通过阅读范文范本,我们可以学习到不同文体和文化背景下的写作技巧和风格。小编为大家整理的这些范文范本是由各个领域的专家和作家所精心创作的。
大学数学建模论文范例(实用19篇)篇一
从现实现象到数学模型.....................................................................................................................
数学建模的相关基本概念.............................................................................错误!未定义书签。
…………余下全文。
大学数学建模论文范例(实用19篇)篇二
“摘要”是对整篇论文的缩写,建立在通读全文、理解全文的基础之上。评审专家评阅论文时,总是先看摘要,摘要给专家留下第一印象,是评奖的敲门砖。“摘要”包括:问题背景,要达到什么目标,解决问题的思路、方法和步骤,模型的主要内容、算法和结论,模型的特色。好的“摘要”能很快吸引评审专家的注意力,它建立在多次修改、反复推敲的基础之上,具有统揽全文、层次分明、重点突出、文笔流畅的特点。
“问题提出”也可写作“问题重述”。是将竞赛试题所给定的问题背景和解题要求用论文书写者自己的语言重新表述。在美国的数学建模竞赛中,这一部分称为background或者introduction。
任何问题的求解都有它的背景和适用范围,建模试题来自于现实问题,同样受到各种外在因素的约束。“模型假设”就是界定一个范围,或给出几个约束条件,一使得问题的解决过程不至于太复杂,二使得其他人在使用该模型时知晓它的适用范围。“模型假设”不是凭空臆造的,是在建立模型的过程中挖掘、提炼出来的。
数学符号是数学语言的基本元素,具有抽象性、准确性、简洁性的特点。数学模型由数学符号组成,模型的求解通过符号的运算来完成。可见,在建立数学模型时根据需要随时引入必要的数学符号是多么重要的事情。根据竞赛要求,在建立模型的过程中所引入的数学符号要在本模块给出说明,最好的说明方式是列一个表格。
众所周知,解决数学问题最难、最重要的一步就是明确解题思路,确定解题方法。而“分析”,则是迈出这一步的关键。数学建模也这样。建模试题往往由几个子问题组成,这时的“问题分析”既要有全局分析,也要有局部分析。“问题分析”包括:分析解决该问题需要用到哪些专业背景知识;分析解决问题的切入点、重点和难点;分析解决问题的思路、方法、工具和步骤。这样的分析对于“如何建立模型?采用哪些数学理论或公式?怎样求解?会遇到哪些困难?”具有指导作用。
“模型建立”就是将原问题抽象成数学的表示式,主要步骤:。
第一步,根据问题的实际背景和专业背景,选择适当的数学理论或工具。例如,如果是变化率问题,则考虑借助于导数或微分方程的手段;如果涉及面积、体积、曲线弧长、功、流量等几何量或物理量,则考虑运用积分元素法,将问题转化为定积分、或重积分、或曲线曲面积分;如果是随机数据的处理,则考虑统计分析的方法。
第二步,确定常量、变量,用符号来表示这些量。
第三步,建立数学模型,即建立常量、变量之间的关系。这种关系可以是方程、函数或表格。
少数模型可能是简单的数学式子,求解起来比较容易。有些模型虽然也可用数学式子表示,但其中含有难以析出的参数,求解很困难,有的模型面对的就是一堆数据,对于这两种情形,就需要借助于软件matlab,mathematic,maple,sas,spss中的某一个编程求解。
数学建模竞赛的题目来自于科技、工程、经济、社会等领域的实际问题。由于问题的复杂性和方法的局限性,所建立的数学模型与实际情况之间会有差距,模型可靠性的检验成为必然。为了检验提交的数学模型与实际情况吻合的程度,竞赛题中往往会提供一些来自于背景问题的实验数据。“模型检验”就是将给定的数据代入模型,计算相对误差和绝对误差,如果误差较大,就要返回去调整模型以提高可靠性。
该标题也可写成“模型的优缺点分析”。分析模型有哪些优点,缺点是什么。也有人将这里的标题改写为“模型评价、推广与改进”。其中的“推广”是将前述“模型假设”中的某些条件适当放宽,看看结果会怎样。“改进”是指对模型或算法做出某种改进。
列式参考的主要文献。
详细的软件程序、程序运算过程、运算结果;用于模型检验的数据表格;其他不宜放在正文中的数据表格。
大学数学建模论文范例(实用19篇)篇三
通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。
创新能力;数学建模;研究性学习。
《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生:。
(1)学会提出问题和明确探究方向;。
(2)体验数学活动的过程;。
(3)培养创新精神和应用能力。
其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。
数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。
教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。
这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。
这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。
学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程:。
现实原型问题。
数学模型。
数学抽象。
简化原则。
演算推理。
现实原型问题的解。
数学模型的解。
反映性原则。
返回解释。
列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。
高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。
分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:。
(1)该国的政治、经济、社会环境稳定;。
(2)该国的人口增长数由人口的生育,死亡引起;。
(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。
通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。
由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想:。
(1)理解实际问题的能力;。
(2)洞察能力,即关于抓住系统要点的能力;。
(3)抽象分析问题的能力;。
(5)运用数学知识的能力;。
(6)通过实际加以检验的能力。
只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。
例2:解方程组。
x+y+z=1。
(1)x2+y2+z2=1/3。
(2)x3+y3+z3=1/9。
(3)分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。
t3-t2+1/3t-1/27=0。
(4)函数模型:。
由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3)。
平面解析模型。
方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(o、o)到直线x+y的距离不大于半径。
总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。
大学数学建模论文范例(实用19篇)篇四
随着科技的进步和社会的发展,数学这一基础学科已与其他学科相结合,且应用愈来愈广,已渗透到生产和生活的各个方面。我国从1992年开始举办大学生数学建模竞赛。近年来,大学生数学建模竞赛迅猛发展,为高等数学的应用型教学指引了方向,同时也激发了大学生的创新思维,锻炼了大学生的实践能力,受到了社会各界人士的关注和好评。
一、数学建模和大学生数学建模竞赛。
何为数学建模?有人认为,数学模型即以现实世界为目的而做的抽象、简化的数学结构;也有人认为,数学模型就是将现实事物通过数学语言来转化为常见的数学体系。事实上,数学建模是运用数学知识从实际课题中抽象、提炼出数学模型的过程,主要方法是通过合理假设、引进自变量、借助各种数学工具实现对现实事物的数字化转变,进而描述或解决实际问题。
那么,受广大高校师生青睐的大学生数学建模竞赛又是什么呢?数学建模竞赛是全国大学生参与规模最大的课外科技活动,从一个侧面反映一个学校学生的综合能力,为学生提供了展示才华的舞台。大学生数学建模竞赛具有一定的开放性和应用性,同时兼具一定的综合性和挑战性。成果以一篇论文的形式上交,要求必须包含完整的建模步骤,包括问题的提出、模型的假设、变量的引入、建模过程、模型求解与分析、模型检验及应用。
二、大学生数学建模竞赛与课程教学培训中存在的问题。
通过对山西工商学院历年来参加大学生数学建模竞赛的选手及其相关指导老师进行调查、走访,并考察其他高校的情况,笔者发现,相比往年的成绩,各大高校在近几年的竞赛成绩上有了飞速的提高,在学校的组织和鼓励下,参赛人数逐年递增,数学建模教学每年都在不断改革,同时除了参加竞赛,还在课堂外实践了数学与生产实际的结合过程。然而,通过参阅文献和访谈笔录资料,笔者也总结了近几年来大学生数学建模竞赛及竞赛培训教学中存在的相关问题。
第一,参赛学生的学习能力和综合素质有待提高。在思想品质方面,数学建模的参赛过程极其艰苦,需要学生具备意志力、求知欲、团队意识。我们的队员往往在此三方面表现一般。同时,在数学能力方面,学生的数学基础知识储备不足,软件处理的方法单一,实际问题转化为数学结构的创新思维并不能良好地展现。
第二,根据上述学生所表现出的问题不难发现,教师团队在数学建模培训教学过程中,教学观念滞后,创新能力有待提高,教学模式亟待突破,数学建模的教师团队应当做好学生的表率,要吃苦耐劳,要通力合作。
第三,正因为上述问题,数学建模培训也出现了弊端。培训方式单一,培训只讲求深入而不探索广度,培训时间安排不合理,培训的内容与建模竞赛不对接。
第四,经过调查发现,部分高校对组织数学建模竞赛的前期工作没有给予足够的重视,少数高校在竞赛的组织和开展中急功近利。另外,大多数高校在数学建模教学教育的过程中缺乏完整的制度和保障体系。
大学生建模竞赛除了能为部分大学生及其指导老师和高校获得荣誉外,更能培养大学生综合运用所学专业的意识,提升大学生的创新思维和抽象思维,以及自主学习能力和团队协作能力。因此,在数学建模课程教学培训中,应做好如下工作。
(一)教师层面。
首先,数学建模课程教学培训应当以创新为起点。建模不是凭空而来的,教师要引导学生从生活实际中抽象出数学模型,真正在选题上下功夫,培养学生的创新思维。
其次,数学建模课程教学培训应当以数学知识体系为基础。教师不能仅仅将自己的专业知识传授给学生,数学博大精深,自身要不断涉猎新知识,不仅要注重数学学习的深度,更应当拓展数学学习的广度,为数学建模竞赛打下坚实的基础。
最后,数学建模课程教学培训应当回归实践。建模的目的是为了解决实际问题,无论多么复杂的数学模型,最后都要落到解决后的结果中。因此,教师既要教会学生建模,又要教会学生将建模的方法真正应用于解决实际问题,做到学以致用。
(二)学校层面。
首先,制定系统的数学建模课程体系,包括合理的学时、学制,保证学生的学习,不能在竞赛前急抓一批学生现学现用。
其次,学校要做好数学建模竞赛的宣传和指导工作,尽量保证每位学生都能于在校期间参加比赛,获得锻炼。
最后,学校要时刻以学生为主,不能一味地为了获奖而出现教师代替学生的现象。
参考文献:
[1]刘建州.实用数学建模教程[m].武汉:武汉理工大学出版社,2004.
[2]李尚志.数学建模竞赛教程[m].南京:江苏教育出版社,1996.
[3]赫孝良.数学建模竞赛赛题简析与论文点评[m].西安:西安交通大学出版社,2002.
大学数学建模论文范例(实用19篇)篇五
摘要:在当今社会数学已经渗透向生活的各个领域,概率、比率、机会、误差、图像、逻辑、程序等等数学概念已进入日常生活;各行各业都在数量化、数字化、数学化,用到的数学知识越来越多。但传统高等数学教学注重训练学生的逻辑推理能力,而没有注意训练如何从实际问题中提炼出数学问题以及如何用数学来解决实际问题,本文从建模思想的重要性、教育现状和改革思路以及已有的建模教学成果三个方面探讨数学建模思想在高等数学教学中的作用。
关键词:数学建模;高等数学教学。
一、引言。
11世纪的数学家、物理学家和天文学家高斯曾说:“数学是科学之王。”数学贯穿于所有科学理论之中,任何科学理论如果不应用数学,它就是粗糙的,不懂数学的人是不能进行深层次的科学思维的。
在当今社会数学已经渗透向生活的各个领域,概率、比率、机会、误差、图像、逻辑、程序等等数学概念已进入日常生活;各行各业都在数量化、数字化、数学化,用到的数学知识越来越多。从科学技术的角度来看,大量与数学相关的交叉学科相继出现出现,迅速发展例如:数学化学、数学生物、数学地质学、数学心理学、数学语言学、数学社会学等。有研究者认为高科技技术本质上就是一种数学技术。例如财物、会计专业软件包都是大量应用现有的相关数学知识,开发数学模型以及应用数学技巧、方法的结果。高等数学对于培养大学生数学思维、数学意识提升逻辑思维能力有重要意义。
传统高等数学教学注重训练学生的逻辑推理能力,而没有注意训练如何从实际问题中提炼出数学问题以及如何用数学来解决实际问题,其后果是学生们学了不少数学,但不会用,为此在高等数学的教学过程中如何提升教学效果成为教学改革的一个重要研究问题。当前高等数学教学不重视应用性,很多学生数学的学习仅仅以通过考试为目的,数学成为抽象的、枯燥的、无实际用途的科学。数学建模则以“数学的应用与模型化”为主线,重视数学建模意识和应用能力的培养。
数学建模的思想在高等数学发展的历程中很早就有,但是现代教育技术环境的发展和大学生数学建模赛事的举行为数学建模的教学发展提供了契机和更好的外部环境条件,同时也对现代高等数学的教学提出了新的要求。数学建模对于培养大学生数学能力的作用的相关研究较多,研究结果表明:数学建模能够提升大学生理论联系实际的能力、可以提升思维能力、概括能力、归纳能力、创新能力。
三、数学建模教育现状和改革思路。
全国大学生数学建模竞赛创办于1992年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。2012年,来自全国33个省/市/自治区(包括香港和澳门特区)及新加坡、美国的1284所院校、21219个队(其中本科组17741队、专科组3478队)、63600多名大学生报名参加本项竞赛。竞赛能全面反应学生解决实际问题的能力、数学创造力、计算机使用能力、书面表达写作能力,特别强调创新意识、团队精神。已经成为我国大学生创新能力培养和提升的重要大型学术赛事之一。
郑州航空工业管理学院,在2008年至2010年累计有67支队伍,共计201名学生才加了全国的大学生建模大赛,并取得了良好的成绩荣获省级一等奖6项、省级二等奖8项、省级三等奖20项,但参赛学生来自全校各个不同院系,较多集中在数理与统计学院。
综上可见:通过数学建模对提升高等数学教学效果的实践研究,可以为高等数学的教学找到一条新模式,进而提升学生综合素质,培养出能更好适应社会的应用型专业人才。另外,对于数学建模教学实践还可提升高校的数学建模竞赛成绩,提升学校知名度,并影响到更多的学生,使学生们真正热爱数学学习,全面提升个人素质。
关于数学建模与提升提升高等数学教学效果的实践研究的相关研究主要集中在以下几个方面:
(一)数学建模的教学方法研究。
许多研究者对数学建模的教学从不同角度和方面进行探讨,一些比较有影响的研究有:黄世华等,针对高专院系的建模教学现状,提出从指导思想、教学理念、教学内容、教学方法、考核方式出发,课程教学应采取以问题驱动研究式为主,以知识驱动讲授式为辅的教学方法才是行之有效的。刘浩等,认为数学建模应加强数学思维的互动训练,培养创新精神;加强信息素养的训练,开拓知识面;注重团队训练,提高团队合作意识。杨小钟讨论数学建模教育对高校数学教育改革的重要意义,以及存在的问题并提出了改变教学理念的改进措施。还有研究者通过具体的模型教学,讨论了建模思想的培养和相关的教学实践心得。柴中林、王航平等针对美国大学生数学建模竞赛提出了一些培训策略。
(二)数学建模教学意义研究。
对数学建模的意义研究主要集中在数学建模与大学生能力培养和非智力因素发展等方面。沙元霞等提出学校可以通过增强数学建模意识、改进数学建模思想方法、提高数学建模能力,深化教育教学改革,培养数学应用型人才。蒋莉分析了数学建模对培养大学生数学素质的作用,并提出数学建模培养了大学生的抽象思维能力,提高了大学生的创新能力。杨太文等,研究数学建模竞赛与大学数学课程间的效用发现数学建模的学习可以明显提高学生的数学学习能力。
总之,当前我国大学生数学建模的教学水平相对落后,数学建模思想和高等数学相结合,可以提升学生的学习兴趣,进而促进学生主动学习和思考,养成独立思考学习的好习惯,从而培养学生的创新意识。数学建模大赛这个平台,有给了学生一个团队协作的机会,让学生能够提升自己的理论联系实际能力、应用写作能力和创造力。数学建模思想可以提高教学效果,而高等数学课程的开展为数学建模奠定了理论基础,两者相辅相成,密不可分。
参考文献:
[1]范英梅。高等数学、计算机与数学建模教学的关系分析[j].广西大学学报(自然科学版),2004,9.
[2]何伟。在高等数学教学中如何体现数学建模的思想[j].数学的实践与认识,2003,10.
[3]马戈等。现代教育技术环境下高等数学教学改革的实践与思考[j].高等数学研究,2004,5.
[4]蒋莉。浅谈数学建模在培养大学生数学能力的作用[j].理论探索,2012,2.
[5]沙元霞。基于数学建模的应用型人才培养[j].长春师范学院学报(自然科学版),2012,9.
[6]黄世华等。数学建模教学的方法研究[j].科教研究,2012,2.
[7]刘浩,杨艳梅。大学生数学建模教育的几点思考[j].数学教育与研究,2012,4.
[8]杨小钟。初探高校数学建模课程改革[j].大观周刊。2012,8.
[9]徐茂良。在传统数学课中渗透数学建模思想[j].数学的实践与认知。2002,7.
[10]杨进峰。经济应用数学教学研究[j].陕西教育,2012,7.
[11]吴秀兰等。浅议数学建模思想如何与高等数学教学相结合[j].吉林省教育学院学报。2012,9.
[12]柴中林等。国际大学生数学建模竞赛培训策略的一些探讨[j].科技视界,2012,9.
[13]杨太文等。数学建模竞赛与大学数学课程间的效用[j].高等教育,2012,10.
大学数学建模论文范例(实用19篇)篇六
探究式教学法,不同于传统将知识直接由老师进行传授的教学方法,而将其重心放在学生的“探与究”上。“探”是重头,学生在新接触某个概念和原理时,教师只提供事例和问题,学生通过查阅、观察、记录、实验等途径独立探索。“究”是核心,学生在独立探索的基础上,通过思考、讨论自行发现掌握相应的原理和结论。
最后老师结合学生的探究过程对他们的结论进行评价和矫正。在探究过程中,始终强调以学生为主体,学生的自主学习能力都得到加强,相比被动接受教师传授的知识和结论,通过这种方式获取的知识,学生理解更透彻,掌握更牢固。数学建模课程教学中大量源于实际生活的实例,也使得这门课程在教学手段和教学形式上的得以有大量创新,探究式的教学模式尤其适合在本课程的教学中使用,笔者长期承担数学建模课程的教学工作和指导学生开展数学建模竞赛及有关活动,结合多年的实践谈一谈。
探究过程的具体实施。
问题驱动。
实践探索。
这是探究过程的关键环节,在教师的组织下,学生自己动手实践如何制订研究计划,如何收集必要的资料和有关的'研究方法。基于培养学生团队合作精神的目的,这个过程可将学生分组来完成。例如:包汤圆的问题中,引导学生把问题梳理和抽象出来,一张面积为s的皮,可以包体积为v的馅,如今把这张面积为s的皮,分成n张面积为s的皮,每张面积为s的皮可以包体积为v的馅,那么问题就转化为了讨论,究竟是v大还是nv大的问题了。这个过程中,一定要让学生思考,是不是需要某些合理的假设,如:不论面皮大小,其厚度都应该一致;不论汤圆大小,其形状都一致(这两个假设很关键)。
思考讨论。
学生把通过实践探索得到的资料进行思考、梳理、总结,形成自己的结论。各团队就同一问题将自己的结论清楚地表达出来,针对各种不同的观点,共同讨论。评价矫正在集体讨论、辩论过程中,教师适时给予评价和矫正,分析独特,立意清晰的给予肯定,观点模糊的给予指正,通过融洽的学术交流使大家发现自己的问题所在,不准确、不深入的地方继续完善。
探究式教学中应注意的问题。
精心设计。
第一,选择适合探究的教学内容。课堂中的探究其根本目的是引导学生主动获取知识,教师要注意不要仅仅为了体现探究的形式而忽略了探究的目的。第二,教师精心组织、编排探究的问题。大学数学课程探究式教学关键是通过问题的驱动,让学生在探究过程中自主的把握问题解决的方向,所有同学都在考虑同一个问题,在讨论探究中产生思维的火花。要达到预期效果,没有教师课前精心组织、设计是很难做到的。第三,控制好各个环节。根据实际情况,设计好探究过程中各环节的时间。将学生探究讨论的时间和教师点评的时间都事先做一个安排,形成一定的惯例,学生课前充分准备,通过细致的安排,确保探究过程高效完成。
注重引导。
学生由于认知水平参差不齐导致探究过程有显著差异,教师要充分发挥引领作用,及时给予引导和矫正。
及时总结和评价。
教师在学生讨论完成后,及时对探究过程进行总结,讲解正确的分析和理解,让同学对自己的思考形成判断和比较,通过鼓励,调动学生积极性,唤起学习热情。
大学数学建模论文范例(实用19篇)篇七
作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。
(一)教学观念陈旧化。
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
(二)教学方法传统化。
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
(一)在公式中使用建模思想。
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
(二)讲解习题的时候使用数学模型的方式。
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
(三)组织学生积极参加数学建模竞赛。
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
大学数学建模论文范例(实用19篇)篇八
财政部于2017年2月颁布了新的《企业会计准则》(以下简称“新准则”),并在2017年1月1日起在上市公司中正式实施。在现行准则对八项资产减值计提规定的基础上,新准则单独颁布了《企业会计准则第8号――资产减值》,里面对可能发生资产减值的认定、资产可收回金额的计量、资产减值损失的确定、资产组的认定及减值处理、商誉的减值处理、披露几个方面做出了更进一步的规定。
现行准则只针对八项资产的期末计价原则、判断减值的迹象、会计处理和恢复转回等方面做了笼统的规定,而且缺乏对多项资产或综合性资产进行期末减值测试的指导。各企业由于所处的具体情况不同,很容易对同一资产得出不同的估计结果。因为现行准则规定得分散、简单、过于原则,在实际操作上比较困难,所以很有必要“在一项准则中综合有关减值损失的认定、计量、确认、转回的规范,可使这些条款的内容更为协调一致”,即建立一个核心的、详细的、系统的资产减值会计准则。可以说新资产减值准则的诞生是顺应时代发展的要求的。其中新准则对资产减值损失转回的限制,大大收缩了“资产减值转回”虚增利润的弹性空间,将会使报表信息更加客观真实。
在现在的诸多文献中,对资产减值准备进行研究的举不胜举,但大多观点都一致:我国现行资产减值准备还不够完善,为企业进行利润操纵留有空间。现就几个人的文献观点进行一下概括。在新准则出现之前的有王跃堂的《会计政策选择的经济动机—基于沪深股市的实证研究》(2017年):朱炜的《上市公司资产减值准备计提情况的统计分析》(2017年),徐维兰、曹建安在《我国上市公司会计政策选择动机的实证研究》(2017年),袁琳、赵建军的《中国上市公司会计估计应用研究—来自沪市2017年的证据》(2017年)。都不同程度的就资产减值与盈余管理进行了研究,认为公司利用准则的疏漏调整利润的居多。
在新准则出现后,讨论资产减值准备准则的就更多了,主要有:
(1)王洪军在《资产减值损失及转回的国际比较》一文中通过对我国资产减值准则与国际会计资产减值准则的比较得出结论:我国财政部2017年2月发布的《企业会计准则第8号———资产减值》与国际会计准则基本实现了趋同,但在资产减值损失是否转回的问题上却在实质性差异,主要是因为我国企业利用资产减值损失转回操纵利润的现象比较严重。
(3)贾慧娣的《浅议我国资产减值准备的现状与对策》以及王峰声 李培红《对计提资产减值准备的思考》和其他等一些学者就现行资产减值准则的现状进行分析,普遍认为新老资产减值准则都存在给操纵利润留有空间,对执行新会计准则提出了对策。
从上述文献及。
大学数学建模论文范例(实用19篇)篇九
科学论文是对某一课题进行探讨、研究,表述新的科学研究成果或创见的文章。
注意:它不是感想,也不是调查报告。
二、论文选题:新颖,有意义,力所能及。
要求:
1.有背景.
应用问题要来源于学生生活及其周围世界的真实问题,要有具体的对象和真实的数据。理论问题要了解问题的研究现状及其理论价值。要做必要的学术调研和研究特色。
2.有价值.
有一定的应用价值,或理论价值,或教育价值,学生通过课题的研究可以掌握必须的科学概念,提升科学研究的能力。
3.有基础。
对所研究问题的背景有一定了解,掌握一定量的参考文献,积累了一些解决问题的方法,所研究问题的数据资料是能够获得的。
4.有特色。
思路创新,有别于传统研究的新思路;
方法创新,针对具体问题的特点,对传统方法的改进和创新;结果创新,要有新的,更深层次的结果。
5.问题可行。
适合学生自己探究并能够完成,要有学生的特色,所用知识应该不超过。
高中生的能力范围。
三、(数学应用问题)数据资料:来源可靠,引用合理,目标明确要求:
1.数据真实可靠,不是编的数学题目;
…………余下全文。
大学数学建模论文范例(实用19篇)篇十
经过对《形势与政策》课的学习,我对国内外的形势与政策有了更深刻、更全面、更真实的了解,虽然只是短暂的一节课,但却使我受益匪浅,感触良多。作为一名大学生,深刻、全面地了解国内外的形势是非常必要的,而学习这一门课程是对我们学生进行形势与政策教育的主要渠道,帮助我们掌握正确分析形势的立场和观点。形势与政策课是高校思想政治理论课的重要组成部分,是对我们学生进行形势政策教育的主要渠道、主要阵地,是我们每个大学生的必修课程,在我们大学生的思想政治教育中担负了重要的使命,具有不可替代的重要作用,更好地贯彻落实了中央的有关精神,是我们当代大学生关注的热点问题,帮助我们掌握正确分析形势的立场,观点和方法。
当今社会飞速发展,“两耳不闻窗外事,一心只读圣贤书”的时代过去了。学习当今世界的形式与政策的目的在于要坚持理论联系实际,解放思想、实事求是地发现当今世界形势新情况,解决新问题,总结新经验,得出新思路。我们当前特别要处理好专业学习和理论学习的关系。在校学生专业学习固然重要,这是学生目前的主要任务,但是理论学习更为重要,是方向和指针。专业学习越忙越艰巨,越需要多学理论,提高理论水平,加强理论修养。只有这样,才能始终保持正确的航向,达到成功的彼岸。
关注世界,地球村里的变化日新月异。生在当代,作为大学生的我们,岂能做那四角的书柜?抛掉陈旧的观念,拥抱外面精彩的世界,才是我们应该做的。
给我们授课的老师滔滔不绝,睿智敏捷的思维,丰富多彩的素材,以及别有风趣的讲演,无不为我们展示了一位领导所具备的良好素质和出众能力,在这里,我们不仅享受着知识的积淀所带来得无限快乐,更被其无穷的讲演魅力所深深陶醉。我赞美他,是因为他优秀,我们钦佩他,是因为我们年轻,我们用自己年轻、活跃、开放、包含的个性来聆听哲人的教诲,固然会受益匪浅、泽被至深。
我们认识到,形势与政策左右我们的发展,对我们具有重要意义。史有“识时务者为俊杰”,今应为“适时务者为俊杰”。社会历史的大发展已决定了个人发展的最大环境、最大上限,制约着可选择度,决定着大学生成功的机率,影响很具体,也很深远.因此,我们应学会认识和把握形势与政策。形势是制定政策的依据,政策影响形势的发展。我们必须吃透政策的原意,懂得灵活变通,具备创新能力。与此同时,我们还应顺应形势与政策,发展自我:找准自己的发展目标,结合自己的优势,定位自己的方向及发展地位;依据个人目标,制定切实可行的。
方案。
努力奋斗构建知识结构体系拓展素质不断提高个人能力打造出“诚、勤、信、行”的品牌大学生;利用形势与政策为我所用形成对形势与政策的敏锐的洞察力和深刻的理解力培养超前的把握形势与政策的胆识“艺高人胆大胆大艺更高”利用形势与政策实现自我大发展。树立一个远大理想做一个成功人士!
其次,青年是推动社会和历史前进的一支重要力量。无论是人类社会发展的历程中,还是中华民族发展的历程中,青年都发挥了重要作用。而大学生是青年中,知识层次较高,最具潜力,最有创造性的群体,因此,当代大学生的精神面貌和人生价值取向,将直接影响到国家的未来,事关中华民族伟大历史复兴的全局。
再者,当今国内外形势风云变幻,进入21世纪的中国正面临着难得的机遇和巨大的挑战,当代大学生也面临着深刻的国内外环境,所以,在高校大学生中广泛开展形势政策教育,对当代大学生如何在纷繁复杂的国内外形势下,正视我国面临的机遇与挑战,坚定信念,振奋精神,努力学习,报效祖国,具有重大的现实价值,与深远的历史意义。
现在的世界,当代的社会需要的是对形势与政策有着敏锐洞察力,能够正确把握形势与政策的有理想,有抱负的青年。不能做到“识时务者”,一心只知道埋头苦读,不关心国内外形势的井底之蛙只能被自己狭隘的目光所束缚,禁锢,最终留于平庸。个人的发展离不开社会的大环境,环境制约着一个当代大学生成功的机率,试想在一个战火纷飞的国度,发展与进步必然受到其影响,个人寻求更大发展的机会也必然会减少。当代大学生如果不能认识与把握当下的形势与政策,充分了解决定政策的形势,准确判断政策如何改变未来的形势,逆者社会的大形势而为,可以想象失败是最终必然的结果。因此只有准确灵活的掌握当下的形势与政策,我们才能接着根据自己的实际,优势与劣势,结合自己的目标,制定最终可行的发展。
方案。
与
计划。
并凭借着自己不断的刻苦努力沿着正确的方向前进实现自我的发展并最终取得最后的胜利。
了解国内外的形势与政策才能更好地帮助发展中国,认识中国,了解我们与世界的差距以及我们自身的不足。我们必须吃透政策的原意,懂得灵活变通,具备。
创新。
能力。与此同时,我们还应顺应形势与政策,发展自我:找准自己的发展目标,结合自己的优势,定位自己的方向及发展地位;依据个人目标,制定切实可行的方案,努力奋斗,构建知识结构体系,拓展素质,不断提高个人能力,打造出“诚、勤、信、行”的品牌大学生;利用形势与政策,为我所用,形成对形势与政策的敏锐的洞察力和深刻的理解力,培养超前的把握形势与政策的胆识,“艺高人胆大,胆大艺更高”,利用形势与政策,实现自身的大理想,大发展。
形势与政策教育坚持以马克思列宁主义、毛泽东思想、邓小平理论和“三个代表”重要思想为指导,深入贯彻落实科学发展观,紧密结合全面建设小康社会的实际、针对学生关注的热点问题和思想特点,帮助学生认清国内外形势,教育和引导学生全面准确地理解党的路线、方针和政策,坚定在中国共产党领导下走中国特色社会主义道路的信心和决心。
中国当前国际形势总体和平、缓和与稳定态势,但局部性的动荡与紧张有所加剧。国际竞争中,为什么有的国家胜出,有的却一败涂地?德国为什么会成为世界诸多豪华车主要生产厂商的大本营?中国现在处于一个非常关键的时期,既是机遇也是挑战。在世界局势如此动荡的情况下,中国如果能够抓住机遇,就可以以此作为跳板,无论在经济或国际地位都会上身一个等级。中国在快速发展的同时,会有很多的阻碍,因为其他国家会眼红,中国威胁论因此而出,但在金融危机时期,外界却把中国比喻为“救世主”。中国并不是什么“救世主”也不存在对外国的威胁,中国只是在做自己认为对的事。
了解当今国内国际的形势与政策不仅是帮助当代大学生取得成功的一方良药,也是帮助我们树立正确的世界观,人生观,价值观,提高精神面貌的一种有效途径。形势与政策课作为一门政治素质教育的必修课,不仅拓宽了当代大学生的视野,也提高了我们的政治素质修养,帮助我们深刻理解当今时代的主题,强化社会主义荣辱观。形势与政策课程帮助我们在反思当今世界中国落后的症结,总结当今世界中国进步的原因的过程中,培养爱国主义精神,树立为祖国繁荣富强而努力,而发奋图强的精神信念。只有在正确的价值观引导下,在理想信念的激励下,作为现代社会的主流,当代大学生才能肩负起国家蓬勃发展的重任,利用自己的所学所有,实现自我价值,报效祖国,使中华民族繁荣富强,立于世界民族之林。再者,当今国内外形势风云变幻,进入21世纪的中国正面临着难得的机遇和巨大的挑战,当代大学生也面临着深刻的国内外环境,所以,在高校大学生中广泛开展形势政策教育,对当代大学生如何在纷繁复杂的国内外形势下,正视我国面临的机遇与挑战,坚定信念,振奋精神,努力学习,报效祖国,具有重大的现实价值,与深远的历史意义。
作为21世纪的大学生,我们更应该把握住自己,努力学好专业知识,为祖国明天的建设添砖加瓦。我想说,学校开设的《形势与政策》课非常必要。因为,是提高大学生综合素质、开阔胸怀视野、增强责任感和大局观十分重要的方面,学校开设形式与政策课是我的一笔非常宝贵的财富,高等学校形势与政策教育是高校大学生思想政治教育的重要内容,他不仅提高了我的综合素质,开阔了我的视野,同时还培养了我的能力与责任感。它也使我们更深刻地认识了世界,认识了中国,认识了我们与世界的差距,以及我们自身的不足,使我在思想上迈进了一大步。
大学数学建模论文范例(实用19篇)篇十一
数学建模是指利用数学符号对数学实践问题以公式形式表述出来,再通过相关计算解决实际问题。数学建模可以为学生创设适宜的学习条件,让学生在假设、研究、分析、比对中形成学习结论。教师要借助教学内容展开渗透操作,利用实际问题为学生创设实践机会,根据教法改进渗透建模思想,从而促进建模思想的全面渗透,提升学生的数学核心素养。
在数学教学过程中,教师要对教材内容进行筛选和剖析,找到文本思维和生本思维的对接点,让学生顺利介入数理讨论学习之中。教师利用教学内容对学生渗透数学建模思想,利用教辅手段创设教学环境,可以有效唤醒学生的数学思维。利用多媒体创设教学情境,运用数学公式进行数学推演操作,都涉及数学建模思想的渗透。因此,教师要积极整合教学内容。借助教学内容渗透建模思想时,教师要结合多种教学调查情况展开相关操作。筛选教学内容时,教师需要观照不同群体学生的不同学力基础。如解读定积分概念时,教师可以通过推导曲边梯形的面积公式,鼓励学生对曲边梯形进行分割、归类、求和、取极限等实际操作,建立定积分数学模型,并让学生在实际操作中完成对物体体积和质量的具体计算。这些数学模型具有广泛性,学生在实践中再遇到类似情境时,也会运用相关模型进行实际操作。推演数学公式时,教师可引入建模思想,让学生参与问题的设计、推演、验证,并利用推演结果反过来解决实际问题,给学生带去全新的学习体验。教师根据教学内容渗透数学建模思想,能够为学生提供更清晰的学习渠道,能够促使学生运用现成的数学模型来解决数学问题,进而加深对知识的理解。
二、利用实际问题渗透建模思想。
教师在数学建模教学实施过程中,需要有接轨生活的意识。数学来源于生活,教师结合生活实际问题渗透建模思想,可以有效提升学生的数学概念意识,并使学生在假设、推理、验证过程中形成数学能力。利用生活实际问题渗透数学建模思想,符合学生数学认知成长的`实际需要,教师要结合学生的数学知识掌握情况展开设计,让学生利用已知数学等量关系解决实际问题,这势必能促使学生形成数理认知基础。高职数学教学中,教师不妨鼓励学生展开质疑活动,让学生列举疑惑问题,对这些问题进行整合优化处理,并结合数理知识进行实践探索。这些也属于数学建模思想的渗透。如教学“假设检验”时,教师可让学生展开假设创设,并通过多重操作实践进行检验。另外,教师设计课外作业时,也可渗透数学建模思想,让学生运用建模思想解决实际问题,以提升学生的数学综合素质。数学建模思想不仅是一种数学认知理论,还是一种解决数学问题的方法和措施。学生结合生活实际和学习认知基础展开相关操作,自然能够促进数学基本技能的提升。高职数学具有较强的抽象性,教师要针对学生的学力基础,为学生布设适宜的学习任务。结合学生生活实际提出问题,利用建模思想解决问题,需要关涉很多专业理论,教师应该进行示范操作,让学生有学习的榜样,这样才能提升数学课堂教学效度。
教师要重视数学学法的传授,增加教学的灵活性、针对性和实践性。由于高职学生学力基础、学习悟性、学习习惯等存在差距,所以教师需要做好学情调查,降低数学学习难度,运用简单通俗的语言解读抽象的数学概念。这样,学生才能听得明白、学得好。渗透建模思想时,教师需要鼓励学生主动参与数理讨论互动,这不仅能引导学生展开质疑、释疑活动,还有利于学生树立数学建模理念,形成良性学习认知。教师打破传统教法束缚,采用先进的计算工具、数学软件、多媒体等教学辅助手段,或者利用网络搜集平台展开教学设计,都可以为学生提供难得的学习契机。高职学生通常拥有一定的信息技术应用能力,教师可借助信息媒体展开教学设计,与学生的生活认知接轨。如翻转课堂的适时介入,便属于数学建模典范设计。多数学生都有智能手机,可以随时随地参与网络信息共享活动,因此,教师应具备信息共享和网络互动意识,为学生布设相关学习任务,让学生在多元互动操作中逐渐达成学习共识,进而建立数理综合认知体系。将数学建模思想渗透到教学过程之中,每一个环节都有可能,教师要做好全面考量,针对学生实际进行科学设计。教师要加强对数学建模思想方法的研究,并将这些方法与学生学习实践相结合,从而调动学生的数理学习思维,提升学生的数学应用品质。总之,高职数学教学中渗透建模思想时,教师需要具备整合意识,对建模资源信息展开搜集整理,对学生学力基础进行全面判断,为建模思想的顺利渗透创造良好条件。数学教学设计应不断更新,教师教学水平也亟待提升,而建模思想的全面渗透,给教师的教学带来了全新契机。教师要根据教学实际展开创新设计,有效提升数学课堂教学效率。
参考文献:
[1]李建杰.数学建模思想与高职数学教学[j].河北师范大学学报,2013(06).
[2]刘学才.高职数学建模教学的现状及对策[j].湖北职业技术学院学报,(07).
大学数学建模论文范例(实用19篇)篇十二
长期以来,我国的数学教学中一直普遍存在着重结论而轻过程、重形式而轻内容、重解法而轻应用等弊端,不注重学生数学能力和素质的培养;过分强调对定义、定理、法则、公式等知识的灌输与讲授,不注重这些知识的应用,割断了理论与实际的联系,造成学与用的严重脱节,致使在我们的数学教育体制下培养出来的学生的能力结构都形成了一种严重的病态,主要表现在:数学理论知识掌握得还可以,但应用知识的能力很差,不能学以致用,缺乏创造力和解决实际问题的能力,这些问题使我们的学生在走向工作岗位时上手速度慢,面对新的数学问题时束手无策,不能将所学的知识灵活运用到实际中去。显然,这种教育体制和理念与现代教育理念是背道而驰的,是必须抛弃的。开展数学建模教学或数学建模竞赛,能够培养学生各方面的综合能力,提高学生的综合素质,对于当前数学教育教学改革有着极为重要的现实意义。
1数学建模能够丰富和优化学生的知识结构,开拓学生的视野。
数学建模所涉及到的许多问题都超出了学生所学的专业,例如“基金的最佳适用”、“会议筹备”、“地震搜索”等许多建模问题,分别属于不同的学科与专业,为了解决这些问题,学生必须查阅和学习与该问题相关的专业书籍和科技资料,了解这些专业的相关知识,从而软化或削弱了目前教育中僵死的专业界限,使学生掌握宽广而扎实的基础知识,使他们不断拓宽分析问题、解决问题的思路,朝着复合型人才和具备全面综合素质人才的方向发展。
2数学建模可以培养学生利用数学知识解决实际问题的能力。
数学建模要求建模者利用自己所掌握的数学知识及对实际问题的理解,通过积极主动的思维,提出适当的假设,并建立相应的数学模型,进而利用恰当的数学方法(现有的或新创造的)求解此模型,并对解做出评价,必要时对模型做出改进。这一过程包括了归纳、整理、推理、深化等活动,因此把数学建模引入课堂教学,必将改变目前数学教学只见定义、定理不见问题背景的局面,必将改变知识僵化、学而不用的局面,从而调动了学生学习的积极性,培养了学生解决实际问题的能力。
3数学建模能够培养学生的创造力、想象力、联想力和洞察力。
数学模型来源于客观实际,错综复杂,没有现成的答案和固定的模式,因此学生在建立和求解这类模型时,必须积极动脑,而且常常需要另辟蹊径,在这里,常常会迸发出打破常规、突破传统的思维火花,通过这种实践活动,可以培养学生的创造能力,促使他们在头脑中树立推崇创新、追求创新和以创新为荣的意识。在从实际问题中抽象出数学模型的过程中,须把实际关系转化为数学关系,这要求他们敢于想象和联想,此外他们还要从貌似不同的问题中抓住其本质的和共性的东西,这将培养他们把握问题内在本质的能力,即洞察力,可以说,培养学生的这些能力始终贯穿在数学建模的整个过程。
4数学建模可以培养学生熟练地运用计算机的能力。
5数学建模可以增强大学生的适应能力。
通过数学建模的学习及竞赛训练,他们不仅受到了现代数学思维及方法的熏陶,更重要的是对不同的实际问题,如何进行分析、推理、概括以及如何利用数学方法与计算机知识,还有各方面的知识综合起来解决它。因此,他们具有较高的素质,无论以后到哪个行业工作,都能很快适应需要。不仅如此,由于建模决不是一件轻而易举的事,需要学生对实际问题进行反复多次的研究、分析、观察和对模型进行反复多次的计算、论证及修改等,整个过程是一个非常艰辛的探索过程,这可以培养学生高度的责任感、坚韧不拔的毅力、遭遇挫折后较强的心理承受能力以及孜孜不倦、精益求精的探索精神,使他们具有良好的心理素质与精神状态。同时数学建模一般都是由几个人组成的团队来完成的,其成功与否,完全取决于大家的密切合作,既要合理分工,又要密切配合,这样又可以培养学生的组织管理能力、协调能力和相互协作的团队精神,这些对他们今后走向工作岗位都是大有裨益的。
此外,数学建模从教育观念、内容、形式和手段都有一定的创新,对数学教学改革有积极的启示意义。首先,数学建模突出了教与学的双主体性关系。教师要根据学生的学习兴趣、能力及特点,不断修正自己的教育内容和方法。学生要对教师所给予的信息有批判性地、创造性地、发展性地能动反映,要在相互讨论、相互启发下寻求更多更好的解答方案。这种双主体的关系是对传统教学方式的根本突破。
其次,数学建模促进了课程体系和教学内容的改革。长期以来,我们的课程设置和教学内容都具有强烈的理科特点:重基础理论、轻实践应用;重传统的经典数学内容、轻离散的数值计算。然而,数学建模所要用到的主要数学方法和数学知识恰好正是被我们长期所忽视的那些内容。因此,这迫使我们调整课程体系和教学内容。比如可增加一些应用型、实践类课程等等;在其余各门课程的教学中,也要尽量注意到使数学理论与应用相结合,增加实际应用方面的内容和例题,从而使教学内容也得到了更新。
再次,数学建模增加了教师对新兴科技知识的传授,拓宽了学生的知识面。这些特点对于目前数学教材中存在的内容陈旧、知识面狭窄及形式呆板等问题,具有借鉴作用。数学建模的试题通常联系新兴的学科,在科学技术迅猛发展的今天,各种新兴学科、边缘学科、交叉学科不断涌现,广博的知识面和对新兴科学技术的追踪能力是获得成功的关键因素之一。
数学建模不仅有利于学生更好的掌握知识、运用知识,也有利于高校的科研和教学,使学生和教师能在平时的学习、工作中自动形成勤于思考的好习惯,数学建模竞赛与学生毕业以后工作时的条件非常相近,是对学生业务、能力和素质的全面培养,特别是开放性思维和创新意识,这项活动的开展有利于学生的全面素质的培养,既丰富、活跃了广大学生的课外生活,也为优秀学员脱颖而出创造了条件。
【参考文献】。
[1]颜筱红,粱东颖。高职院校数学建模教学的研究[j].广西教育,2013(2):54,134.
[4]谢金星。2008高教社杯全国大学生数学建模竞赛[j].工程数学学报,2008(25):1-2.
大学数学建模论文范例(实用19篇)篇十三
1、海选和优选有机结合借助纸质宣传单、大型讲座等方式进行数学建模竞赛的宣传,对其作用以及影响进行充分的讲解,鼓励校园内的同学来积极的进行参加。倘若想要参与其中的同学人数过多时,毕竟参赛名额是有一定限制的,可以利用面试的方式对其进行筛选。为不打击学生的积极性,在条件允许的情况下,可以尽可能保留更多的参赛者,通过面试成绩把大家划分为正式参赛队和业余参赛队。
2、充分利用现有资源在进行数学建模竞赛组队时,应充分的全面考虑有效利用现有的资源。首先是要掌握不同队伍中不同人员属于什么年级,其次了解她们的每个人学习状况以及所学专业等等,通常来说,同一队伍中的每个人最理想的状态是学习不同专业的,如此一来大家可以做到取长补短,理论知识与实践动手两手抓,一个团队里需要出众的知识更需要过人的文笔。如此一来才能保证队伍的整体实力,力争在建模竞赛中取得好成绩。
3、重点培训在对学生进行赛前相关培训时,在培训的过程中,教师可根据自身的擅长专题,来进行相关内容的讲解,与此同时结合不同队伍的自身特点划设侧重点,同学之间的接受能力也是各不同的,能力强的可以开小灶,没有相关竞赛经验的要进行重点培训,这种因人而异的讲解模式确保不同能力的同学,在培训中的过程中都能够学有所获。
4、合理分工密切合作在参加数学建模竞赛的同学得到竞赛试题之后,老师应该及时帮助学生进行试题分析与指导,根据团队内不同人员的实际情况以及试题的具体内容难易,进行针对性的讲解从而对同学们进行合理分工,确保每个人所负责的部分都是自己相较于其他人而言是最擅长的。值得注意的是,虽然进行分工,但这并不是绝对的分割,而是有侧重的合理分工,彼此之间的密切合作才是核心,毕竟建模竞赛中需要的是团队协作,而不是英雄主义。
5、坚持可持续发展培训师资队伍必须要有新鲜血液不断注入,以老带新最佳的血液注入方式,面对朝气蓬勃的参赛学生,培训师资队伍既要有身经百战经验丰富的老师,也要有跟他们拥有更多共同话题的青年教师。在此期间通过不断的学习,青年教师跟同学们共同成长,从而保证师资队伍的可持续发展。
1、进行课程教学并给出有效的教学计划每个学生的知识储备都有着各自的特点,借助良好的教育对学生们的知识架构进行完善,实现培养出学生强大能力的目标,数学建模对学生来说裨益良多,被视作是大学校园中必备课程之一。但是进行课程开展的时候,要根据不同的培训对象大致分为以下两类:第一、以选修课形式开设数学建模竞赛课程,选修课程所面向的群体为整个学校的所有学生。第二、以必修课的方式开设数学建模竞赛课程,必修课就要有针对性,因为并不是所有的学生都需要学习数学,所以必修课针对的群体应该是数学专业的学生。不同性质的课程在教授上应该有所区分,内容的深浅也要有适当的调整。
2、利用建模教学实现知识与能力双培养有效的教学是获得数学建模竞赛好成绩的最佳途径,但是教学的过程中要注重数学知识与实践能力的均衡共同培养,不能过分的注重知识的灌输,而忽略了建模相关能力的培养,对二者的培养必须要并驾齐驱,如此才能真正的'掌握数学建模的精髓,从而在竞赛中取得良好的成绩。
3、数学建模竞赛队员的筛选数学建模所需要的人才是全方面的人才,除此之外还要对数学建模有足够的兴趣,并且还要有足够多的时间来参加培训。以上述条件为基础,报名之后通过面试的测试,然后再从中筛选出相对优秀的学生组成参赛队伍,在筛选的时候要充分的考虑到团队整体知识的涵盖面,不同人之间所擅长的专业不同为最佳。
4、培训培训工作通常被划分为不同的阶段:首先是初级阶段,这一阶段所注重的是对相关知识的培训。从初等模型、简单优化模型、常微分方程模型等建模的基础知识和方法入手由浅入深;其次是拔高阶段,主要以专家讲座为主,邀请建模专家进行系统的讲解,并结合精典范例进行深入剖析,在扩大学生的知识面和视野的同时提升学生的建模能力。
三、结语。
通过以上的一系列论述,我们已经对大学数学建模竞赛的队伍组织及管理方式,有了更加清晰的了解和掌握。大学数学建模竞赛对于大学生来说好处颇多,一方面能够使学生们对学习的数学知识有更深的理解与更为灵活的应用,另一方面,通过竞赛中的组队让大家感受到合作的重要性,为以后步入社会的工作打下基础。希望这篇文章能够对针对数学建模的研究有一定的借鉴作用!
参考文献:
[1]韩成标,贾进涛、高职院校参加数学建模竞赛大有可为[j]、工程数学学报,(8)。
[2]全国大学生数学建模竞赛赛题讲评与经验交流会在广西大学举行[j]、数学建模及其应用,(04)。
[3]钱方红、基于数学模型解决数学建模竞赛队员选拔和组队问题[j]、信息与电脑:理论版,(3)。
[4]肖帆,张兰、高职院校数学建模竞赛培训模式研究[j]、延安职业技术学院学报,2017(2)。
大学数学建模论文范例(实用19篇)篇十四
旅游业的快速发展以及旅游管理专业学生就业方向的偏见使得旅游行业相关单位存在较大的用人缺口,如何解决这一缺口成为学校及社会需要共同关注的问题。本文将在旅游管理专业就业现状及存在的问题的基础上提出解决我国旅游管理专业学生就业问题的若干措施。
旅游管理;就业现象;分析。
旅游业的持续发展离不开高素质复合型人才,但是从目前的就业现状来看,不少旅游管理专业学生并不愿意到酒店、旅行社等旅游业相关单位工作,造成旅游业从业人员学历偏低、素质较差等问题,限制了旅游业发展。为解决这一问题,首先需要对当前旅游管理专业就业现状进行分析并寻找解决问题的突破口。
(一)旅游管理专业就业需求分析。
随着经济社会快速发展,作为传统服务业的旅游业开始成为热门行业。2016年,国内旅游44.4亿人次,出入境旅游2.6亿人次,全年实现旅游总收入4.69万亿元,增长13.6%,2017年国内旅游、出入境旅游还将保持较高的发展增速,旅游业还将继续领跑经济增长,预计国内旅游收入将实现12.5%左右的增长,不仅带动旅游业的发展,同时也为社会创造更多的就业岗位。旅游管理专业的主要教学目标是为旅游企事业单位培养一线服务与管理类专门人才,具有旅游管理专业知识以及较好的思想道德品质和综合素质。旅游管理涉及旅游行为的整个过程,包括旅行社、景区、酒店、交通、旅游局等等。就行业性质来看,旅游业是一个劳动密集型产业,需要高素质高技能人才从事一线服务于管理,因此随着旅游人数的增长,我国旅游业对旅游管理专业人才的需求将呈现增长态势。旅游业属于服务行业,服务的质量决定该行业是否具有长久的生命力,因此未来的旅游业对人才综合素质提出了更高的要求,只有热情、情商高且知识面宽的人才才能获得更多的就业机会。
(二)旅游管理专业学生的就业方向及就业意向分析。
尽管我们一直强调任何职业任何岗位都是平等的,但是大部分学生在选择职业的过程中还是带有一定偏见,不少学生尽管学习了旅游管理专业但是在选择自身职业时更加倾向于选择文化艺术类、金融业、房地产等行业,使得旅游管理专业具有较高的流失率。同时,部分学校会为高年级学生提供到酒店或旅行社等相关单位实习的机会,在实习期间学生可能会对本专业的认同感降低,或受到其他高收入行业的影响,而重新选择自己的就业方向。另外,即使大部分学生从事旅游业,但是对酒店、旅行社等的态度也不同,大部分学生认为旅行社缺少个人提升的机会,因此更愿意进入酒店,导致高素质的管理人才集中在酒店特别是高级酒店,而限制了旅行社等的发展,不利于旅游业服务水平的整体提高。
(三)造成旅游管理专业就业现状的主要原因。
旅游管理专业就业失衡、流失率高的原因需要从旅游业及学生两个角度来分析。首先,旅游业提供的薪酬及待遇较低是造成人才流失的主要原因。相比金融行业、房地产行业,旅游业的薪酬水平明显偏低,薪酬分配体系存在缺陷,酒店员工工资与岗位挂钩,旅行社工作人员薪酬随季节波动,极不稳定,会使员工认为自己所付出的劳动并没有得到应有的回报,因此在实习期结束后,相当一部分会学生会选择离开旅游业,从事自己认可的其他行业。其次,学生缺乏职业生涯规划教育。职业生涯规划有助于帮助学生明确自己的职业目标并不断激励自己提高专业知识和技能。但是调查发现,目前旅游管理专业学生的职业规划教育并不完善,不少学生缺乏对本专业和自身正确认知,并且对职业生涯规划的重视程度不够,对待工作的态度越来越现实,直接导致不少学生进入工作岗位后,不安于现状频繁跳槽,对自己职业生涯发展产生不利影响。
随着社会经济的发展,旅游业将进入快速上升发展的时期,对旅游管理专业学生来讲,这既是机遇又是挑战:他们将拥有更多的择业选择和机会,但是旅游业的发展对复合型人才的需求变得迫切,学生只有具备扎实良好的专业知识和职业道德才能在与企业的双向选择中获得更多的主动权,进入自己心仪的单位。从旅游管理专业就业现状的分析结果来看,旅游业总体就业形势并不乐观,优秀人才的高流失率限制了旅游业服务水平的提高,因此必须采取措施解决这一问题。
(一)加强学生的职业规划管理教育。
职业规划管理能够促进学生全面发展,帮助他们获得职业生涯持续发展的能力。教师在旅游管理专业进行职业规划管理首先需要从学生角度出发,引导他们提高对职业生涯规划管理的正确认识,提高对本专业的认识,培养自己对旅游业发展环境的分析能力,判断自己的性格、兴趣是否与旅游行业相匹配,从而建立对未来职业的长远目标,学会主动提高自己的综合素质和专业能力,为未来就业方向的选择打好基础。此外,学校需要加强职业生涯规划教育指导,将其贯穿于学生学习生活的始终,对他们进行全方位的指导,同时引入丰富的实践教育活动并鼓励学生参与其中,使学生在实践过程中重新认识和发现自我,提高对旅游业背景的熟悉程度,以达到适时检验和调整职业生涯规划的目的。
(二)优化旅游业相关用人单位的薪酬制度。
科学的薪酬制度能够实现单位内部公平,提高员工的工作积极性。但是在旅游业中,不少单位提供给员工的薪酬与他们付出的劳动并不对等,因此不少旅游管理专业的学生在从事1~2年旅游业后选择离开这一行业重新择业,加剧了高素质人才的流失问题。因此,旅游业必须对现有的薪酬制度的不合理之处进行优化以吸引更多的优秀人才。首先,单位需要改变过去岗位与薪酬挂钩的薪酬制度,在薪酬的发放中考虑员工的个人能力和付出,有区别的运用精神激励、物质奖励等手段,激发员工的工作积极性,提高他们对企业的归属感。其次,企业也要为员工的职业发展提供宽广的平台,重视人才培养,提高员工的职业技能。
近年来我国旅游业正处在快速发展的时期,总体来看旅游管理专业学生就业形势普遍较好,但是在繁荣发展的背后,旅游业还存在高素质人才流失的问题,需要引起各方重视。只有采取积极有效的措施留住人才,才能促进旅游业进一步发展,从根本上提高我国旅游业的服务水平。
[1]顾璇。旅游管理专业大学生职业生涯规划教育研究[d]。辽宁师范大学,2015.
[2]瞿聪。旅游管理专业学生就业现象分析及思考[j]。现代妇女(下旬),2014,(01):85+87.
大学数学建模论文范例(实用19篇)篇十五
竞赛形式组委会规定三名大学生组成一队,参赛学生根据题目要求可以自由地收集、查阅资料,调查研究,使用计算机、互联网和任何软件,在三天时间内分工合作完成一篇包括模型假设、模型建立和模型求解、计算方法的设计和计算机实现、结果的检验和评价、模型的改进等方面的论文(即答卷)。竞赛评奖的主要标准为假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度。
二、赛前学习内容。
1.建模基础知识、常用工具软件的使用。
(1)掌握数学建模必备的基础知识(如线性代数、高等数学、概率统计等),还有数学建模竞赛中常用的但尚未学过的方法,如灰色预测、回归分析、曲线拟合等常用预测方法,运筹学中若干优化算法。(2)针对数学建模特点,结合典型的问题,重点学习几种常用数学软件(matlab、lindo、lingo、spss)的使用,并且具备一般性开发能力,尤其应注意同一数学模型,有时可以使用多个软件进行求解。
数学建模竞赛是一项非常具有挑战性和创造性的活动,不一定用一些条条框框规定各种实际问题的模型具体如何建立。但一般来说,数学建模主要涉及两个方面:一是将实际问题转化为理论数学模型;二是对理论数学模型进行分析和计算。简而言之,就是建立数学模型来解决各种实际问题的过程。这个过程可以用如图1来表示。
建模与计算是数学模型的两大核心。当数学模型建立后,完成相关数学模型的计算就成为解决问题的关键,而所采用算法的好坏将直接影响运算速度的快慢,以及答案的优劣。根据近年来竞赛题型特点及以前参赛获奖学生的心得体会,建议多用数学软件如matlab、lindo、lingo、spss等来设计求解的算法,本文列举了几种常用的算法。(1)参数估计、数据拟合、插值等常用数据处理算法。在数学建模比赛中,通常会遇到海量的数据需要处理,而处理数据的关键就在于正确使用这些算法,通常采用matlab作为运算工具。(2)线性规划、整数规划、多目标规划、二次规划等优化类问题。数学建模竞赛大多数问题是最优化问题,很多时候这些问题可以用数学规划模型进行描述,通常使用lindo、lingo软件求解。(3)图论算法主要包括最短路、网络流、二分图等算法,如果涉及到图论的问题可以用这些方法进行求解。(4)最优化理论的三大非经典算法:神经网络、模拟退火法、遗传算法。这些算法通常是用来解决一些较困难的最优化问题的,主要使用lingo、matlab、spss软件来实现。
在国家数学建模竞赛中常见如下问题:数学模型最好明确、合理、简洁,但是有些论文不给出明确的模型,只是根据赛题的情况用“凑”的方法给出结果,虽然结果大致是对的,但是没有一般性,不是数学建模的正确思路;有的论文过于简单,该交代的内容省略了,难以看懂;有的队罗列一系列假设或模型,又不作比较、评价,希望碰上“参考答案”或“评阅思路”,反而弄巧成拙;有的论文参考文献不全,或引用他人成果不作交代。另外,吃透题意方面不足,没有抓住和解决主要问题;就事论事,形成数学模型的意识和能力欠缺;对所用方法一知半解,不管具体条件,套用现成的方法,导致错误;对结果的分析不够,怎样符合实际考虑不周;队员之间合作精神差,孤军奋战;依赖心理重,甚至违纪。以上情况都需要各参赛队引起注意,有则改之,无则加勉。
四、竞赛中应重视的问题。
1.团队合作是能否获奖的关键。
通常在数学建模竞赛时,三个队员的分工要明确,其中一个作为组长,也算是领军人物,主要是负责构建整个问题的框架,并提出有创意的想法,当然其他部分如论文写作、程序设计、计算等也要能参加;第二位是算手,主要进行算法设计及编程计算;最后一位是写手,主要工作在于论文的'写作和润色上。好的论文要让评委一眼就能明了其中的意思,因此写手的工作也需要一定的技巧。当然,要想竞赛时达到这样的标准,需要三个队员在平时训练时多加练习。
2.合理安排竞赛过程中的时间。
数学建模竞赛中时间分配很重要,分配不好有可能完不成竞赛论文,有的队伍把问题解答完了,但是发现没有时间进行写作,或者写的很差劲而不能获奖,因此要大致做好安排。一般前两天不要熬的太狠,晚上10:00点前要休息,最后一夜必须熬通宵,否则体力肯定跟不上。之前有些队伍,前两天劲头很足,晚上做到很晚才休息,但是到了第三天晚上就没有精力了,这样一般很难获奖。
3.摘要的撰写很重要。
论文的摘要是整篇论文的门面。摘要首先可以强调一下所做问题的重要性和意义,但不要写废话,也不要完全照抄题目的一些话,应该直奔主题,主要写明自己是怎样分析问题,用什么方法解决问题,最重要的结论是什么。在中国的竞赛中,结论很重要,评委肯定会去和标准答案进行比较。如果结论正确一般能得奖,如果不正确,评委可能会继续往下看,也可能会扔在一边,但不写结论的话就一定不会得奖了,这一点和美国竞赛不同,因此要认真把重要结论写在摘要上,如果结论的数据太多,也可只写几个代表性的数据,注明其他数据见论文中何处。
4.论文写作也要规范。
数学建模竞赛的论文有一个比较固定的模式。论文大致按照如下形式来写:摘要、问题重述、模型假设和符号说明、问题分析(建立、分析、求解模型)、模型检验、模型的优缺点评价、参考文献、附录等等。另外,在正文中也可以加入一些图和表,附录也可以贴一些算法流程图或比较大的结果或图表等等,近年来为了防止舞弊,组委会要求把算法的源程序也必须放在附录中。
五、结论。
全国大学生数学建模竞赛对于大学生而言,是一个富有挑战的竞赛。它不但能培养大学生解决实际问题的能力,同时能培养其创造力、团队合作的能力,而这些能力将会成为参赛学生以后成功就业的重要推动力。可以说,一次参赛,终身受益。
大学数学建模论文范例(实用19篇)篇十六
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的',如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从a/b/c中选择一项填写):
我们的参赛论文题目是:
参赛队员(打印):
队员1姓名:;联系电话:;邮箱:;
学院:;专业年级:;
队员2姓名:;联系电话:;邮箱:;
学院:;专业年级:;
队员3姓名:;联系电话:;邮箱:;
学院:;专业年级:;
参赛队员签名:1;2;3。
日期:年月日
将本文的word文档下载到电脑,方便收藏和打印。
大学数学建模论文范例(实用19篇)篇十七
数学建模解决的都是与我们生活息息相关的实际问题,很多都是当前社会比较关注的热点问题,比如开放性小区的建立,人工智能机器人在工作中的应用,这些问题开放性比较强,有明确的目的和要求,但它没有唯一的结果和方法。因此留给学生很大的创新空间,使学生对数学产生了极大的兴趣,他们发现这几年学习的高数、线性代数、概率论与数理统计终于派上了用场。数学建模课程会结合《高等数学》,《线性代数》,《概率论与数理统计》等数学基础学科,还会经常涉及到物理,工程,经济,金融,农林等各个领域各个学科,从不同的学科中找最热门最真实的案例进行教学,这要求学生有很强的自学能力,要不得学习新知识,新思路和新方法,让学生结合所学的数学知识把自己学科的专业知识转化成数学模型,让数学充分发挥它的优势,以达到培养学生的创新能力,更重要的是对学生的知识体系起到了完善的作用。在整个竞赛中从模型建立与求解到写作,都是由学生独立完成,充分发挥了他们的自主性和创造性。
2.数学建模能培养学生团队合作精神和创新创业能力。
数学建模竞赛是由三个人组成一个小团队共同处理一个问题,在这个团队中每个人都各有分工,有的人擅长建立模型,有的人擅长计算机编程求解模型,有的人擅长写作,这三个人缺一不可,任何一个人都发挥着举足轻重的作用。通常我们还会设一个队长能协调队员之间的关系和对题目的把控。每个人都有不同的性格,能力,学识,知识结构,在做题的过程中会产生不同的想法,比如在模型的建立中,数据的处理过程中,算法的选取,编程语言的选取,写作的过程中都会有很多的不同,所以每个成员都要有团队精神、相互信任、相互沟通、相互尊重、取长补短、充分发挥集体的力量共同完成一个项目。同时每年无论在培训还是正式比赛过程中由于高强度的脑力活动,强大的心理压力以及队员之间的不和睦都会造成中途退赛,这样无疑是最可惜的。所以,在竞赛中除了培养学生的创新意识和团队合作精神,还培养了大家的心理承受能力,强大的意志力以及与他人沟通交往的能力,是对自己综合素质的一个提高,对未来考研、出国、就业都有很大的帮助。
3.数学建模培养学生的创新创业的.综合能力。
通过在大二一年的数学建模选修课,以及假期的集中培训培养了学生的创新创业能力,很大程度上提高了他们思考问题解决问题的能力等综合素质,同时还培养了他们应用计算机去处理各种问题的科技能力。他们学会了各种软件、语言,很多同学会数据挖掘、机器学习以及人工智能,这些都是未来科技的前沿,科技创新是企业发展的动力,现代教育不能只停留在教授学生理论知识的学习,更重要的是理论与实践的结合,走产学研相结合的道路,数学建模很好的把理论与实践相结合,激发学生科研热情,提高学生科研积极性,激发了学生的创新创业能力,为以后工作生活奠定了扎实的基础。为了让建模更好的服务学生,我们将不断的努力,探索和改进培养模式和方法,争取通过数学建模平台使更多的同学受益,培养出更多的具有创新创业能力的大学生。
参考文献:
[2]韦程东.数学建模能力培养方法研究[m].北京:科学出版社,.
大学数学建模论文范例(实用19篇)篇十八
计算数学建模是用数学的思考方式,采用数学的方法和语言,通过简化,抽象的方式来解决实际问题的一种数学手段。数学建模所解决的问题不止现实的,还包括对未来的一种预见。数学建模可以说和我们的生活息息相关,尤其是如今科技发达的今天。数学建模应用领域超乎我们的想象,甚至达到无所不及的程度,随着数学建模在大学教学中的广泛使用,使数学建模不止成为一种学科,更重要的是指导新生代更好的利用现代科学技术,成为高科技人才,把我国人才强国,科教兴国的战略推向一个新的高度。
1.1数学建模引进大学数学教学的必要。教学过程,是教师根据社会发展要求和当代学生身心发展的特点,借助教学条件,指导学生通过认识教学内容从而认识客观世界,并在此基础之上发展自身的过程,即教学活动的展开过程。以往高工专的数学教学存在着知识单一,内容陈旧,脱离实际等缺陷,已经不能满足时代的发展,如今的数学教学过程不是单纯的传授数学学科知识,而是通过数学教学过程引导学生认识科学,理解科学,从而指导实践,促进学生的德智体美劳全面的进步和发展。因此数学建模成为一门学科,被各大高等院校广泛引用和推广,其实数学建模不止应用在大学数学教学中,其他一切教学过程多可引进数学建模。1.2数学建模在大学数学教学中的运用。大学数学教师通过这个数学建模过程来引导学生解决问题和指导实践的能力。再次建模结果对现实生活的指导,这是大学数学教学中数学建模所需要达到的效果和要求。不再停留在理论学习,而是通过理论指导实践,从而为科学的进步和人才综合水平的提高提供可能。
2.数学建模对当代大学生的作用。
2.1数学建模对数学学科和其他学科学生的巨大影响力学习数学建模,能够使一个单独的数学家变成经济学家,物理学家还有金融学家,甚至是艺术家,只要正握数学建模就能指导学生通过掌握数学建模的思维和方法向其他领域学习和进步。数学建模成为连接数学和其他领域的纽带,是当今数学科学在其他领导应用的桥梁,是数学技术转化为其他技术的途径,数学建模在学生中越来越受到关注和欢迎,越来越多的学生开始学习数学建模,尤其是数学界和工程界的学生,这成为当今学生成为现代科技工作者必须掌握的只是能力之一。
2.2数学建模对学生综合能力的提高数学建模是大学数学教师运用数学科学去分析和解决实际问题,在数学建模学习的过程中,大学生的数学能力得到提高,其分析问题、解决问题的能力得到提高,这对大学生毕业走向社会具有着重大意义。通过数学建模的学习和应用,激发大学生学习数学和应用数学的能力,运用数学的思维和方法,利用现代计算机科学,来解决数学及其他领域的问题。
3.数学建模对大学数学及其他学科教师的作用。
数学建模引入大学数学教学,这是时代的进步,是时代对当代大学教师提出的新要求,尤其是大学数学教师,其不再停留在以往的单纯的数学知识讲授方向,而是将数学科学作为基础,引导当代大学生发散思维,发挥主观能动性,从而学习数学科学,并运用数学科学解决现实问题。在这个过程中大学教师的专业知识得到提高,其创新精神也得到了极大的丰富。大学数学教师不止完成数学教学,更重要的是培养了高科技的人才,这对大学数学教师的社会地位也有了相应的改变,在尊重人才,尊重科学的氛围中,大学数学教师及其他学科的教师得到了鼓舞,得到了进步,得到了认可。数学建模越来越重要,关于数学建模的各种国内国际大赛频频举办,这对大学数学教师在知识,体力和创新性上都提出新的要求,为了更好的参与数学建模比赛,大学数学教师投入更多的时间和经历在学生教育和数学建模中,他们成为真正的台前和幕后的指挥者。
随着现代大学学科的丰富,尤其是计算机科学的广泛应用,大学数学教学的跨时代发展,数学建模成为各个高校数学教学的重点内容,数学建模教学吸纳数学家,计算机学家等多个学科专家的意见,从而为培养出综合行的高科技人才做好充分的准备。可以说数学建模教学是当今大学数学教学的主旋律,是数学科学和其他科学进步发展的方向和原动力。
参考文献:
[1]李进华.教育教学改革与教育创新探索.安徽:安徽大学出版社,20xx.8.
[2]于骏.现代数学思想方法.山东:石油大学出版社,1997.
大学数学建模论文范例(实用19篇)篇十九
摘要:数学建模作为现代应用数学的一个重要组成部分被越来越多的人所重视。本文描述数学建模课程及数学建模竞赛在培养大学生各种能力中的作用。
关键词:数学建模;竞赛;大学生;能力。
一、引言。
数学建模是运用数学的语言和方法,去描述或模拟实际问题中的数量关系,并解决实际问题的一种强有力的教学手段。数学建模是应用数学的语言和方法解决实际问题的过程,也是一个培养大学生各种能力的综合过程。
大学生数学建模竞赛最早是1985年在美国出现的。1989年在几位从事数学建模教育的教师的组织和推动下,我国几所大学的大学生开始参加美国的竞赛。自1994年起,教育部高教司和中国工业与应用数学学会共同主办全国大学生数学建模竞赛,每年一届,这项活动被教育部列为全国大学生四大竞赛之一。随着全国大学生数学建模竞赛的广泛影响,越来越多的高校组织队员参加该项竞赛,这项竞赛的规模以平均年增长25%以上的速度发展。2008年全国有31个省/市/自治区(包括香港)1,023所院校、12,846个队、38,000多名来自各个专业的大学生参加竞赛,比2007年新增院校15所。2009年全国有33个省/市/自治区(包括香港和澳门特区)1,137所院校、15,046个队、45,000多名来自各个专业的大学生参加竞赛,是历年来参赛人数最多的(其中西藏和澳门是首次参赛)。
20世纪八十年代以来,我国各高等院校相继开设数学建模课程。数学建模课程是在高等数学、线性代数、概率与数理统计之后,为实现理论和实践一体化、进一步提高运用数学知识和计算机技术解决实际问题,培养创新能力所开设的一门广泛的公共基础课。教育必须反映社会的实际需要,数学建模课程进入大学课堂,既顺应时代发展的潮流,也符合教育改革的要求。
素质教育是新世纪高校高等数学教育改革的一个重要方向。在大学校园中,数学建模课程的开设及数学建模活动的开展,能有效地激发大学生学习的兴趣和积极性,使大学生掌握准确快捷的计算方法和严密的逻辑推理,培养大学生用数学工具分析解决实际问题的能力,是实施素质教育的一种有效途径。
二、数学建模对大学生能力的培养。
通过数学建模课程的教学与参加数学建模竞赛的实践,使我们深刻感受到数学建模过程,不仅是对大学生知识和方法的培养,更是对当代大学生各种能力的培养有着深远的意义。
1、有利于提高学生分析解决问题的能力。数学建模教学强调如何把实际问题转化为数学问题,要求建模者利用自己所掌握的数学知识及对实际问题的理解提出合理的假设,从一个个实际问题中抽象出数学问题,建立相应数学模型,利用恰当的数学方法来求解此模型,解决实际问题,并对模型进行评价改进。因此,数学建模教学为大学生架设了由抽象的数学理论知识通向具体的实际问题的桥梁,是使大学生的数学知识和应用能力共同提高的有效方式。大学生通过参与数学建模及竞赛活动,能切身体会到学习数学的实用价值,这是传统教学无法达到的效果,从而激发了大学生学习数学的兴趣,提高了学生分析解决实际问题的能力。
2、有利于培养大学生应用数学的能力。数学建模通过积极主动的发散性思维,培养学生“应用数学”的能力。这是数学教育的根本任务,当然应当成为数学应用于教学目的中的重中之重。应用数学的能力是一种综合能力,它离不开数学运算、数学推理、空间想像等基本的数学能力,但它主要侧重于从实际问题中提出并表达数学问题的能力,运用并初步构建数学模型的能力,对数学问题及模型进行变换化归的能力,对数学结果进行检验和评价、阐释和处理的能力。数学建模过程包括了归纳、整理、推理、深化等过程,因此把数学建模引入课堂教学,学生能够学会如何利用所学知识构造数学模型,求解数学模型,从而解决实际问题,并且做出必要的评价与改进,从而加深对数学知识的理解,提高了应用数学的能力。
3、有利于学生抽象概括能力的培养。应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化,抽象、概括为合理的数学结构的过程。抽象是抽取事物的本质属性,使它与其他属性分开;概括是将同类事物的相同属性结合起来。抽象和概括是紧密联系的,只有抽象出事物的本质属性才能进行概括,如果思维不具有概括性也无从进行抽象。抽象能力是指在建模过程中能抛弃无关的非本质因素,从本质上看问题,自觉地进行层层的抽象概括,建立数学模型的能力。数学建模过程使学生对复杂的事物,有意识地区分主要因素与次要因素,本质与表面现象,从而抓住本质解决问题。它有利于提高学生思维的深刻性和抽象概括能力,它主要体现在学生能善于从复杂的事物中把握事物的本质及规律,使学生面对具体问题能有条理地在简约状态下进行思考,并有助于真理的发现。
4、有利于提高大学生自学的能力。数学建模以学生为主,教师事先设计好问题,启发、引导学生主动查阅文献资料和学习新知识,鼓励学生积极开展讨论和辩论。学生通过学习数学建模课程,参加数学建模竞赛,需要自学他完全不了解或知之不多的有关学科的专业知识,在这个过程中,有助于培养大学生获取新知识的主动精神,有利于提高大学生的自学能力。
参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、优化、微分方程、计算方法、层次分析法、数学软件包的使用等等讲座,用的学时并不多,多数是启发性的讲一些基本的概念和方法,主要是靠学生自己去学,充分调动学生们的积极性,充分发挥学生们的潜能。同时,在比赛的短短3天时间里,要查阅大量的资料,取其精华,从中寻找到所需要的资料,收集必要的信息,这也必须要求大学生掌握科学的方法。这种能力必将使大学生在未来的工作和科研中受益匪浅。
5、有利于培养大学生的洞察力和想像力。洞察力是人们对个人认知、情感、行为的动机与相互关系的透彻分析。通俗地讲,洞察力就是透过现象看本质,变无意识为有意识。就这层意义而言,洞察力就是学会用心理学的原理和视角来归纳总结人的行为表现。洞察力是指深入事物或问题的能力,更多的是掺杂了分析和判断的能力,可以说洞察力是一种综合能力。
想像力是人在已有形象的基础上,在头脑中创造出新形象的能力。in有一句名言:想像力比知识更重要,因为知识是有限的,而想像力包括世界的一切,推动着社会进步,并且是知识的源泉。这句话可以认为是开设“数学建模”这门课程的一个指导思想。
数学建模的模型假设过程就是根据对实际问题的观察分析、类比、想像,用数理建模或系统辨识建模方法作假设,通过形象思维对问题进行简单化、模型化,做出合乎逻辑的想像,形成实际问题数理化的设想。例如,2006年全国大学生数学建模竞赛中c题“易拉罐的最优设计问题”,第四问要求大学生利用对所测量的易拉罐的“洞察力和想像力”,做出自己的关于易拉罐形状和尺寸的最优设计。大学生做题的过程,无异于是对大学生洞察力和想像力培养的真实体现。
6、有利于提高大学生利用计算机解决问题的能力。首先,计算机是数学建模的得力助手。数学建模过程中,大多数问题灵活多变,很多模型的求解都面临着大量的计算;其次,所建模型是否与实际吻合,常常要用模型的解来判断,而且这种工作,在建立一个实际问题的数学模型中经常要重复多遍。因此,熟练使用计算机计算数学问题是对学生的必须要求。我们倡导大学生尽量利用计算机程序或某些专用的数学应用软件如mathematica、matlab、lingo、mapple等,以及当代高新科技成果,将数学、计算机有机地结合起来去解决实际问题。数学建模教学中结合实验室上机实践,计算机的应用不仅仅表现在数学建模中模型的简化与求解,而且给大学生提供了一种评价模型的“试验场所”,这就有助于培养大学生利用数学软件和计算机解决实际问题的能力。
7、有利于培养大学生的创新能力。创新是指人类为了满足自身的需要,不断拓展对客观世界、自身任职与行为过程和结果的活动。创新能力指人在顺利完成以原有知识经验为基础的创建新事物活动中表现出来的潜在心理品质。我们在教学中应给学生留有充分的余地,鼓励学生开阔视野、大胆怀疑、勇于进取、勇于创新,让学生充分发挥想像力,不拘泥于用一种方法解决问题,从而培养学生的创新能力。在数学建模竞赛中,对给出的具体实际问题,一般不会有现成的模型,这就要求大学生在原有模型的基础上进行大胆的尝试与创新。创新是一个民族的灵魂,只有创新才能发展。而创新教育是以全面、充分发展学生的创造力为核心的教育,它是适应经济时代发展的教育思想。数学建模课程就是培养创新能力的一个极好的载体,数学建模的过程是一个创造性的过程,我们应该充分发挥它在创新能力培养中的作用,它为培养大学生创造性思维能力和创新精神提供了广阔的空间。
8、有利于提高大学生论文写作和表达能力。数学建模成绩的好坏、获奖级别的高低与论文撰写有着密切关系,数学建模的答卷是评价的唯一依据。建模方法独特、结果出色,但如果不能做到结构清晰、重点突出、文字流畅,也将会失去获奖的机会。写好论文的训练,是科技写作的一种基本训练。通过建模竞赛,学生能够学会如何更加准确地阐述自己的观点。所以,数学建模对培养学生的论文写作能力和表达能力,都起到了积极的作用。
9、有利于培养大学生的合作交流能力和团队合作精神。数学建模的问题涉及各个领域,都有一定的深度和广度,所需知识较多,数学建模课程广泛地采用讨论班的教学方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,与此同时,同学之间互相平等,互相尊重,培养了学生合作交流的能力。
参考文献:
[1]姜启源,谢金星,叶俊。数学模型[m].高等教育出版社,2004.
[2]赵静,但奇。数学建模与数学实验[m].高等教育出版社,2004.
[3]刘来福等。数学模型与数学建模[m].北京:北京师范大学出版社,1999.