比较负数间的大小。
三、教学过程。
(一)引入新课。
教师回顾旧知并提问:上节课学习了哪些知识?
预设:学习了数轴,知道了有理数都可以用数轴上的点来表示。
多媒体出示,3与-3,5和-5等数字,再次提出问题:这些数有什么相同点,你能找到这些数在数轴上的位置吗?引出新课。
(二)探索新知。
学生自主观察,并写出几组类似的数字。
文档为doc格式。
绝对值专题课教案(热门16篇)篇五
(总结:)。
3.(1)若,则;
(2)若,则.。
八、随堂练习。
1.判断题。
(1)数的绝对值就是数轴上表示数的点与原点的距离()。
(4)如果甲数的绝对值比乙数的绝对值大,那么甲数一定比乙数大()。
(5)如果数的绝对值等于,那么一定是正数。
2.填表。
原数。
3
相反数。
绝对值专题课教案(热门16篇)篇六
(一) 教学内容:
《绝对值》是七年级数学教材上册1.2.4节内容,此前,学生已经学习了有理数的分类,数轴与相反数等基础知识,为本课学习的基础。绝对值不仅可以使学生加深对有理数的认识,还会为以后学习两个负数的大小比较以及有理数的运算做准备。所以本课在有理数一章起到承上启下的作用。
(二)教学目标:
根据数学课程内容标准要求及教学内容的特点,以及学生的认知水平,确定本节课的教学目标如下:
1,理解、掌握绝对值概念.体会绝对值的作用与意义;
2,能正确求出一个数的绝对值;
(三)教学重、难点分析:
教学重点:掌握绝对值的概念会求已知数的绝对值.
教学难点:掌握有理数的概念及分类。
(四)教学辅助手段。
利用多媒体(实物投影)、学案进行辅助教学。
第二部分:教学设计。
教学过程。
师生互动。
设计意图。
一、创设情境、引入新课。
二、合作交流、探索新知。
问题1:什么叫做绝对值?
怎么用数学符号表示一个数的绝对值?
问题2:互为相反数的绝对值的关系怎样?
问题3:正数的绝对值是什么数?零的绝对值是什么数?负数的绝对值是什么数?
问题4:设 a表示一个数, |a|等于什么?
三、拓展提高、应用巩固。
1.判断下列说法是否正确:
(1)符号相反的数互为相反数( ).
(2)符号相反且绝对值相等的数互为相反数( )。
(3)一个数的绝对值越大,表示它的点在数轴上越靠右.( )。
(4)一个数的绝对值越大,表示它的点在数轴上离远点越远.( )。
2. 求下列各数的绝对值: ,,0,,.
四、 概括总结、布置作业。
课堂小结:
1、 本节课收获:由学生进行总结,其他同学帮忙补充,教师提示。
2、 对于本节课的知识,如果还有不明白的地方请提出来,同学和老师共同帮助解决。
布置作业:
课本p11第1,2,3, 。
教师展示投影,甲乙两车相向而行问题 ,学生在学案上画出数轴,并根据学案的要求,思考甲乙两车行驶的距离引出的三个问题。
本环节教师关注重点:
学生能否区分方向和距离的不同。
学生能够理解从距离角度看数即绝对值的意义。
学生口头回答老师的问题。
对绝对值意义理解后教师让学生用自己的语言概括绝对值的定义?
学生相互讨论发言,教师进行补充并板书在黑板上,给出绝对值的数学符号书写规范。
学生巩固练习。
本环节教师关注重点:
学生是否正确理解了绝对值的概念并自己概括出来。
通过以下表格内容:
数值。
-3。
-2。
2
3
绝对值。
让学生填写表格后并通过表格小组讨论这些数能发现哪些规律?
学生进行小组讨论共同分析总结,得出组内结论。
本环节教师关注重点:
学生能否从正负数的角度看数的绝对值。
组织好小组讨论,使小组能真正发挥作用。
教师根据小组结论内容进行提问,得出绝对值的规律。
教师提醒和引导从正负数零的角度来思考。
学生小组讨论后教师进行补充。
给学生2分钟时间完成习题。
学生完成后,教师在黑板上进行板演写出完整的解题过程。
学生独立完成,找两名学生到黑板进行板演,对比过程的书写并由学生进行纠错,总结出完成的解题过程。
计算结果正确的学生举手示意教师;
本环节教师关注重点:
(1) 学生对于绝对值概念的掌握及灵活应用。
(2) 培养学生的分类的数学思维。
有本题引出下节课所要研究的重点内容。
本环节教师关注重点:
(1) 注重学生数学思维的形成。
(2) 提高学生的解题能力。
学生总结本节课内容后,小组间互相提问,看哪组将问题处理的正确、清晰。
用一个小情境让学生在兴趣中体验绝对值所代表的距离的意义,有实际问题引出绝对值的概念。
让学生通过实际的意义来正确的了解绝对值的概念,并通过讨论自己发表对绝对值概念的理解,发散学生的思维。
让学生通过自主学习找答案,观察数的规律自己总结不同数的绝对值的规律,提高学生的观察力和思考能力。
让学生自己总结,既锻炼学生的语言表达能力,又能加深学生对知识的掌握和理解。培养学生的数学语言及分类的数学思维。
通过习题加深学生的记忆和对绝对值的概念的掌握。
通过总结和提问帮助学生记忆本节课知识点,并加深理解,进行实际运用。
绝对值专题课教案(热门16篇)篇七
1、能借助数轴初步理解绝对值的概念,会求一个数的绝对值。
2、正确理解绝对值的代数意义和几何意义,渗透数形结合与分类讨论思想。重点和难点:理解绝对值的概念,能求一个数的绝对值。
任务一、复习旧知:
1、什么叫互为相反数?在数轴上表示互为相反数的两点和原点的位置关系怎样?
2、数轴上与原点的距离是2的点表示的数有_____个,他们表示的数是_____;与原点的距离是5的点有____个、任务二、新知理解:
1、自读课本p11-p12,体会绝对值的意义。
a的绝对值记作_______,如5的绝对值记作______,结果是_____、
(2)|0|=_______;
绝对值的代数意义:(1)一个正数的绝对值是__________;。
(2)一个负数的绝对值是___________(3)0的绝对值是___________。
上述可以用式子表示为:(1)当a是正数时,|a|=_______,
任务三:巩固练习。
1、求下列各数的绝对值:?7。
12,?
110。
4、7510、5。
2.计算|-2|+|+8||34|?|?815。
||-20|?|?45|。
(2)如果一个数是正数,那么这个数的绝对值是它本身;(3)如果一个数的绝对值是它本身,那么这个数是正数(4)一个数的绝对值越大,表示它的'点在数轴上越靠右。归纳:(1)不论有理数a取何值,它的绝对值总是______。
(2)两个互为相反数的绝对值____。能力提升:
4)若|a-2|=3,则a=______。
略
绝对值专题课教案(热门16篇)篇八
表达解决问题的方法;通过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。
3、情感态度与价值观:
借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想。通过“做一做“议一议”“试一试”问题的思考及回答,培养学生积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生合作探索、合作交流、合作学习的新型学习方式。
理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。
1、教师检查组长学案学习情况,组长检查组员学案学习情况。(约5分钟)2.在组长的组织下进行讨论、交流。(约5分钟)3、小组分任务展示。(约25分钟)4、达标检测。(约5分钟)5、总结(约5分钟)。
(一)、温故知新:。
(二)小组合作交流,探究新知。
1、观察下图,回答问题:(五组完成)。
大象距原点多远?两只小狗分别距原点多远?
归纳:在数轴上,一个数所对应的点与原点的距离叫做这个数的。一个数a的绝对值记作:.
4的绝对值记作,它表示在上与的距离,所以|4|=。
2、做一做:
(1)、求下列各数的绝对值:(四组完成)-1.5,0,-7,2(2)、求下列各组数的绝对值:(一组完成)。
(1)4,-4;(2)0.8,-0.8;。
从上面的结果你发现了什么?
3、议一议:(八组完成)。
(1)|+2|=,
你能从中发现什么规律?
小结:正数的绝对值是它,负数的绝对值是它的,0的绝对值是。
4、试一试:(二组完成)。
若字母a表示一个有理数,你知道a的绝对值等于什么吗?
(通过上题例子,学生归纳总结出一个数的绝对值与这个数的关系。)。
5:做一做:(三组完成)。
1、(1)在数轴上表示下列各数,并比较它们的大小:
-3,-1。
(2)求出(1)中各数的绝对值,并比较它们的大小。
(3)你发现了什么?
2、比较下列每组数的大小。
(1)-1和–5;(五组完成)(2)?
(3)-8和-3(七组完成)。
5和-2.7(六组完成)6五、达标检测:
1:填空:
|+15|=()|–4|=()。
|0|=()|4|=()2:判断(1)、绝对值最小的数是0。()(2)、一个数的绝对值一定是正数。()(3)、一个数的绝对值不可能是负数。()。
(4)、互为相反数的两个数,它们的绝对值一定相等。()(5)、一个数的绝对值越大,表示它的点在数轴上离原点越近。()。
1绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.
2.绝对值的性质:正数的绝对值是它本身;。
负数的绝对值是它的相反数;0的绝对值是0.
3、会利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小.
p50页,知识技能第1,2题.
绝对值专题课教案(热门16篇)篇九
本节课我首先复习相反数的知识,从一对相反数在数轴上的位置,自然引出它们距离原点相等。接着举例:出租车从车站出发,向南行了10千米,又从车站出发向北行了5千米。如果用正负数表示两次运行的情况,需要先规定一个正方向,假设向北为正,则分别是-10千米和+5千米。可是要想知道这两次运行中,出租车一共用了多少油,与方向还有关系吗?该与什么有关呢?面对这些问题,学生纷纷说出,只与从出发点到目的地的距离有关。
我及时给予鼓励,并在黑板上板书“距离”二字。
(1)3到原点的距离是3个单位长度。
(2)-3到原点的距离是3个单位长度。
这时,我问学生,“这句话文字太多,想不想简化一下?”
学生齐答“想”!
“好,那么用三个字就可以代替这句话。”有的学生已经小声说出了,是“绝对值”。
于是板书课题――绝对值。
接下来又问,“写这三个字也有点麻烦,想不想再简化一下?”
“想”,我看到学生已经笑了,好像这是很好玩的事,越来越简单了。于是我又及时给出符号“||”的写法。
到此时,学生已经明白“绝对值”就是“一个数到原点的距离”。学生自己总结出来了。
为了讲清绝对值的意义,我设计了循序渐进的几个例子。
(1)|-5|=(2)|7|=(3)|-1/3|=(4)|0|=。
当学生说出以上四个式子的结果后,又出示了第五个(5)|a|=。
很多学生没有思考马上就答出“等于a"。
针对学生的回答,我问“上节课,在学习相反数的时候,我告诉大家,字母可以表示哪些数?”
学生立即回答,“任意有理数”。那么这里的a也应该是任意有理数。
在此基础上,我引导学生得出|a|的.三种情况。尤其当a0时,|a|=-a,让学生明白,字母a中包含着一个看不见的“-”号。-a实际上是a的相反数,也是一个正数。
就这样,在我的预谋中,学生自然的明白了绝对值的意义,并学会了化简绝对值的符号,也理解了非负数的含义。
再次面对初一的新生,我觉得很多非常熟悉的知识,可以用不同的说法让学生理解,而且,教师一定要思路清晰。整个新知识的处理,要一气呵成,让学生在环环相扣的紧张状态中,形成知识系统,直到讲完新课.
当所有的内容已经胸有成竹的时候,再来教给学生,竟然可以深入浅出,四两拔千斤,尤其当你启发点拨的到位,学生水到渠成的自己得出你想要讲解的新课时,心里会有一种成就感,当然学生在不知不觉中自己掌握了新知识的主要内容,他们也不会觉得难以接受。
绝对值专题课教案(热门16篇)篇十
绝对值概念既【】是本节的又是。关于绝对值的概念,需要明确的是无论是绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说,任何一个有理数的绝对值都是非负数,即无论a取任意有理数,都有。
教材上绝对值的定义是从几何角度给出的,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及绝对值,通过数轴,这些知识都联系在一起了。此外,0的绝对值是0,从几何定义出发,就十分容易理解了。
绝对值的定义绝对值的表示方法用绝对值比较有理数的大小。
1.绝对值的代数定义。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零.。
2.绝对值的几何定义。
在数轴上表示一个数的点离开原点的距离,叫做这个数的绝对值.。
3.绝对值的主要性质。
(4)两个相反数的绝对值相等.。
1.两个负数大小的比较,因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负数左边,所以,两个负数,绝对值大的反而小。
比较两个负数的方法步骤是:
(1)先分别求出两个负数的绝对值;
(2)比较这两个绝对值的大小;
(3)根据“两个负数,绝对值大的反而小”作出正确的判断.。
绝对值专题课教案(热门16篇)篇十一
《绝对值》是选自人教版初一数学第一章第二节第四部分的内容。这部分内容之前已经学习了有理数、数轴、相反数的内容,这是本节课学习的基础。绝对值的内容主要包括含义及有理数之间的大小比较,这也为后面学习有理数的加减法奠定了基础。
(六)教学目标。
根据对教材内容的分析,以及在新课改理念的指导下,制定了如下三维目标:
(一)知识与技能。
理解、掌握绝对值的含义,并且会比较有理数之间的大小。
(二)过程与方法。
运用数轴来推理数的绝对值,并在推理的过程中清晰的阐述自己的观点,从而逐步发展发生的抽象思维。
(三)情感态度与价值观。
体验数学活动的探索性和创造性,感受数学的严谨性以及数学结论的确定性。
教学重难点。
通过以上对教材内容及教学目标的分析,以及学生已有的知识水平,本节课的教学重难点如下:
重点:绝对值的理解以及有理数的比较。
难点:负数的绝对值的理解及比较。
二、说学情。
以上就是我对教材的分析,由于教学目标及重难点的确定也是在学生情况的基础上进行的,所以下面我对学情进行分析。
初一学生的抽象思维开始有了一定的发展,但还需一定的感性材料作支撑,同时思维比较活跃和积极,所以教学过程中会注重直观材料的运用,然后引导学生自主思考并理解知识,以激发学生的学习兴趣,调动学生的积极性和主动性。
三、说教材。
基于以上对教材、学情的分析,以及新课改的要求,我在本课中采用的教法有:讲授法、演示法和引导归纳法。演示法中需要的教具有多媒体和温度计。
四、说教法。
新课改理念告诉我们,学生不仅要学到具体的知识,更重要的是学生要学会怎样自己学习,为终身学习奠定扎实的基础。所以本课中我将引导学生通过自主探究、合作交流的学法来更好的掌握本节课的内容。
五、说教学程序。
为了更好的实现三维目标、突破重难点,我将本课的教学程序设计为以下五个环节:
(一)情境导入。
出示温度计,"北方某一城市的温度是零下15摄氏度,南方某一城市的温度是15摄氏度",学生在稿纸上画一条数轴,标出这两个温度,并请一位学生画在黑板上。
(二)新授。
1、从上面的问题中,我引出今天的"绝对值"概念,然后和学生一起从数轴上推导出绝对值。
2、使用多媒体呈现一组数字,包括几个正数,几个负数。让大家在数轴上画出,并写出每个数字的绝对值。然后学生来依次说出每个绝对值,以巩固概念的掌握。
3、和大家一起写出这些绝对值,把负数、正数、0的绝对值分别写在三个地方,引导学生观察这些绝对值,并思考其中的规律,然后和学生一起得出结论,即正数的绝对值是本身,负数的绝对值是它的相反数,0的绝对值的0、得出这个结论后顺势提问:数a的绝对值是多少?进行分组讨论,在讨论一段时间后提醒学生刚刚的结论。
4、在每组的回答后,和学生一起总结出数a的绝对值,分三种情况,当a大于0,绝对值为a;等于0时,为0;小于0时,为-a、这三种情况的分析后,学生就充分理解了绝对值的含义。
5、回到大家画的数轴,大家很容易比较出原点0右边的正数的大小,那么左边的.负数的大小怎么比较呢?提出这个问题后不急于让学生回答,而是把学生引入一个情境,即把数轴上的数都看成是温度,比较温度的大小就比较容易,然后回到数的比较。在这个引导后,得出的结论是:离0越远的数,越小;也可以说绝对值越大的负数越小。
(三)巩固练习。
在ppt上呈现一些数的绝对值,以及一些负数、正数、绝对值之间的比较的题。
(四)小结。
引导学生总结出今天的学习内容,培养学生的归纳以及逻辑思维能力。
(五)布置作业。
布置作业不是目的,目的是学生能够更好的掌握并运用本节课的内容。所以我会布置这样一个作业:请学生回家可以在父母的帮助下,找出南方和北方分别三个城市的温度,比较这些温度的大小,并写出每个温度的绝对值并进行比较。
(六)说板书设计。
为了学生能够更清晰的掌握内容,我用写关键词的方式来有逻辑性的呈现我的板书。
以上就是我说课的全部内容,谢谢!
绝对值专题课教案(热门16篇)篇十二
在教学过程中,结合学生实际情况给枯燥的数学概念赋予生活的意味,贴近学生生活,使学生不再被动地接受知识,可以有自己独到的见解,学生也可以大胆说出心中的想法。
2、激励学生去发现问题、解决问题。
《新课程标准》明确地把“形成解决问题的一些基本策略”作为一个重要的课程目标。为此数学教学中设置一些具有挑战性的问题情境,激发学生进行思考,提出具有一定跨度的问题串引导学生进行自主探索,用“试一试,你能行”、“请与同学交流你的想法”等语言鼓励学生进行交流,使学生在探索的过程中进一步理解。
3、面向每一个学生,使每个人都获得成功。
课堂教学中,我们投入一“石”,激起了学生学习的“千层浪”,使得课堂变成了学生思维操练的场所。教师引导学生去寻找和发现,自己只是一个组织者和参与者,和学生一起共同探索。学生真正成为学习的主任,学生不仅积极地参与每一个教学环节,情绪高昂,切身感受了学习的快乐,品尝了学生求知、参与、成功、交流和自尊的需要。我鼓励学生“你学会多少就汇报多少…..”这充分调动了学生学习的积极性、主动性,大大引发了学生潜在的创造动因,创设了有利于个性发展的情境,因而引出了不同的学习结果,激发了学生学习的兴趣,提高了课堂效率。
将本文的word文档下载到电脑,方便收藏和打印。
绝对值专题课教案(热门16篇)篇十三
(1)、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。
(2)、通过应用绝对值解决实际问题,体会绝对值的意义和作用。
2、过程与方法目标:
(3)、通过对“做一做”“议一议”“试一试”的交流和讨论,培养学生有条理地用语言表达解决问题的方法;通过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。
3、情感态度与价值观:
借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想。通过“做一做“议一议”“试一试”问题的思考及回答,培养学生积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生合作探索、合作交流、合作学习的新型学习方式。
理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。
1、教师检查组长学案学习情况,组长检查组员学案学习情况。(约5分钟)。
2.在组长的组织下进行讨论、交流。(约5分钟)。
3、小组分任务展示。(约25分钟)。
4、达标检测。(约5分钟)。
5、总结(约5分钟)。
(一)、温故知新:。
(二)小组合作交流,探究新知。
1、观察下图,回答问题:(五组完成)。
大象距原点多远?两只小狗分别距原点多远?
归纳:在数轴上,一个数所对应的点与原点的距离叫做这个数的。一个数a的绝对值记作:4的绝对值记作,它表示在上与的距离,所以|4|=。
2、做一做:
(1)、求下列各数的绝对值:(四组完成)-1.5,0,-7,2。
(2)、求下列各组数的绝对值:(一组完成)。
(1)4,-4;。
(2)0.8,-0.8;。
从上面的结果你发现了什么?
3、议一议:(八组完成)。
你能从中发现什么规律?
小结:正数的绝对值是它,负数的绝对值是它的,0的绝对值是。
4、试一试:(二组完成)。
若字母a表示一个有理数,你知道a的绝对值等于什么吗?
(通过上题例子,学生归纳总结出一个数的绝对值与这个数的关系。)。
5:做一做:(三组完成)。
1、
(1)在数轴上表示下列各数,并比较它们的大小:
-3,-1。
(2)求出(1)中各数的绝对值,并比较它们的大小。
(3)你发现了什么?
2、比较下列每组数的大小。
(1)-1和–5;(五组完成)。
(2)-8和-3(七组完成)。
5和-2.7(六组完成)。
1、填空:
绝对值是10的数有()。
|+15|=()|–4|=()。
|0|=()|4|=()。
2、判断。
(1)、绝对值最小的数是0。()。
(2)、一个数的绝对值一定是正数。()。
(3)、一个数的绝对值不可能是负数。()。
(4)、互为相反数的两个数,它们的绝对值一定相等。()。
(5)、一个数的绝对值越大,表示它的点在数轴上离原点越近。()。
1绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
2绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
3、会利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小。
p50页,知识技能第1,2题。
绝对值专题课教案(热门16篇)篇十四
借助于数轴理解相反数和绝对值的概念,会求一个数的绝对值,能借助绝对值比较两个负数的大小。
【过程与方法】。
通过自主探索、小组讨论、合作交流探索得到绝对值的过程,培养学生发现和解决问题的能力,锻炼学生合作交流的意识。
【情感态度与价值观】。
体会到数学和生活之间的联系,提升学生学习数学的自信心和乐趣。
二、教学重难点。
【教学重点】。
【教学难点】。
求一个数的绝对值和相反数;借助绝对值比较负数间的大小。
三、教学过程。
(一)引入新课。
教师回顾旧知并提问:上节课学习了哪些知识?
预设:学习了数轴,知道了有理数都可以用数轴上的点来表示。
多媒体出示,3与-3,5和-5等数字,再次提出问题:这些数有什么相同点,你能找到这些数在数轴上的位置吗?引出新课。
(二)探索新知。
学生自主观察,并写出几组类似的数字。
绝对值专题课教案(热门16篇)篇十五
一、教学目标:
1、掌握绝对值的概念,有理数大小比较法则。
2、学会绝对值的计算,会比较两个或多个有理数的大小。
3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想。
二、教学难点:
两个负数大小的比较。
三、知识重点:
绝对值的概念。
四、教学过程:
(一)设置情境。
1、引入课题。
星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正:
(1)用有理数表示黄老师两次所行的路程。
(2)如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?
2、学生思考后,教师作如下说明:
实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关。
3、观察并思考:
画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离。
4、学生回答后,教师说明如下:
数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。
例如,上面的问题中|20|=20,|―10|=10显然,|0|=0这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义。为引入绝对值概念做准备。使学生体验数学知识与生活实际的联系。因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备。
(二)合作交流。
1、探究规律例1求下列各数的绝对值,并归纳求有理数a的绝对有什么规律?
―3,5,0,+58,0.6。
2、要求小组讨论,合作学习。
3、教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则。
(三)巩固练习。
1、其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别。求一个数的绝时值的法则,可看做是绝对值概念的一个应用,所以安排此例。学生能做的尽量让学生完成,教师在教学过程中只是组织者。本着这个理念,设计这个讨论。
2、结合实际发现新知引导学生看教科书第16页的图,并回答相关问题:
(1)把14个气温从低到高排列。
(2)把这14个数用数轴上的点表示出来。
3、观察并思考:
(2)学生交流后,教师总结:
14个数从左到右的顺序就是温度从低到高的顺序:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则。
4、想象练习:
想象头脑中有一条数轴,其上有两个点,分别表示数―100和―90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系。要求学生在头脑中有清晰的图形。让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性。
数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的.数左小右大这方面结合起来来了解,所以配置想象练习,加强数与形的想象。
5、课堂练习例2,比较下列各数的大小。
比较大小的过程要紧扣法则进行,注意书写格式。
6、练习:第18页练习。
(三)小结与作业。
课堂小结怎样求一个数的绝对值,怎样比较有理数的大小?
(四)本课作业。
1、必做题:教产书第19页习题1,2,第4,5,6,10。
2、选做题:教师自行安排。
五、本课教育评注。
1、情景的创设出于如下考虑:
(1)体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣。
(2)教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受。
2、一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。
3、有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学中要结合绝对值的意义和规定:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,帮助学生建立数轴上越左边的点到原点的距离越大,所以表示的数越小这个数形结合的模型。为此设置了想象练习。
4、本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。
绝对值专题课教案(热门16篇)篇十六
1、先画一条数轴,在数轴上表示下列各数的点,并比较它们的大小:
―4,2.4,0,―,―3,1.
2、一天,汽车司机张师傅从车站出发,沿东西方向行驶,规定向东为正,若向东行驶3千米,记作_____;若向西行驶2千米,记作_____.
3、数轴上表示数―3的点a到原点的距离是,表示数5的点b到原点的距离是,a、b两点之间的距离是.
4、数轴上到原点的距离是2的点有个,表示的数是.
【课堂重点】。
1、小明的家在学校西边3km处,小丽的家在学校东边2km处.
(2)从数轴上看,哪家离学校较近?哪家离学校较远?
2、数轴上表示一个数的点与原点的距离,叫做这个数的.用符号“”表示.
3、如图,你能说出数轴上a、b、c、d、e、f各点所表示的数的`绝对值吗?
4、学习教材21页例题,完成“练一练”.
5、想一想:。
(2)绝对值最小的数是.
6、例3:某厂生产闹钟,从中抽取5件检验时,比标准时间多的记为正数,比标准时间少的记为负数,请根据下表,选出最准确的闹钟.
12345。
+2s-3.5s6s+7s-4s。
误差不超过5秒的为合格品,否则为次品,问有几台合格?
7、练习:某车间生产一批圆形零件,从中抽取8件进行检验,比规定直径长的毫米数记为正数,比规定直径短的毫米数记为负数,检查记录如下:。
12345678。
+0.3-0.2-0.3+0.40-0.1-0.5+0.3。
指出第几个零件最标准?最接近标准的是哪个零件?误差最大的是哪个零件?
8、通过本节课的学习,你有什么收获?
【课后巩固】。
|0|=_____,|9|=______,|-2|=________;。
(3)若|x|=6,则x=__________;。
(4)在数轴上点a表示-,点b表示,则点___________离原点的距离近些.
2、计算:
(1)|―3|×|―6.2|(2)|―5|+|―2.49|。
(3)―|―|(4)|―|÷||。