教案可以帮助教师全面了解教学内容和目标,合理安排教学步骤和时间。以下是一些初中教案的经典分享,希望对大家的教学有所启发。
初中数学一次函数教案范文(22篇)篇一
一次函数的图像与性质的口诀:
一次函数是直线,图像经过三象限;。
正比例函数更简单,经过原点一直线;。
两个系数k与b,作用之大莫小看,
k是斜率定夹角,b与y轴来相见,
k为正来右上斜,x增减y增减;。
k为负来左下展,变化规律正相反;。
k的绝对值越大,线离横轴就越远。
初中数学一次函数教案范文(22篇)篇二
2、把已知条件(自变量与函数对应值)代入解析式,得到关于待定系数的方程(组);。
3、解方程(组),求出待定系数;。
4、将求得的待定系数的值代回所设的函数解析式,从而得到所求函数解析式。
例、已知:一次函数的图象经过点(2,-1)和点(1,-2).
(1)求此一次函数的解析式;(2)求此一次函数与x轴、y轴的交点坐标。
分析:一般一次函数有两个待定字母k、b.要求解析式,只须将两个独立条件代入,再解方程组即可.凡涉及求两个函数图象的交点坐标时,一般方法是将两个函数的解析式组成方程组,求出方程组的解就求出了交点坐标.
解:(1)设函数解析式为y=kx+b.
(2)当y=0时x=3,当x=0时y=-3。可得直线与x轴交点(3,0)、与y轴交点(0,-3)。
评析:用待定系数法求函数解析式,求直线的交点均与解方程(组)有关,因此必须重视函数与方程之间的关系.
初中数学一次函数教案范文(22篇)篇三
一次函数和代数式以及方程有着密不可分的联系。如一次函数和正比例函数仍然是函数,同时,等号的两边又都是代数式。需要注意的是,与一般代数式有很大区别。首先,一次函数和正比例函数都只能存在两个变量,而代数式可以是多个变量;其次,一次函数中的变量指数只能是1,而代数式中变量指数还可以是1以外的数。另外,一次函数解析式也可以理解为二元一次方程。
初中数学一次函数教案范文(22篇)篇四
今天小编为大家精心整理了一篇有关初中数学教案之函数的相关内容,以供大家阅读!函数教学目标:
1、进一步理解函数的概念,能从简单的实际事例中,抽象出函数关系,列出函数解析式;
2、使学生分清常量与变量,并能确定自变量的取值范围.3、会求函数值,并体会自变量与函数值间的对应关系.4、使学生掌握解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量的取值范围的求法.5、通过函数的教学使学生体会到事物是相互联系的.是有规律地运动变化着的.教学重点:了解函数的意义,会求自变量的取值范围及求函数值.教学难点:函数概念的抽象性.教学过程:(一)引入新课:
第1页/共6页式中的自变量与函数吗?
刚才所举例子中的函数,都是利用数学式子即解析式表示的.这种用数学式子表示函数时,要考虑自变量的取值必须使解析式有意义.如第一题中的学生数n必须是正整数.例1、求下列函数中自变量x的取值范围.(1)(2)(3)(4)(5)(6)。
第2页/共6页数大于、等于零.的被开方数是.。
(2)若估计前来停放的3500辆次自行车中,变速车的辆次。
收入在1225元至1330元之间。
总结。
:对于反映实际问题的函数关系,应使得实际问题有意义.这样,就要求联系实际,具体问题具体分析.对于函数,当自变量时,相应的函数y的值是.60叫做这个函数当时的函数值.例3、求下列函数当时的函数值:(1)(2)(3)(4)。
注:本例既锻炼了学生的计算能力,又创设了情境,让学生体会对于x的每一个值,y都有唯一确定的值与之对应.以此加深对函数的理解.(二)小结:
第5页/共6页往学的词语、生活经验联系起来,在发展想象力中发展语言。如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术刀―样,给大树开刀治病。通过联想,幼儿能够生动形象地描述观察对象。
作业:习题13.2a组2、3、5死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文水平的重要前提和基础。今天的内容就介绍到这里了。
第6页/共6页。
初中数学一次函数教案范文(22篇)篇五
1.经历平行四边形判别条件的探索过程,发现平行四边形的常用判别条件。
2.掌握平行四边形的判别条件;对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形。
3.逐步掌握说理的基本方法。
过程与方法目标。
1.在探索平行四边形的判别条件的过程中,发展学生的合情推理意识,主动探索的习惯。
2.鼓励学生用多种方法进行说理。
情感与态度目标。
1.培养学生探索创新的能力,开拓学生思路,发展学生的思维能力。
2.培养学生合作学习,增强学生的自我评价意识。
教材分析。
教材通过创设“钉制平行四边形框架”这一情境,便于学生发现和探索平行四边形的常用判别方法。如有条件可要求学生自己准备,由学生自我操作。也可由教师演示。
教学重点:平行四边形的判别方法。
教学难点:利用平行四边形的判别方法进行正确的说理。
学情分析。
初二学生对平面图形的认识能力正在形成,抽象思维还不够,学习几何知识处于现象描述和说理的过渡时期。因此,对这部分内容的学习,要引导学生学会正确的说理,理清楚四边形在什么条件下用判定定理,在什么条件下用性质定理。
教学流程。
一、创设情境,引入新课。
师:请同学们拿出课前准备的小木条,帮助小明的爸爸钉制平行四边形的框架。
学生活动:学生按小组进行探索。
初中数学一次函数教案范文(22篇)篇六
(2)填空(每空2分,共26分)。
1、在方程中。如果,则。
2、已知:,用含的代数式表示,得。
4、如果方程的两组解为,则=,=。
5、若:=3:2,且,则,=。
6、方程的正整数解有组,分别为。
7、如果关于的方程和的解相同,则=。
8、一个两位数的十位数字与个位数字之和等于5,十位数字与个位数字之差为1,设十位数字为,个位数字为,则用方程组表示上述语言为。
9、已知梯形的面积为25平方厘米,高为5厘米,它的下底比上底的2倍多1厘米,则梯形的上底和下底长分别为。
10、写出一个二元一次方程,使其满足的系数是大于2的自然数,的系数是小于-3的整数,且是它的一个解。。
(3)选择(每题3分,共30分)。
a、2个b、3个c、4个d、5个。
12、如果是同类项,则、的值是()。
a、=-3,=2b、=2,=-3。
c、=-2,=3d、=3,=-2。
13、已知是方程组的解,则、间的关系是()。
a、b、c、d、
a、3b、-3c、-4d、4。
16、若方程组的解满足=0,则的取值是()。
a、=-1b、=1c、=0d、不能确定。
a、0b、-1c、1d、2。
18、解方程组时,一学生把看错而得,而正确的解是那么、、的值是()。
a、不能确定b、=4,=5,=-2。
c、、不能确定,=-2d、=4,=7,=2。
19、当时,代数式的值为6,那么当时这个式子的值为()。
a、6b、-4c、5d、1。
20、9、甲、乙两人练习跑步,如果乙先跑10米,则甲跑5秒就可追上乙;如果乙先跑2秒,则甲跑4秒就可追上乙,若设甲的速度为米/秒,乙的速度为米/秒,则下列方程组中正确的是()。
a、b、c、d、
三、解方程组(每题5分,共20分)。
1、2、
3、4、
四、列方程组解决实际问题:(每题6分,共24分)。
2、小明用8个一样大的矩形(长acm,宽bcm)拼图,拼出了如图甲、乙的两种图案:图案甲是一个正方形,图案乙是一个大的矩形;图案甲的中间留下了边长是2cm的正方形小洞.求(a+2b)2-8ab的值.
4、在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:
甲同学说:二环路车流量为每小时10000辆。
乙同学说:四环路比三环路车流量每小时多2000辆。
丙同学说:三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍。
请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少?
文档为doc格式。
初中数学一次函数教案范文(22篇)篇七
一、学生情况分析及改进提高措施:
学生们经过两年的学习,已经具备了初步的逻辑思维能力和简单的抽象概括能力,养成了一些良好的学习习惯,掌握了一些科学的学习方法,学会了独立思考和与人沟通、协商、合作、交流的能力,学会了探究问题,并能根据具体情况提出合理的问题,还能正确解决问题的能力。无论是理解问题的.能力,还是分析、解决问题的能力均有所提高,基础知识和基本技能打得也比较扎实,对数学学习有着浓厚的兴趣,乐于参与到学习活动中去,特别是对一些动手操作,合作学习,实践活动等学习内容尤为感兴趣,因此,在教学中应多设计一些活动,引导学生进行独立思考与合作交流,帮助学生积累参加数学学习活动的经验。
在数学知识上已经掌握了两步计算式题和有余数的除法,还有统计知识,并学会了辨认八个方位;掌握了万以内数的读法、写法和加、减法;还掌握了长度单位毫米、厘米、分米、米和千米的实际长度和简单的换算以及实际测量,并能用以上这些相应的知识解决实际生活中的问题。总之,这些技能和知识点都为本学期进一步学习新知识打下了坚实的基础,他们爱学数学的热情,以及对数学的感悟能力会在本学期进一步得到发扬光大,他们的情感、态度、价值观会沿着良性轨道螺旋式上升。
具体提高措施是:
1.从学生的年龄特点出发,多采用情境活动式教学,培养学生的参与意识。两班学生都能根据教师给出的情境获取相关的数学信息,并能根据有效信息提出数学问题,能积极投入到探索问题的活动中去,绝大部分学生能够在课堂上主动的研究问题,获取知识。
2.在课堂教学中,多增添一些与学生生活相关的利于孩子理解的问题,让学生在解决问题的过程中能够联系到实际,便于对问题的理解。结合学生的生活实际,将问题生活化,让学生从生活中获取到更多的解决问题的素材。
3.课后练习注重增添以学习内容为主的相关实践练习,加强各学科之间的联系,少一些呆板的练习,提高练习的实践性和趣味性。在上学期的教学中,我发现学生们比较喜欢做不同科目之间有联系的综合性作业,例如我把数学与科学课相结合,让他们种豆子,了解植物的生长,并做记录,再将每天的记录制作成统计图,学生完成作业的积极性特别高。我为了让学生了解长度单位,让他们从成语词典上收集有关长度单位的成语,通过对词语的理解把握其表示的长度。
4.加强学校教育和家庭教育的联系。关注学生的平时学习情况,与学生家长多沟通交流。
二、本册教材分析。
本册教材充分体现了新《课程标准》的理念,以学生的数学活动实践为学习内容,教材创设了生动有趣的情境,引导学生在解决现实问题的过程中获得对数学知识的理解和体验。教学内容主要包括(1)乘法;(2)除法;(3)观察物体;(4)千克、克、吨;(5)、周长;(6)年、月、日;(7)可能性;(8)共有五个社会实践活动,还有两个整理复习,一个总复习。具体特点是:
1.在数与代数的学习中,重视动手操作与抽象概括相结合,体验乘、除法意义,发展了学生的数感和符号感。
2.在空间和图形学习中,从学生的生活经验出发,注重通过操作活动发展空间观念。
3.教材为教师留下了创造空间,可结合自身教学要求,生发新的教学设想,内化自己的教学设计。
三、总体教学目标:
(一)、知识与技能。
1.在单元学习中,学生通过“数一数”、“分一分”等活动,经历从具体情境中抽象出乘法除法算式,体会乘法与除法的意义。
2.学平面图形的周长,会进行周长的计算。
(二)、实践能力培养。
1.观察物体,引导学生经历观察的过程,体验从不同的位置观察,所看到的物体可能是不一样的。
2.结合生活情境,感受并认识质量单位。
3.经历对生活中某些现象进行推理、判断的过程,能对生活中的某些现象按一定的方法进行逻辑推理、判断其结果。
(三)、情感与态度。
1、让学生在观察和操作的学习活动中,能够感受到思考的条理性和合理性。
2、教师重视对学生数学学习过程的评价,让他们在感受到乐趣之外,应具备必要的学习自信心,养成良好的学习习惯。
教研专题:
创设课堂学习情境,有效培养创新意识。
个人专题:
在情境中培养学生的自主学习意识,提高课堂的有效性。
初中数学一次函数教案范文(22篇)篇八
2、能正确且较为熟练地运用去括号的符号法则去化简代数式过程与方法目标学习目标。
1、通过观察、合作交流、讨论总结等活动得出去括号的符号法则,培养学生观察、分析、总结的能力。
2、通过例题讲解,和巩固练习,培养学生的计算能力班级:初一四班nn。
1、数学知识:
2、数学思想方法:布置作业:板书设计nn教学反思nn。
初中数学一次函数教案范文(22篇)篇九
1、这节课之所以成功,在于我对课的整体把握透彻,教学目标明确,重难点突出,教学过程设计得条理分明,对于课堂的全局把握较好,能调动学生的学习热情,课堂学习气氛浓厚。
2、我对多媒体课件的运用比较熟练,加上自己一手制作的课件,更有自己的特色,吸引了学生,提高了课堂效率。
3、也是最重要的,我果断的放弃了用多媒体课件对例题解题过程的演示,而改让学生小组合作学习和探讨,学生动手画图板演解题过程。现在回想起来,这才是把课堂还给了学生。而在那个中等偏下学生板演反复时,我没有制止他换人,而是鼓励他继续完成了解题过程,这是对学生的尊重。
从这节课中,我也有了很大的收获,那就是:课堂尽量还给学生,把课堂变成学生展示自己的舞台。教师应该尊重每一个学生,不要害怕学生学习有困难,只有暴露了困难,才会对症下药,知困而后进也。
从那节课以后,我也按照我的想法在实践着我的数学课堂。
初中数学一次函数教案范文(22篇)篇十
教学设计思想:
本节主要学习了平行四边形的几种判定方法,以及平行四边形性质、判定的应用——三角形的中位线定理。通过问题情境引入平行四边形判定的研究,首先通过直观猜测判定的方法,再次通过几何证明来证明它的正确性。充分发挥学生的主观能动性。
教学目标。
知识与技能:
1.总结出平行四边形的三种判定方法;。
2.应用平行四边形的判定解决实际问题;。
3.应用平行四边形的性质与判定得出三角形中位线定理;。
4.总结三角形与平行四边形的相互转化,学会基本的添辅助线法。
过程与方法:
1.经历平行四边形判别条件的探索过程,逐步掌握说理的基本方法。
2.经历探究三角形中位线定理的过程,体会转化思想在数学中的重要性。
情感态度价值观:
1.在探究活动中,发展合情推理意识,养成主动探究的习惯;。
2.通过探索式证明法开拓思路,发展思维能力;。
3.在解决平行四边形问题的过程中,不断渗透转化思想。
教学重难点。
重点:1.平行四边形的判别条件;2.应用平行四边形的性质和判定得出三角形中位线定理。
难点:1.灵活应用平行四边形的判别条件;2.合理添加辅助线;3.三角形与平行四边形之间的合理转化。
教学方法。
小组讨论、合作探究。
课时安排。
3课时。
教学媒体。
课件、
教学过程。
第一课时。
(一)引入。
初中数学一次函数教案范文(22篇)篇十一
2、过程与方法。
经历探索一次函数的应用问题,发展抽象思维、
3、情感、态度与价值观。
培养变量与对应的,形成良好的函数观点,体会一次函数的应用价值、
1、重点:一次函数的应用、
2、难点:一次函数的应用、
3、关键:从数形结合分析思路入手,提升应用思维、
采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的。应用、
y=。
拓展:若a城有肥料300吨,b城有肥料吨,其他条件不变,又应怎样调运?
课本p119练习、
由学生自我本节课的表现、
课本p120习题14、2第9,10,11题、
1、一次函数的应用例:
练习:
初中数学一次函数教案范文(22篇)篇十二
1.质疑问难是学生自主学习的重要表现,优化课堂结构,激活学生的主体意识,必须鼓励学生质疑问难。教师要创造和谐融合的课堂气氛,允许学生随时“插嘴”、提问、争辩,甚至提出与教师不同的看法。
2.二次函数是初中阶段继一次函数、反比例函数之后,学生要学习的最后一类重要的代数函数,它也是描述现实世界变量之间关系的重要的数学模型。
3.学生有疑而问、质疑问难,是用心思考、自主学习、主动探究的可贵表现,理应得到老师的热情鼓励和赞扬。现在对学生的随时“插嘴”,提出的各种疑难问题,应抱欢迎、鼓励的态度给与肯定,并做出正确的解释。
4.初中阶段主要研究二次函数的概念、图像和性质,用二次函数的观点审视一元二次方程,用二次函数的相关知识分析和解决简单的实际问题。
文档为doc格式。
初中数学一次函数教案范文(22篇)篇十三
3、学会开放性地寻求设计方案,培养分析。
教学难点用方程组刻画和解决实际问题的过程。
知识重点经历和体验用方程组解决实际问题的过程。
教学过程(师生活动)设计理念。
(出示问题)据以往的统计资料,甲、乙两种作物的单位面积产量的比是1:1:5,现要在一块长200m,宽100m的长方形土地上种植这两种作物,怎样把这块地分为两个长方形,使甲、乙两种作物的总产量的比是3:4(结果取整数)?以学生身边的实际问题展开学习,突出数学与现实的联系,培养学生用数学的意识。
探索分析。
研究策略以上问题有哪些解法?
学生自主探索,合作交流,整理思路:
(2)先求两个小长方形的面积比,再计算分割线的位置.。
(3)设未知数,列方程组求解.。
……。
学生经讨论后发现列方程组求解较为方便.多角度分析问题,多策略解决问题,提高思维的发散性。
合作交流。
解决问题引导学生回顾列方程解决实际问题的基本思路。
(1)设未知数。
(2)找相等关系。
(3)列方程组。
(4)检验并作答。
解这个方程组得。
过长方形土地的长边上离一端约106m处,把这块地分。
为两个长方形.较大一块地种甲作物,较小一块地种乙作物.。
你还能设计别的种植方案吗?
用类似的方法,可沿平行于线段ab的方向分割长。
方形.。
教师巡视、指导,师生共同讲评.。
比较分析,加深对方程组的认识。
画图,数形结合,辅助学生分析。
进一步渗透模型化的思想。
引发学生思考,寻求解决途径。
拓展探究。
按以下步骤展开问题的讨论:
(l)学生独立思考,构建数学模型.。
(2)小组讨论达成共识.。
(3)学生板书讲解.。
(4)对方程组的解进行探究和讨论,从而得到实际问题的结果.。
(5)针对以上结论,你能再提出几个探索性问题吗?以学生学习生活中遇到的。
问题展开讨论,巩固用二元一次。
小结与作业。
小结提高提问:通过本节课的讨论,你对用方程解决实际的方法又有何新的`认识?
学生思考后回答、整理.。
布置作业12、必做题:教科书116页习题8.3第1(2)、4题。
13、选做题:教科书117页习题8.3第7题。
14、备15、选题:
(3)解方程组。
小彬看见了,说:“我来试一试.”结果小彬七拼八凑,拼成如图2那样的正方形.咳,怎么中间还留下一个洞,恰好是边长2mm的小正方形!
你能帮他们解开其中的奥秘吗?
提示学生先动手实践,再分析讨论.。
分层次布1作业.其中“必。
做题”面向全体学生,巩固知识、
方法,加深理解厂选做题”面向。
部分学有余力的学生,给他们一。
定的时间和空间,相互合作,自主探究,增强实践能力.备选通供教师参考.。
本课教育评注(课堂设计理念,实际教学效果及改进设想)。
本课所提供的例题、练习题、作业题突出体现以下特点:
2、探索性.问题解决的策略不易获得,问题中的数量关系不易发现,问题中的未知数不。
易设定,这为学生开展探究活动提供了机会.。
初中数学一次函数教案范文(22篇)篇十四
知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。
情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。
教学重难点。
难点:综合运用方程(组)、不等式和函数的知识解决实际问题。
教学过程。
(一)引入新课。
学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:一次函数与二元一次方程组之间是否也有联系呢?,从而揭示课题。
(二)进行新课。
(3)是否直线上任意一点的坐标都是它所对应的二元一次方程的解?
此时教师留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予帮助,师生共同归纳出:从形的角度看,解方程组相当于确定两条直线交点的坐标。
进一步归纳出:从数的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值。
3、列一元二次不等式。
解法1:设上网时间为分,若按方式a则收元;若按方式b则收元。然后在同一坐标系中分别画出这两个函数的图象,计算出交点坐标,结合图象,利用直线上点位置的高低直观地比较函数值的大小,得到当一个月内上网时间少于400分时,选择方式a省钱;当上网时间等于400分时,选择方式a、b没有区别;当上网时间多于400分时,选择方式b省钱。
解法2:设上网时间为分,方式b与方式a两种计费的差额为元,得到一次函数:,即,然后画出函数的图象,计算出直线与轴的交点坐标,类似地用点位置的高低直观地找到答案。
注意:所画的函数图象都是射线。
4、习题。
(1)、以方程的解为坐标的所有点都在一次函数_____的图象上。
(2)、方程组的解是________,由此可知,一次函数与的图象必有一个交点,且交点坐标是________。
5、旅游问题。
古城荆州历史悠久,文化灿烂。
初中数学一次函数教案范文(22篇)篇十五
使其在课堂教学时积极地配合教师的教学,集中精力跟随教师的上课进度,积极思考教师上课时提出的问题.在初中数学二次函数的教学过程中,经常会出现教师在讲台上侃侃而谈,下面的学生却昏昏欲睡,像二次函数这样涉及大量计算和分析的科目,对于学生的接受能力来说是较难的,因此,许多学校在对二次函数进行教学讲解时出现了严重的两极化现象,有些成绩好、理解能力好的学生,上课认真听讲,认为二次函数的学习是极具挑战性的,但是对于有些本身成绩差、接受能力较弱的学生来说,二次函数是他们根本听不懂的内容,根本没有学习的必要,反正他们也听不懂.
二次函数形象化。
二次函数的学习过程是一个非常抽象的教学过程,正因其抽象性和逻辑性,使得学生在二次函数的学习上很难接受和掌握,为了学生能够很好地学习和掌握二次函数,二次函数教学形象化是一个很重要的教学方式.
数学教师在进行二次函数教学过程中可以充分利用二次函数的图像讲解其基本性质,将抽象化的理论知识用实际图像来表述,便于学生的理解和想象.同时,在对二次函数进行教学时,我们还要合理地利用图像教学的优势,将其具体化,每当遇到二次函数求解时,首先根据函数方程式画一个简易的草图,培养学生画图的好习惯,通过自己所画的二次图像真正地了解二次函数,并利用其解决问题.
初中数学一次函数教案范文(22篇)篇十六
2、能根据一次函数的图象求二元一次方程组的近似解.
【能力目标】通过学生的思考和操作,在力图提示出方程与图象之间的关系,引入二元一次方程组图象解法,同时培养了学生初步的数形结合的意识和能力.
【情感目标】通过学生的自主探索,提示出方程和图象之间的对应关系,加强了新旧知识的联系,培养了学生的创新意识,激发了学生学习数学的兴趣.
2、能根据一次函数的图象求二元一次方程组的近似解。
【教学难点】方程和函数之间的对应关系即数形结合的意识和能力。
初中数学一次函数教案范文(22篇)篇十七
1、有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆。以及绝对值与数的分类。每年选择必考。
2、实数的运算要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。
3、平方根、算术平方根、立方根的区别。填空题必考。
4、求分式值为零时学生易忽略分母不能为零。
5、分式运算时要注意运算法则和符号的变化。当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。填空题必考。
6、非负数的性质:几个非负数的`和为0,每个式子都为0;整体代入法;完全平方式。
7、计算第一题必考。五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。
8、科学记数法。精确度,有效数字。
9、代入求值要使式子有意义。各种数式的计算方法要掌握,一定要注意计算顺序。
1、各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。
2、运用等式性质时,两边同除以一个数必须要注意不能为o的情况,还要关注解方程与方程组的基本思想。(消元降次)主要陷阱是消除了一个带x公因式要回头检验!
3、运用不等式的性质3时,容易忘记改不变号的方向而导致结果出错。
4、关于一元二次方程的取值范围的题目易忽视二次项系数不为0导致出错。
5、关于一元一次不等式组有解无解的条件易忽视相等的情况。
6、解分式方程时首要步骤去分母,分数相相当于括号,易忘记根检验,导致运算结果出错。
7、不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。
8、利用函数图象求不等式的解集和方程的解。
初中数学一次函数教案范文(22篇)篇十八
【知识目标】了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。
【能力目标】通过讨论和练习,进一步培养学生的观察、比较、分析的能力。
【情感目标】通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。
【难点】判断一组数是不是某个二元一次方程组的解,培养学生良好的。数学应用意识。
【教学过程】。
一、引入、实物投影。
2、请每个学习小组讨论(讨论2分钟,然后发言)。
[1] [2] [3]。
初中数学一次函数教案范文(22篇)篇十九
二元一次方程组是新人教版七年级数学(下)第八章第一节的内容。在此之前,学生已学习了一元一次方程,这为过渡到本节的学习起着铺垫作用。本节内容主要学习和二元一次方程组有关的四个概念。本节内容既是前面知识的深化和应用,又是今后用二元一次方程组解决生活中的实际问题的预备知识,占据重要的地位,是学生新的方程建模的基础课,为今后学习一次函数以及其他学科(如:物理)的学习奠定基础,同时建模的思想方法对学生今后的发展有引导作用,因此本节课具有承上启下的作用。
2.教学目标。
[知识技能]。
掌握二元一次方程、二元一次方程组及它们的解的概念,通过实例认识二元一次方程和二元一次方程组也是反映数量关系的重要数学模型。
[数学思考]。
体会实际问题中二元一次方程组是反映现实世界多个量之间相等关系的一种有效的数学模型,能感受二元一次方程(组)的重要作用。
[解决问题]。
通过对本节知识点的学习,提高分析问题、解决问题和逻辑思维能力。
[情感态度]。
引导学生对情境问题的观察、思考,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。
3.教学重点与难点。
按照《课程标准》的要求,根据上述地位与作用的分析及教学目标,本节课中相关概念的掌握是教学重点。
七年级学生思维活跃,好奇心强,希望平等交流研讨,厌烦空洞的说教。因此,在教学过程中,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,激发他们的兴趣。一方面通过学案与课件,使他们的注意力始终集中在课堂上;另一方面创造条件和机会,让学生自主练习,合作交流,培养学生学习的主动性、与人合作的精神,激发学生的兴趣和求知欲,感受成功的乐趣。
1.教法。
数学课程标准明确指出:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。所以我在教学中不只传授知识,更要激发学生的创造思维,引导学生探究,发现结论的方法。正所谓“教是为了不教”。所以我采用引导发现法为主,情景问答法、讨论法、活动竞赛法、利用多媒体课件辅助教学等完成本节的教学,真正做到教师的主导地位。
2.学法。
学生是学习的主体,所以本节教学中,引导学生自主探究、归纳总结,运用自主探索与合作交流开拓自己的创造思维。这样调动学生的积极性,激发学生兴趣,使学生由被动学习变为积极主动的探究,这也符合数学的直观性和形象性。
为了达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为五个环节:
1、创设情境,引入概念。
nba篮球联赛情景再现,利用世界男篮亚裔球星林书豪激励学生相信自已能够创造奇迹的励志教育,感受数学来源于生活,调动学生顺利引入新课。
2、观察归纳,形成概念。
概念的教学,不纠缠于其语言本身,而是通过类比整合形成新的概念。由于学生对一元一次方程概念已经很了解,我主要采用了类比的方法,弱化概念的教学,强化对概念的正确理解,通过学案与课件相结合的方式,以题组形式分层渐进式训练,让学生明晰概念,巩固概念,强化概念,提升能力。
3、拓展延伸,深入概念。
知识的掌握,能力的提升是一个不断循序上升的过程,而教学过程更是一个生动活沷,主动和富有个性的过程,让学生认真听讲、积极思考,动脑动口,自主探索,合作交流。
4、当堂检测,强化概念。
通过课堂随机选题的形式答题,通过合作小组交流,全班展示交流,使学生互相学习、互相促进、互相竞争,将小组的认知成果转化为全班同学的共同认知成果,从而营造宽松、民主、竞争、快乐的学习氛围,让学生体验到学习的快乐,成功的喜悦,从而充分体现数学教学主要是学生数学活动教学的基本理念。
5、反思小结,回归概念。
知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,培养学生形成完整的知识体系,养成及时反思的习惯。
美国国家研究委员会在《人人关心数学教育的未来》的报告中指出“没有一个人能教好数学,好的教师不是在教数学,而是在激发学生自已去学数学”。只有学生通过自已的思考建立对数学的理解力,才能真正的学好数学。本节课,我致力于让学生自已去发现数学,研究数学,加强数学思想、方法及科学研究方法的指导,引导学生不断从“学会数学”到“会学数学”,但教无止境,课堂仍然留有遗憾,在今后的教学中,我将从这样的三个方面加强对课堂的研究:一是加强对学法研究、学情研究,让教学方式与内容更符合学生认知规律,更贴近学生实际;二是重视学生课堂的学习感受,营造民主、开放、合作、竞争的学习氛围;;三是提高教学机智、不断创新优化教学方法,科学、合理、灵活地处理课堂上生成的问题。
初中数学一次函数教案范文(22篇)篇二十
本节内容共安排2个课时完成。该节内容是二元一次方程(组)与一次函数及其图像的综合应用。通过探索方程与函数图像的关系,培养学生数学转化的思想,通过二元一次方程方程组的图像解法,使学生初步建立了数(二元一次方程)与形(一次函数的图像(直线))之间的对应关系,进一步培养了学生数形结合的意识和能力。本节要注意的是由两条直线求交点,其交点的横纵坐标为二元一次方程组的近似解,要得到准确的结果,应从图像中获取信息,确立直线对应的函数表达式即方程,再联立方程应用代数方法求解,其结果才是准确的.
学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识,学习本节知识困难不大,关键是让学生理解二元一次方程和一次函数之间的内在联系,体会数和形间的相互转化,从中使学生进一步感受到数的问题可以通过形来解决,形的问题也可以通过数来解决.
1.教学目标
知识与技能目标
(1) 初步理解二元一次方程和一次函数的关系;
(2) 掌握二元一次方程组和对应的两条直线之间的关系;
(3) 掌握二元一次方程组的图像解法.
过程与方法目标
(2) 通过做一做引入例1,进一步发展学生数形结合的意识和能力.
(3) 情感与态度目标
(1) 在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.
(2) 在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.
2.教学重点
(1)二元一次方程和一次函数的关系;
(2)二元一次方程组和对应的两条直线的关系.
3.教学难点
数形结合和数学转化的思想意识.
1.教法学法
启发引导与自主探索相结合.
2.课前准备
教具:多媒体课件、三角板.
学具:铅笔、直尺、练习本、坐标纸.
本节课设计了六个教学环节:第一环节 设置问题情境,启发引导;第二环节 自主探索,建立方程与函数图像的模型;第三环节 典型例题,探究方程与函数的相互转化;第四环节 反馈练习;第五环节 课堂小结;第六环节 作业布置.
第一环节: 设置问题情境,启发引导
内容:1.方程x+y=5的解有多少个? 是这个方程的解吗?
2.点(0,5),(5,0),(2,3)在一次函数y= 的图像上吗?
3.在一次函数y= 的图像上任取一点,它的坐标适合方程x+y=5吗?
4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y= 的图像相同吗?
由此得到本节课的第一个知识点:
二元一次方程和一次函数的图像有如下关系:
(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;
(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.
意图:通过设置问题情景,让学生感受方程x+y=5和一次函数y= 相互转化,启发引导学生总结二元一次方程与一次函数的对应关系.
效果:以问题串的形式,启发引导学生探索知识的形成过程,培养了学生数学转化的思想意识.
前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系.顺其自然进入下一环节.
第二环节 自主探索方程组的解与图像之间的关系
内容:1.解方程组
2.上述方程移项变形转化为两个一次函数y= 和y=2x ,在同一直角坐标系内分别作出这两个函数的`图像.
(1) 求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;
(2) 求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.
(3) 解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.
注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.
意图:通过自主探索,使学生初步体会数(二元一次方程)与形(两条直线)之间的对应关系,为求两条直线的交点坐标打下基础.
效果:由学生自主学习,十分自然地建立了数形结合的意识,学生初步感受到了数的问题可以转化为形来处理,反之形的问题可以转化成数来处理,培养了学生的创新意识和变式能力.
第三环节 典型例题
探究方程与函数的相互转化
内容:例1 用作图像的方法解方程组
例2 如图,直线 与 的交点坐标是 .
意图:设计例1进一步揭示数的问题可以转化成形来处理,但所求解为近似解.通过例2,让学生深刻感受到由形来处理的困难性,由此自然想到求这两条直线对应的函数表达式,把形的问题转化成数来处理.这两例充分展示了数形结合的思想方法,为下一课时解决实际问题作了很好的铺垫.
效果:进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.
第四环节 反馈练习
内容:1.已知一次函数 与 的图像的交点为 ,则 .
2.已知一次函数 与 的图像都经过点a(2,0),且与 轴分别交于b,c两点,则 的面积为( ).
(a)4 (b)5 (c)6 (d)7
3.求两条直线 与 和 轴所围成的三角形面积.
4.如图,两条直线 与 的交点坐标可以看作哪个方程组的解?
意图:4个练习,意在及时检测学生对本节知识的掌握情况.
效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性.
第五环节 课堂小结
内容:以问题串的形式,要求学生自主总结有关知识、方法:
1.二元一次方程和一次函数的图像的关系;
(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;
(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.
2.方程组和对应的两条直线的关系:
(1) 方程组的解是对应的两条直线的交点坐标;
(2) 两条直线的交点坐标是对应的方程组的解;
3.解二元一次方程组的方法有3种:
(1)代入消元法;
(2)加减消元法;
(3)图像法. 要强调的是由于作图的不准确性,由图像法求得的解是近似解.
意图:旨在使本节课的知识点系统化、结构化,只有结构化的知识才能形成能力;使学生进一步明确学什么,学了有什么用.
第六环节 作业布置
习题7.7
附: 板书设计
本节课在学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识的基础上,通过教师启发引导和学生自主学习探索相结合的方法,进一步揭示了二元一次方程和函数图像之间的对应关系,从而引出了二元一次方程组的图像解法,以及应用代数方法解决有关图像问题,培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.教学过程中教师一定要讲清楚图像解法的局限性,这是由于画图的不准确性,所求的解往往是近似解.因此为了准确地解决有关图像问题常常把它转化为代数问题来处理,如例2及反馈练习中的4个问题.
初中数学一次函数教案范文(22篇)篇二十一
课件出示教材第75页图4-1及相关问题,并由学生讨论完成题目.
师:在现实生活中一个量随另一个量的变化而变化的现象大量存在.函数就是研究一些量之间确定性依赖关系的数学模型.(板书课题)。
二、探究新知。
函数的相关概念.
(1)课件出示教材第76页“做一做”第1题.
师:层数n和物体总数y之间是什么关系?
引导学生得出:只要给定层数,就能求出物体总数.
(2)课件出示教材第76页“做一做”第2题.
师:在关系式t=t+273中,两个变量中若知道其中一个,是否可以确定另外一个?
一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数,其中x是自变量.
表示函数的方法一般有:列表法、关系式法和图象法.
对于自变量在可取值范围内的一个确定的值a,函数有唯一确定的对应值,这个对应值称为当自变量等于a时的函数值.
理解函数概念时应注意:
(1)在某一变化过程中有两个变量x与y.
(2)这两个变量互相联系,当变量x取一个确定的值时,变量y的值就随之确定.
(3)对于变量x的每一个值,变量y都有唯一的一个值与它对应,如在关系式y2=x(x0)中,当x=9时,y对应的值为3或-3,不唯一,则y不是x的函数.
师:上述问题中,自变量能取哪些值?
指出要根据实际问题确定自变量的取值范围.
初中数学一次函数教案范文(22篇)篇二十二
教学目标:
1、能利用反比例函数的相关的知识分析和解决一些简单的实际问题。
3、在解决实际问题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型。
教学重点、难点:
重点:能利用反比例函数的相关的知识分析和解决一些简单的实际问题。
教学过程:
一、情景创设:
为了预防“非典”,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例.药物燃烧后,y与x成反比例(如图所示),现测得药物8min燃毕,此时室内空气中每立方米的含药量为6mg,请根据题中所提供的信息,解答下列问题:。
(1)药物燃烧时,y关于x的函数关系式为:________,自变量x的取值范围是:_______,药物燃烧后y关于x的函数关系式为_______.
二、新授:
(1)如果小明以每分种120字的.速度录入,他需要多少时间才能完成录入任务?
(3)小明希望能在3h内完成录入任务,那么他每分钟至少应录入多少个字?
例2某自来水公司计划新建一个容积为的长方形蓄水池。
(1)蓄水池的底部s与其深度有怎样的函数关系?
(2)如果蓄水池的深度设计为5m,那么蓄水池的底面积应为多少平方米?
(3)由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长与宽最多只能设计为100m和60m,那么蓄水池的深度至少达到多少才能满足要求?(保留两位小数)。
三、课堂练习。
1、一定质量的氧气,它的密度(kg/m3)是它的体积v(m3)的反比例函数,当v=10m3时,=1.43kg/m3.(1)求与v的函数关系式;(2)求当v=2m3时求氧气的密度.
2、某地上年度电价为0.8元度,年用电量为1亿度.本年度计划将电价调至0.55元至0.75元之间.经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)(元)成反比例,当x=0.65时,y=-0.8.
(1)求y与x之间的函数关系式;
3、如图,矩形abcd中,ab=6,ad=8,点p在bc边上移动(不与点b、c重合),设pa=x,点d到pa的距离de=y.求y与x之间的函数关系式及自变量x的取值范围.
四、小结。
五、作业。
30.31、2、3。