教学计划应该根据学生的实际情况和学科特点进行合理的安排。下面是一些成功教学计划的案例分享,希望能够给大家提供一些借鉴和启发。
平行四边形的面积教学设计(热门20篇)篇一
1、能比较熟练地运用平行四边形计算公式,解答有关的应用问题。
2、养成良好的审题习惯,树立责任感。
:能比较熟练地运用平行四边形的计算公式,解答有关的应用题。
:口算卡片。
2、口算:
4.9÷0.75.4+2.64×0.250.87-0.49。
530+2703.5×0.2542-986÷12。
(1)底12米,高是7米;(2)高13分米,底长6分米;
(3)底2.5厘米,高4厘米;(4)底0.24分米,高0.5分米。
4、出示课题。
1、补充例题。
(1)独立列式后,指名口述,教师板书。
(2)如果改问题为“每公顷可收小麦6吨,这块地共可收小麦多少吨?”怎么解答?
让学生议一议,然后自己列式解答,最后评讲。
与上题比较,从数量关系上看,什么是相同的?什么是不同的?
让学生自己列式。
辨析:老师也列了三个算式,到底哪个对呢?帮个忙!
a900×(125×24÷10000)。
b900÷(125×24)。
c900÷(125×24÷10000)。
2、小结(略)。
练习十七第6、7题。
练习十七第8、9题。
板书设计:
教后感:
平行四边形的面积教学设计(热门20篇)篇二
教学内容:
实验教材小学数学五年级上册第76页内容。
教学目标:
1、用转化的方法探索并掌握平行四边形的面积计算公式,并能正确计算平行四边形的面积。
2、经历探索平行四边形面积计算方法的过程,培养初步的观察能力、抽象能力,进一步发展空间观念。
3、在运用平行四边形面积计算公式解决现实问题的过程中,感受数学和现实生活的密切联系,培养初步的数学应用意识和解决简单实际问题的能力。
教学准备:
学生:方格图、平行四边形纸片、直尺、剪刀、三角尺。
教师:课件、投影仪。
教学过程:
一、谈话引入,提出问题。
(1:虾池的面积是多少?2:虾池是什么形状的?……)。
师:虾池是什么形状的?(平行四边形)。
师:求虾池的面积就是求什么的面积?(平行四边形)平行四边形的面积怎么计算呢,这节课我们共同来探究。(板书课题:平行四边形的面积)。
二、合作探索,解决问题。
1、猜想。
师:我们学过的长方形、正方形的面积计算都有一个公式,平行四边形的面积计算有没有公式呢?(有,师同时出示课件:虾池的平面示意图)。
师:希不希望通过自己的探究找到这个公式?
师:相信你们一定能行!在探究之前,先请同学们猜想一下:平行四边形的面积计算公式可能是什么?并说说你的理由。
(学生独立思考)。
师:谁来说?
(1、我猜平行四边形的面积计算公式是“底×邻边”。我是根据长方形的面积计算公式猜的。)。
师:谁有不同想法?
(2、我猜平行四边形的面积计算公式是“底×高”。我发现沿着高把平行四边形剪下来,移过去就拼成了长方形,所以我猜平行四边形的面积计算公式是“底×高”。)。
师:现在出现两种猜想,各有各的理由,而真正的计算公式肯定只有1个。我们怎么办?(验证)。
师:对!我们要逐个进行验证,看看正确的公式究竟是什么。
为了方便大家探究,老师为每个小组都准备了同样大小的平行四边形纸片来代替虾池,还有一些学具,或许会对你们的验证有所帮助。在动手验证之前,老师有几点小提示,请看屏幕:(课件出示,指名读)。
1.小组同学先讨论验证的方法,再动手验证。
2.小组成员要团结合作,合理分工。
3.每组推选1名代表进行汇报,其他组员可以补充。
4.使用学具时注意安全,用完后装入信封。
2、验证“底×邻边”
师:先来验证“底×邻边”这个猜想对不对。
比比看,哪个小组合作得好,最先找到答案!小组长拿出第一个信封,开始。
(学生合作,教师巡视)。
3、交流。
师:经过大家的动手操作,相信都有答案了。哪个小组愿意先来交流?
(我们小组是用数方格的方法来验证的。我们通过数方格的方法数出平行四边形纸片的面积是28平方厘米,而用猜想公式算出的面积是35平方厘米。所以“底×邻边”的猜想是错误的。)。
师:听明白他们小组的做法了吗?(找两人分享)感谢你们的介绍。还有不一样的小组吗?(没有)。
师:我们再一起看看验证的过程:(课件演示)用方格图数出这个平行四边形的面积是28平方厘米。而量一量它的底是7厘米,邻边5厘米,根据“底×邻边”的猜想公式算出面积为35平方厘米。所以通过“数方格”验证,“底×邻边”这个猜想是错误的。虽然这个猜想是错误的,但我们要感谢提出这个猜想的同学,因为你的猜想很有价值,让我们大家对“底×邻边”为什么不对有了更深刻地认识。既然“底×邻边”是错误的,那“底×高”是不是正确呢?现在请收起你的方格图,我们再次小组合作利用第二个信封的帮助再来验证“底×高”这个猜想对不对。一定要交流好验证方法再动手操作,开始。
4、验证“底×高”
(学生活动,教师参与)。
5、交流。
师:相信大家又有了新的发现和收获。哪组先来分享你们的研究成果?
(1、我们小组是这样做的:量一量平行四边形的底是7厘米,高4厘米,乘积是28平方厘米,所以“底×高”的猜想是正确的。
师评价:他们小组的这种方法怎么样?我发现他们小组很会利用资源。刚才知道这个平行四边形面积是28平方厘米,于是他们想到的验证方法就是用底×高,看是不是等于28。有不一样的验证方法吗?注意听,看看他们采用的究竟是什么方法。)。
(2、我们小组是沿着平行四边形的高剪下来,把它拼成长方形,我们发现长方形的长就是平行四边形的底,长方形的宽就是平行四边形的高,所以平行四边形的面积=底×高。可让其利用投影仪向全班展示。)。
师:我们再通过大屏幕一起看(播放课件):把平行四边形沿着高剪开,通过平移拼成长方形,面积有没有变化?也就是长方形的面积和平行四边形的面积相等(板书:长方形的面积、平行四边形的面积),而长方形的长就是原来平行四边形的(底)(板书:长、底),宽就是平行四边形的(高)(板书:宽、高)。根据长方形的面积=长×宽,可以推出平行四边形的面积=底×高(板书)。我有一个疑问:为什么要沿着高剪呢?(这样剪能拼成一个长方形,拼成长方形就能够求出平行四边形的面积。)。
师:奥,我明白了。原来这一剪的作用很大,把我们不会解决的平行四边形的面积这个难题转化成长方形的面积这一简单问题了。
师:是不是沿着平行四边形的任意一条高裁剪都可以?(是的)。
(平行四边形没有“长”和“宽”。)。
师:说的真好,我们可不能混淆了。
三.应用公式,巩固训练。
师:我们已经知道平行四边形的面积计算公式了,你能独立解决虾池的面积这个问题吗?写在你的练习本上。(出示虾池平面图课件,指名板演:90×60=5400(平方米)。
师:如果老师再给你提供这样一条信息:每平方米放养虾苗30尾,你能提出什么问题?(这个虾池能放养多少尾虾苗?)。
师:谁来解决这个问题?其余同学写在练习本上。(30×5400=16(尾))。
(出示课件:四个挑战)。
为什么?(单位:厘米图略)。
4、聪明小屋:下图中正方形的周长是24厘米,平行四边形的面积是多少?
师:真不错,挑战成功。
四.收获平台,课外延伸。
师:不知不觉中就要下课了。想一想,这节课你有哪些收获?
(我学会了“转化”这种方法;我们学到了平行四边形面积的计算方法。)。
师:回忆一下:我们在推导平行四边形的面积公式时是按什么步骤进行的?
(猜想--验证--结论。这是数学上常用的探究方法,相信你们在以后的学习中会经常使用它。这节课,同学们不仅仅学到了知识,而且掌握了一种重要的数学思想方法——转化,把平行四边形的面积转化成长方形的面积这一简单的问题来解决。课后想一想生活中你是否也用过转化法解决问题呢?同学之间互相交流一下。)。
平行四边形的面积教学设计(热门20篇)篇三
《义务教育教科书》人教版数学课本五年级上册87——88页。
平行四边形面积计算,是在学生掌握了长方形、正方形面积计算方法的基础上安排的教学内容。是学习的平面图形面积计算的进一步拓展。应用转化的数学思想方法推导平面图形面积计算公式是学生的初次接触,让学生为了解决问题主动地实现转化就成为本节课教学的关键。只要突破这一关键,其余的问题就会迎刃而解。
学生对平行四边形的特征有了一定的了解,但对平行四边形如何转化为长方形还没有经验,转化的意识也十分薄弱。因此,要让学生把转化变为一种需要,教师必须通过问题引领,为学生提供解决问题的直观材料和工具帮助学生探究,从而实现探究目标。
1、经历平行四边形面积公式的探究推导过程,掌握平行四边形面积计算方法。能应用公式解决实际问题。
2、在探究的过程中感悟“转化”的数学思想和方法。
3、通过猜测、验证、观察、发现、推导等活动,培养学生良好的数学品质。
4、引领学生回顾反思,获得基本的数学活动经验。
讲述阿凡提智斗巴依老爷的故事,激发学生的好奇心。
1、联系旧知,做出猜想。
看到这个题目,你想到了我们学过哪些有关面积的知识?
2、初步验证,感悟方法。
根据自己的猜想,测量并计算面积,然后选择合适的工具进行验证。
引导学生:可以用数方格的方法试一试。(出示方格纸中的平行四边形)。
学生数方格并来验证自己的猜想。
3、剪拼转化,发现规律。
除了数方格,我们还能用什么方法来验证呢?(学生思考)。
(1)请大家先以小组进行讨论,然后动手实践,比一比哪个小组完成的更快。
(2)展示交流。(演示)。
4、观察比较,推导公式。
s=a×h。
5、展开想象,再次验证。
是不是所有的平行四边形都可以转化成长方形?面积都可以用底乘高来计算呢?
学生先闭眼想象,再借助手中的工具加以验证。
6、回顾反思,总结经验。
回顾我们推导平行四边形面积计算公式的探究过程,我们是怎样推导出面积计算公式的,从中可以获得哪些经验。
然后找到转化前、后图形之间的联系。(寻找—联系)。
根据长方形面积公式推导出平行四边形面积公式。(推导—公式)。
1、解决实际问题。
2、出示如下图。
算一算停车场里两个不同的平行四边形停车位的面积各是多少。(学生动手算一算,再让学生汇报。)。
3、下面是块近似平行四边形的菜地(引导学生理解计算平行四边形面积的时候,底和高必须是相对应的。)。
王大爷:43×23李大爷43×20,请你判断一下,谁对?谁错?
4、现在你明白阿凡提是怎么打败巴依的了吗?
引导学生明白:阿凡提利用了平行四边形易变形的特性调整了篱笆。
思考:阿凡提调整篱笆后的菜地面积变为100平方米,底20米,你知道高是多少吗?
转化思想是一种重要的解决数学问题的方法,它是连接新旧知识的桥梁,合理利用,不仅可以掌握新知,还可以巩固旧知。希望同学们能把它作为我们的好朋友,帮助我们探索更多数学奥秘。
通过本节课的学习,同学们一定收获很多,下课以后,把自己的收获用日记记录下来,主动地到生活中去发现和解决一些关于平行四边形面积计算的问题。
【设计意图:试图把学生带入更加广阔的学习空间。】。
s=a×h。
平行四边形的面积教学设计(热门20篇)篇四
1.使学生理解平行四边形面积计算公式的来源,能运用公式正确地计算平行四边形的面积,并会计算一些简单的有关平行四边形面积的实际问题。
2.培养学生初步的逻辑思维能力和空间观念。
3.结合教材渗透转化思想。
掌握和运用平行四边形面积计算公式。
平行四边形面积公式的推导过程。
投影器、长方形框架、平行四边形纸片等。
一、课前谈话:
师:同学们,你们知道曹冲称象的故事吗?曹冲是怎样称出大象的重量的?
二、创设生活情境
学生自由发言。
师:长方形花坛的面积你们肯定会算,知道什么就可以了?平行四边形的面积会算吗?今天我们就一起来探讨平行四边形的面积。(板书)
三、探究新知
1、自主探索
出示一平行四边形纸片,这是一张平行四边形的纸片,想一想,你们有办法知道它的面积吗?也可以和组里的同学商量讨论,如果有需要的材料可以到我给大家准备的学具袋里去找一找,我们比比看,哪个小组的同学最先知道这个平行四边形的面积!
学生以小组为单位开展活动,教师巡视。
汇报、反馈:都有结果了吧,哪个小组先来汇报?
各小组派代表发言。
2、对比分析
每个小组都得到了这个平行四边形的面积,我们一起来看看这些方法。课件展示学生的主要方法。
3、归纳总结
四、巩固运用
我们会计算了平行四边形的面积,接下来我们就到生活中去看看吧!
1、(课件出示例题)这是五二班选的花坛的相关数据,现在能求出它的面积了吧?
2、p82看第2题。
3、课件出示:p83第题,这两个平行四边形的面积相等吗?为什么?
五、小结:今天大家学得开心吗?你们都有哪些收获?
平行四边形的面积教学设计(热门20篇)篇五
:九年义务教育六年制小学数学第九册70页一72页。
1.使学生理解平行四边形面积计算公式的来源,能运用公式正确地计算平行四边形的面积,并会计算一些简单的有关平行四边形面积的实际问题。
2.培养学生初步的逻辑思维能力和空间观念。
3.结合教材渗透转化思想。
教学重点:掌握和运用平行四边形面积计算公式。
教学难点:平行四边形面积公式的推导过程。
课前准备:投影器、长方形框架、平行四边形纸片等。
一、课前谈话:
师:同学们,你们知道曹冲称象的故事吗?曹冲是怎样称出大象的重量的?
二、创设生活情境
学生自由发言。
师:长方形花坛的面积你们肯定会算,知道什么就可以了?平行四边形的面积会算吗?今天咱们就一起来探讨平行四边形的面积。(板书)
三、探究新知
1、自主探索
出示一平行四边形纸片,这是一张平行四边形的纸片,想一想,你们有办法知道它的面积吗?也可以和组里的同学商量讨论,如果有需要的材料可以到我给大家准备的学具袋里去找一找,咱们比比看,哪个小组的同学最先知道这个平行四边形的面积!
学生以小组为单位开展活动,教师巡视。
汇报、反馈:都有结果了吧,哪个小组先来汇报?
各小组派代表发言。
2、对比分析
每个小组都得到了这个平行四边形的面积,咱们一起来看看这些方法。课件展示学生的主要方法。
3、归纳总结
四、巩固运用
咱们会计算了平行四边形的面积,接下来我们就到生活中去看看吧!
1、(课件出示例题)这是五二班选的花坛的相关数据,现在能求出它的面积了吧?
2、p82看第2题。
3、课件出示:p83第题,这两个平行四边形的面积相等吗?为什么?
五、小结:今天大家学得开心吗?你们都有哪些收获?
平行四边形的面积教学设计(热门20篇)篇六
1、通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。
2、通过电子白板的操作、探究、对边、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。
3、运用猜测、验证的方法,使学生积极的情感体验。发展学时自主探索、合作交流的能力,感受数学知识的价值。
电子白板课件、平行四边形模型、剪刀、初步探究学习卡。
1、课前通过同学们的谈话,轻松引入主题。师:同学们,你们都玩过七巧板吗?
2、播放制作七巧板的视频。
3、出示一组图形,学生观察,数方格算出面积。拉开幕布,学生们看到露出一点点的图案,调动了学生的积极性,都跃跃欲试,学生动手逐个拖拽出想拖里面的美丽图案。在学时汇报平移的方法时,教师利用电子白板中的拖动图片平移的功能,直接在屏幕上操作演示,感知割补、平移,转化等学习方法。导出视频,拖动、平移等功能。
1、电子白板导出两个花坛,比一比,哪个大?
2、揭示课题。学生比一比,猜想这两个花坛的面积大小。让学生猜一猜、想一想,导出两个花坛的课件。
1、利用数方格,初步探究。
2、出示“初步探究学习卡”同桌交流一下填法,汇报。用数方格的方法得出图形的面积,是学生熟悉的、直观计量面积的方法。同时呈现这两个图形,暗示了他们之间的联系,为下面的探究作了很好的铺垫。导出“初步探究学习卡”
1、探索把一个平行四边形转化成已学习过的图形。
2、观察拼出的图形,你发现了什么?在班内交流操作,重点演示两种转发方法。
4、引导学生用字母来表示:s表示面积,a表示底,h表示高。那么面积公式就是s=ah利用白板的拖动功能,根据学生反馈的转发方式,随机演示。白板演示、突出拖动、旋转等功能。
1、课件出示例1。
平行四边形的面积教学设计(热门20篇)篇七
让学生经历探索平行四边形面积计算公式的过程,掌握平行四边形的面积计算方法,能解决相应的实际问题。
(二)过程与方法。
通过操作、观察和比较,发展学生的.空间观念,渗透转化思想,培养学生分析、综合、抽象概括和动手解决实际问题的能力。
(三)情感态度和价值观。
通过活动,培养学生的探索精神,感受数学与生活的密切联系。
教学难点:理解平行四边形面积计算公式的推导过程,体会转化的思想。
平行四边形卡纸一张,剪刀一把,三角尺一个,多媒体课件。
(一)创设情境,激趣导入。
1。创设情境。
(1)呈现教材第86页单元主题图。(ppt课件演示)。
5。五年级上册数学图形与几何教案。
平行四边形的面积教学设计(热门20篇)篇八
教学目的:1.通过剪拼摆等活动,让学生主动解决实际问题。
3.培养学生的初步的空间观念。
4.培养学生积极参与,团结合作,主动探索的精神。
教学难点:公式推导的过程。
透明的方格纸和剪刀。
教学过程:
s:数方格的方法。(教师揭示并演示)。
t:那这样的数方格的方法你有什么想说的吗?
s1:麻烦。s2:不够精确······。
s:······。
2.动手操作推倒公式。
t:那出你准备好的平行四边形,看看能不能将它们转化成我们以前学过的图形?
(先独立思考有了想法小组交流)。
s:······。
汇报:t:你是怎么样做的呢?哪个小组愿意来给大家展示一下。
s:拼成三角形,梯形,长方形······。
t:通过同学们的亲身探索操作,将平行四边形转化成了许多我们学过的图形。
知识转化:t:大家观察一下,哪种图形的面积我们会计算呢?
s:长方形。
t:请大家拿出来一张平形四边形纸片,将它转化成为长方形吧!智慧老人现在有几个问题留给大家思考,便于同学发现其中的规律。
请看小黑板:
1.你们是怎么样转化的?
2.与原来的平行四边形的关系是怎么样的?(面积对应的高与底)。
s2:面积是一样的.(学生板书)。
s3:长方形的面积是长乘宽长方形的面积=长乘宽(学生板书)。
t::哪个小组与他们的观点一致,有需要补充的吗?
s:我们是沿着另一条高折的也拼成了长方形。
t:同学们,听出来这两组同学的方法,虽然有不同的地方,但有一个共同点就是沿着高剪.
t:为什么要沿着高剪开的呢?
s:长方形有四个直角,所以我们必须沿着高来剪这样才能形成直角.
s:(学生板书:s=ah)。
小结:t:通过图形的转化,我们推出了平行四边形的面积计算公式,那我们以后再求平行四边形的面积的时候只要知道平行四边形的哪些条件(底和高)我们知道了平行四边形的底和高,我们就可以求平行四边形的(面积).
s:3×4=12(平方米)答:得买12平方米的草皮.
23。
33。
t:这道题告诉我们一个怎么样的问题?
s:对应边与对应高之间的乘积.
2.课本24页试一试说说自己的方法.
3.练一练。
总结:这节课你都学会了什么?有怎样的收获呢?
你对自己的表现满意吗?给自己来打一下分数满分是10分的话.
平行四边形的面积教学设计(热门20篇)篇九
1.在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积。
2.通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法。
3、培养学生的分析、综合、抽象、概括和解决实际问题的能力。
一、情境激趣。
1.创设喜羊羊与灰太狼比较草皮的大小而争吵的故事。
2.引导学生观察它们的草皮各是什么形状?
3、提问:长方形的面积怎么算?
二、自主探究。
1.数方格比较两个图形面积的大小。
(1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。
(2)学生用数方格的方法计算两个图形的面积并填写书上87页表格。
(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积。
一样大。
(4)提出问题:如果平行四边形很大,用数方格的方法麻烦,能不能找。
(5)观察表格,你发现了什么?
(6)引导学生交流发现并全班反馈得出:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。
2.操作验证。
(1)提出要求:请小朋友利用三角尺、剪刀,动手剪一剪拼一拼,把平行四边形想办法转变成我们已学过面积计算的图形,完成后和小组的同学互相交流自己的方法。
(2)学生分组操作,教师巡视指导。
(3)学生展示不同的方法把平行四边形变成长方形。
(4)利用课件演示把平行四边形变成长方形过程。
(5)观察并思考以下两个问题:
a.拼成的长方形和原来的平行四边形比较,什么变了?什么没变?
b.拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?
(6)交流反馈,引导学生得出:
a.形状变了,面积没变。
b.拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。
(7)根据长方形的面积公式得出平行四边形面积公式并用字母表示。
(8)活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的'面积等于底乘高,验证了前面的猜想。
3.教学例1。
(1)(出示例1)平行四边形的花坛的底是6m,高是4m。它的面积是多少?
(2)学生独立完成并反馈答案。
三、巩固运用。
1.明辨是非。
4.练习十五第3题。
四、课堂总结。
通过这节课的学习,你有哪些收获?(学生自由回答。)。
平行四边形的面积教学设计(热门20篇)篇十
教学过程:
一、复习旧知。
1、提问:怎样计算长方形的面积?(板书:长方形面积=长×宽)。
2、口算长方形的面积:长6cm,宽3cm。
3、出示平行四边形,提问:这是什么图形?指出它的底和对应的高。
4、揭示课题:我们已经知道了求长方形的面积公式,那平行四边形的面积该怎样计算呢?这节课我们就来一起研究平行四边形的面积的计算方法。(板书:平行四边形的面积)。
二、探究新知。
3、课件演示验证。
5、总结:任何一个平行四边形都可以转化成一个长方形,它的面积与原来的平行四边形面积相等。这个长方形的长与原来平行四边形的底相等;这个长方形的宽与原来平行四边形的高相等。因为长方形面积等于长乘宽,所以平行四边形面积等于底乘高。(板书:平行四边形面积=底×高)。
6、介绍字母公式,每个字母的意义。(板书:s=a×h或s=a·h或s=ah)。
三、巩固练习。
1、试一试。
2、练一练1、2、3、4。
四、拓展提高。
五、课堂小结。
这节课你有什么收获?
六、板书设计。
s=a×h=a·h=ah。
平行四边形的面积教学设计(热门20篇)篇十一
知识与技能目标:
过程与方法目标:
能够运用公式解决实际问题。
情感态度与价值观:
通过公式的推导,向学生渗透事物之间的普遍联系;通过解决实际问题,提高学生对生活中处处有数学的认识。
(2)教学难点:如何让学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形之间的底和高的关系。
1、课件。
2、每位同学准备两个完全一样的平行四边形,并在上面做任意一条高。小剪刀一把,尺子一把。
这节课是学生在掌握了长方形面积的基础上学习的。学生已经有了用数方格的方法来推导长方形的面积的计算公式的经验,那么这节课学生肯定也会想到同样的方法。在此基础上让学生明确怎样数方格最好最快,由此联想到隔补转化成一个面积相等的长方形。进而动手操作,找到转化后的长方形和原来平行四边形的联系,得出平行四边形的面积计算公式。
一、激情导课。
(大屏幕出示校园情景图)。
同学们,这是育才小学校门口场景图,请同学们看看图上有哪些我们认识的图形?(有长方形、正方形、平行四边形)再请大家把目光聚焦到校门口的这两块草坪,一块是(长方形),一块是(平行四边形)那么这两块草坪哪一块大呢?(猜一猜)需要知道这两块草坪的(面积)。对,谁来说说长方形的面积怎样求?那么平行四边形的面积怎样求呢?这节课我们就来一起学习一下平行四边形的面积。(板书课题:平行四边形的面积)。
看了课题,你觉得这节课我们应该达到哪些学习目标呢?(出示学习目标)。
2、运用公式解决生活中的实际问题。
师随着学生的回答在课题前板书:探究和运用。
师:好,老师相信只要同学们善于观察,积极动手,勤于思考,就能获得新知识,达到我们的学习目标,你们有信心吗?(有)。
二、民主导学。
同学们,长方形的面积是用什么方法推导出来的?(数方格)那你这节课能不能也用同样的方法推导出平行四边形的面积计算方法?(能)除了数方格的方法,还有别的方法吗?(剪拼的方法)。
任务呈现:请同学们动动手动动脑,想办法探求平行四边形的面积,并在小组内交流自己的方法。
提示:如果采用数方格的方法,同学们可以参照课本87页的表格完成。如果采用的是剪拼的方法,可以利用课前准备的学具,并参照课本88页内容进行学习探究。(现在各小组开始自己的探究活动吧!)。
自主学习:先独立动手操作,再在小组内交流自己的发现。师巡视指导。
展示交流:
1、先请数方格的小组上台展示。
预设:我们小组是这样数方格的,先数整格的(手指大屏幕),然后数半格的。(不满一格的都按半格算)这样可以数出来平行四边形一共是24格,也就是24平方米。同样长方形的面积也是24平方米。
我们还发现了平行四边形的底是6米,高是4米,把这两个数相乘正好是24平方米。
(对小组进行评价)。
师:是不是所有的平行四边形都能用数方格的方法来计算呢?如果是一个很大的平行四边形还能这样吗?(有局限性)他们组发现了底和高相乘的积正好就是平行四边形的面积,这是巧合还是必然呢?这就需要大家进一步的验证。那么,我们接下来请用不同方法的小组上台展示。
2、请用割补法的小组上台展示自己的研究成果。
预设:(1)、沿着平行四边形的高剪开,分成了一个直角三角形和一个直角梯形,然后把直角三角形平移到右边,就把平行四边形转化成了一个长方形。长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高。因为长方形的面积是长×宽,所以平行四边形的面积就是底×高。
(师随着生的表述板书)。
(对小组进行评价)。
预设:(2)、沿着平行四边形中间的任意一条高剪开,变成了两个直角梯形,然后把其中一个梯形平移到另一个的一边,也拼成了一个长方形。同样这个长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高。因为......所以......
(对小组进行评价)。
预设:(3)、师演示。
师:计算公式我们通常都可以用字母来表示。面积用s,底用a,高用h来表示,那么平行四边形的面积可以表示为:s=ah。
师小结:刚才我们用割补平移的方法把一个平行四边形转化成了长方形,找到了它们之间的内在联系,从而得出平行四边形的面积计算公式。接下来老师告诉你刚才平行四边形花坛的底和高,你能列式求出它的面积吗?(能)。
任务二:解决问题。
自主学习:独立在练习本上解答,完成后与小组内同学交流。
展示交流:注意指导学生的书写格式。
三、检测导结。
2、已知下面图形的面积和底,怎样求出它的高?
以上三题,做对一道得一颗星,全部做对得三颗星。
集体订正,组内互批。
反思总结:请同学们谈谈这节课的收获吧!
平行四边形的面积教学设计(热门20篇)篇十二
1、理解并掌握平行四边形面积的计算公式,会利用公式正确计算平行四边形的面积。
2、通过操作、观察、比较等实践活动,经历主动探索面积计算公式的过程,培养分析问题、解决问题的能力,进一步发展空间想象力和动手操作能力。
3、渗透转化的数学思想,激发探索的兴趣,增强数学应用意识,提高解决实际问题的能力。
理解并掌握平行四边形面积的计算公式,会利用公式正确计算平行四边形的面积。
理解平行四边形面积公式的推倒过程,会利用公式正确计算平行四边形的面积。
一、创设情境,激趣导入。
学生汇报。
(多媒体出示一块长方形的地,一块平行四边形的地)。
学生汇报。
师:你们准备怎样解决呢?
师:怎样才能知道这块长方形地的面积呢?(引导学生得出两种方法:数格子和用公式计算:测量出它的长和宽,用长乘宽就等于长方形的面积。)。
多媒体出示方格和长方形的长与宽,学生求出长方形的面积。
学生小组交流。
二、动手实践,探索新知。
学生汇报,教师引导:
(多媒体出示格子,并说明一个方格表示1平方厘米)。
师:现在就请同学们用这个方法算出平行四边形的面积(说明要求:不满一格的都按半格计算)。
师:通过数格子,我们发现我们的平行四边形萝卜地和老伯的长方形地的面积一样大,这样一来,我们换地公平了吗?(公平)。
学生猜测。
师:这还只是我们的一个猜想,大胆合理的猜想是我们迈向成功的第一步,那么接下来就请同学们利用手中的平行四边形卡片、剪刀等学具,想办法来验证验证。
学生动手实践,合作交流。
学生演示剪拼的过程及结果。(师:为什么要转化成长方形呢?学生汇报,师生总结:因为长方形是特殊的平行四边形,它的面积等于长乘宽)。
教师用课件演示剪——平移——拼的过程。
师:我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?引导学生讨论:
1、拼出的长方形和原来的平行四边形比,面积变了没有?什么变了?
2、拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?
学生汇报,教师归纳:
经过同学们的努力,我们发现把一个平行四边形转化为一个长方形,它的面积与原来的平行四边形面积相等,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽。
学生汇报,教师板书:
此主题相关图片如下:
s=a×h。
师:刚才我们已经推导出了平行四边形的面积公式,知道了要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边上的高)。
三、练习深化,巩固新知。
此主题相关图片如下:
2、先估一估,再算一算下面哪个平行四边形的面积与给出的平行四边形的面积一样大?
此主题相关图片如下:
3、先根据信息猜测是哪个省市的地形图,山西南北大约590千米,东西大约310千米,估计它的土地面积。
此主题相关图片如下:
四、知识应用,总结评价。
师:生活中还有哪些地方应用到我们今天所学的知识呢?
学生交流。
学生交流。
平行四边形的面积教学设计(热门20篇)篇十三
1、知识与技能:
(1)使学生通过实际操作和讨论思考,探索并掌握平行四边形的面积计算公式,并能运用公式正确计算平行四边形的面积。
2、过程与方法:
使学生经历观察,操作、测量、讨论分析、比较归纳等数学活动过程,体会“等级变形”的思想方法,培养空间观念,发展初步的推理能力。
3、情感、态度与价值观:
(1)渗透转化的数学思想方法。
(2)使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感。
1、理解平行四边行面积计算公式的推导过程,并正确应用平行四边形的面积计算公式解决相应的实际问题。
2、让学生在动手实践与交流中引导学生从不同的途径和方法去探索平行四边形面积的计算方法。
1、多媒体课件、自制教具。
2、每个学生准备1把剪刀、一张平行四边形纸片。
一、创设情境,引入课题:
生:
现在老师把两个图形画在了方格纸上。(课件出示两个图形)师:左边的同学来数一数这块儿长方形的地,右边的同学来数一数平行四边形的地,看看它们的面积各是多少。(注意:不满一格的都按半格计算)。
师:我们一块儿来数一数平行四边形的面积(课件)。同学们,通过数方格你们发现了什么?(疑惑)哦,原来两块儿地的面积一样大。
(通过这个故事,我们知道了对父母、对长辈要尊敬;与兄弟姐妹要和睦;就好比我们这个大家庭,我们同学之间要团结,不能为了一些小事而斤斤计较或发生矛盾,你们说是吗?)。
师:看来图形的面积大小用眼睛看是不准确的,数方格又太麻烦了,如果平行四边形的面积也有公式,是不是就方便多了。那平行四边形的面积公式到底是什么呢?我们这一节课就来研究这个内容。(板书课题)。
二、探究新知,导出公式:
1、猜想:
师:我们在来观察这两个图形,想一想,除了面积相等以外,它们还有什么关系呢?(提示:看看长和底,宽和高)。
生:
生:
师:你们是怎么推导出这个公式的呢?
师:我们四人一组可以商量商量,也可以拿出我们手中的平行四边形通过剪、拼或平移,看能不能拼成我们以前学过的平面图形?(一个图只能剪一次)。
2、验证:
(1)学生动手操作。
(2)小组演示。
(3)师课件演示。
生:
师:同学们,你们能不能完整的说说平行四边形面积公式是怎样推导的呢?
(4)推导过程:(课件显示)。
我们把一个平行四边形通过剪拼、平移把它转化成一个长方形,长方形的长与平行四边形的底相等,拼成长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积就等于底乘高。
(5)师:刚才我们不仅验证我们的猜想,而且运用的“转化”的思想。还学会了“平移”的方法,同学们的表现真不错。
师板书:s=ah。
3、面积公式的运用。
三、巩固发展、实际运用:
1、这时晶晶和贝贝遇到了一个难题,想请同学们来帮帮它们,你们愿意吗?它们在干什么呢?(课件)。
2、一幅平行四边形的装饰画高5是分米,底是高的3。5倍,这个平行四边形的面积是多少?(课件)。
四、课后延伸:
五、反思与体会:
同学们,想一想,这节课你有哪些收获呢?(生)。
师:看来,大家的收获还真不少,只要大家勤动手,勤动脑,就能学到更多的、更有趣的数学知识,并且可以运用这些数学知识来解决我们生活中的实际问题,是吗?好了,这节课我们就上到这,同学们再见!
平行四边形的面积教学设计(热门20篇)篇十四
在学生们学习习近平行四边形的面积计算之前,必须让他们了解平行四边形的图形、分类,平行四边形的底以及对应的高。由于学生初次接触这些知识,所以通过讲授式教学方式(讲授式教学方式:教师通过口头语言系统连贯地向学生传授知识的方法。)让学生自己掌握,为学习习近平行四边形面积的计算打下基础。在教学平行四边形面积的计算时,就要引导以学生自己探索为主,从而贯彻启发式教学。
2.动脑思考怎样把平行四边形转化为之前已经学过的图形――长方形;然后引导他们使用“割补法”;再动手操作,把一个平行四边形沿一条高线剪开,拼成一个已经学过的图形;(同时创设平行四边形与长方形、正方形相联系的情景)。
然后得出:任意平行四边形的面积与等底等高的长方形的面积相等,进而得出平行四边形的面积=底x高。从中可以发现,通过学生的动手操作,主动探索,加上教师的讲解、铺垫,学生就会很轻松地掌握了平行四边形面积的计算方法。我们可以发现在此过程中根本不需要教师再滔滔不绝的讲解,学生也无需死记硬背公式,但平行四边形面积的计算方法却已根植于他们的脑海中,这是因为“学生们参与了知识的形成与建构的过程”。
以上平行四边形面积计算的教学实例,是属于探究类的例子。让学生利用以往已学过的知识在教师的穿针引线下,自行找出结果。这一过程中,学生并不是单纯的学到了新知识,而重要的是学生亲自得出结论后在心理上获得成功的喜悦更有助于学生学习积极性与主动性的培养。从而实现“教师向学生提供充分的从事数学活动的机会,帮助他们在自主探索和合作交流中真正理解和掌握基本的数学知识与技能、数学思想与方法,活动广泛的数学活动经验。这样也符合数学新课程标准所指出的:在数学教学中,教师应该充分自身组织者、引导者、合作者的作用,从而使得学生在学习过程中主题地位得以展现得淋漓尽致。
将本文的word文档下载到电脑,方便收藏和打印。
平行四边形的面积教学设计(热门20篇)篇十五
【教学内容】:
青岛版实验教材小学数学五年级上册第76页内容。
【教学目标】:
1、用转化的方法探索并掌握平行四边形的面积计算公式,并能正确计算平行四边形的面积。
2、经历探索平行四边形面积计算方法的过程,培养初步的观察能力、抽象能力,进一步发展空间观念。
3、在运用平行四边形面积计算公式解决现实问题的过程中,感受数学和现实生活的密切联系,培养初步的数学应用意识和解决简单实际问题的能力。
【教学准备】:
学生:方格图、平行四边形纸片、直尺、剪刀、三角尺。
教师:课件、投影仪。
【教学过程】:
一、谈话引入,提出问题。
(1:虾池的面积是多少?2:虾池是什么形状的?……)。
师:虾池是什么形状的?(平行四边形)。
师:求虾池的面积就是求什么的面积?(平行四边形)平行四边形的面积怎么计算呢,这节课我们共同来探究。(板书课题:平行四边形的面积)。
二、合作探索,解决问题。
1、猜想。
师:我们学过的长方形、正方形的面积计算都有一个公式,平行四边形的面积计算有没有公式呢?(有,师同时出示课件:虾池的平面示意图)。
师:希不希望通过自己的探究找到这个公式?
师:相信你们一定能行!在探究之前,先请同学们猜想一下:平行四边形的面积计算公式可能是什么?并说说你的理由。
(学生独立思考)。
师:谁来说?
(1、我猜平行四边形的面积计算公式是“底×邻边”。我是根据长方形的面积计算公式猜的。)。
师:谁有不同想法?
(2、我猜平行四边形的面积计算公式是“底×高”。我发现沿着高把平行四边形剪下来,移过去就拼成了长方形,所以我猜平行四边形的面积计算公式是“底×高”。)。
师:现在出现两种猜想,各有各的理由,而真正的计算公式肯定只有1个。我们怎么办?(验证)。
师:对!我们要逐个进行验证,看看正确的公式究竟是什么。
为了方便大家探究,老师为每个小组都准备了同样大小的平行四边形纸片来代替虾池,还有一些学具,或许会对你们的验证有所帮助。在动手验证之前,老师有几点小提示,请看屏幕:(课件出示,指名读)。
1、小组同学先讨论验证的方法,再动手验证。
2、小组成员要团结合作,合理分工。
3、每组推选1名代表进行汇报,其他组员可以补充。
4、使用学具时注意安全,用完后装入信封。
2、验证“底×邻边”
师:先来验证“底×邻边”这个猜想对不对。
比比看,哪个小组合作得好,最先找到答案!小组长拿出第一个信封,开始。
(学生合作,教师巡视)。
3、交流。
师:经过大家的动手操作,相信都有答案了。哪个小组愿意先来交流?
(我们小组是用数方格的方法来验证的。我们通过数方格的方法数出平行四边形纸片的面积是28平方厘米,而用猜想公式算出的面积是35平方厘米。所以“底×邻边”的猜想是错误的。)。
师:听明白他们小组的做法了吗?(找两人分享)感谢你们的介绍。还有不一样的小组吗?(没有)。
师:我们再一起看看验证的过程:(课件演示)用方格图数出这个平行四边形的面积是28平方厘米。而量一量它的底是7厘米,邻边5厘米,根据“底×邻边”的猜想公式算出面积为35平方厘米。所以通过“数方格”验证,“底×邻边”这个猜想是错误的。虽然这个猜想是错误的,但我们要感谢提出这个猜想的同学,因为你的猜想很有价值,让我们大家对“底×邻边”为什么不对有了更深刻地认识。既然“底×邻边”是错误的,那“底×高”是不是正确呢?现在请收起你的方格图,我们再次小组合作利用第二个信封的帮助再来验证“底×高”这个猜想对不对。一定要交流好验证方法再动手操作,开始。
4、验证“底×高”
(学生活动,教师参与)。
5、交流。
师:相信大家又有了新的发现和收获。哪组先来分享你们的研究成果?
(1、我们小组是这样做的:量一量平行四边形的底是7厘米,高4厘米,乘积是28平方厘米,所以“底×高”的猜想是正确的。
师评价:他们小组的这种方法怎么样?我发现他们小组很会利用资源。刚才知道这个平行四边形面积是28平方厘米,于是他们想到的验证方法就是用底×高,看是不是等于28。有不一样的验证方法吗?注意听,看看他们采用的究竟是什么方法。)。
(2、我们小组是沿着平行四边形的高剪下来,把它拼成长方形,我们发现长方形的长就是平行四边形的底,长方形的宽就是平行四边形的高,所以平行四边形的面积=底×高。可让其利用投影仪向全班展示。)。
师:我们再通过大屏幕一起看(播放课件):把平行四边形沿着高剪开,通过平移拼成长方形,面积有没有变化?也就是长方形的面积和平行四边形的面积相等(板书:长方形的面积、平行四边形的面积),而长方形的长就是原来平行四边形的(底)(板书:长、底),宽就是平行四边形的(高)(板书:宽、高)。根据长方形的面积=长×宽,可以推出平行四边形的面积=底×高(板书)。我有一个疑问:为什么要沿着高剪呢?(这样剪能拼成一个长方形,拼成长方形就能够求出平行四边形的面积。)。
师:奥,我明白了。原来这一剪的作用很大,把我们不会解决的平行四边形的面积这个难题转化成长方形的面积这一简单问题了。
师:是不是沿着平行四边形的任意一条高裁剪都可以?(是的)。
(平行四边形没有“长”和“宽”。)。
师:说的真好,我们可不能混淆了。
三.应用公式,巩固训练。
师:我们已经知道平行四边形的面积计算公式了,你能独立解决虾池的面积这个问题吗?写在你的练习本上。(出示虾池平面图课件,指名板演:90×60=5400(平方米)。
师:如果老师再给你提供这样一条信息:每平方米放养虾苗30尾,你能提出什么问题?(这个虾池能放养多少尾虾苗?)。
师:谁来解决这个问题?其余同学写在练习本上。(30×5400=162000(尾))。
(出示课件:四个挑战)。
为什么?(单位:厘米图略)。
4、聪明小屋:下图中正方形的周长是24厘米,平行四边形的面积是多少?
(图略)。
师:真不错,挑战成功。
四.收获平台,课外延伸。
师:不知不觉中就要下课了。想一想,这节课你有哪些收获?
(我学会了“转化”这种方法;我们学到了平行四边形面积的计算方法。)。
(猜想--验证--结论。这是数学上常用的探究方法,相信你们在以后的学习中会经常使用它。这节课,同学们不仅仅学到了知识,而且掌握了一种重要的数学思想方法——转化,把平行四边形的面积转化成长方形的面积这一简单的问题来解决。课后想一想生活中你是否也用过转化法解决问题呢?同学之间互相交流一下。)。
平行四边形的面积教学设计(热门20篇)篇十六
教学内容:。
教学目标:。
2,通过操作,观察,比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析,综合,抽象,概括和解决实际问题的能力.
教学难点:把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式.
教学方法:动手操作,小组讨论,启发,演示等教学方法.
教学准备:。
要求:底为6厘米,高为4厘米,最小的内角为45度,形状为:;。
2,剪刀,三角尺,文具(铅笔,橡皮等)。
3,板贴。
教学过程。
一,导入。
师:同学们,能告诉老师你最熟悉的平面图形吗。
生:长方形,正方形.
生:长方形的面积=长×宽正方形的面积=边长×边长。
二,体会"转化"的数学思想。
师:(出示图1)你能将这个图形变成我们熟悉的图形啊。
生:汇报:。
师:你发现了什么。
生:形状变了,面积不变.
师:(出示右图)这是什么图形(揭题:平行四边形)。
你能把这个图形变成你熟悉的图形吗。
生:能.
师:同学们,用你自己的方法把你的想法表示出来:。
学生尝试用自己的方式把平行四边形转化成长方形.
…………。
汇报:。
生1:我是画图的,。
生2:我是采用剪,拼的方法,先画一条高,沿着高剪下,移到另一边.
如图:。
生3:我也是采用剪拼法,但我和生2不一样,如图:。
师:看了三个同学的方法,你有什么收获啊。
生1:都采用了转化的方法.
生2:他们都要先画一条高,然后沿着高剪下,我想因为这样就可以得到直角.
生3:图形是转变了,面积不变.
二,动手测量,推导公式。
学生动手测量数据,进行计算.
………。
交流汇报:。
生1:我量的是长方形的长和宽,长是6厘米,宽是4厘米,面积是24平方厘米.因为长方形的面积就是平行四边形的面积,所以平行四边形的面积是24平方厘米.
生2:我量的是平行四边形的底和高,因为我认为平行四边形的底等于长方形的底,高等于长方形的宽,那么平行四边形的面积等于底×高.底是6厘米,高是4厘米,面积是24平方厘米.
师:两个同学都说的很好,同学们你们会了吗。
生:会了.
生:3×6=18(平方厘米)。
三,应用新知,深化理解。
2,。
3,综合练习。
生:等底等高,面积相等.
师:和这两个面积相等的平行四边形你还能在画几个吗。
生:有无数个,只要等底等高就行了.
四,引导回顾,师生总结。
板书设计:转化图形寻找联系推导公式。
五,课后反思:。
1,数学课堂教学中教什么比怎样教更重要,在平行四边形面积计算的教学中,我们是让学生掌握平行四边形面积的计算方法还是在平行四边形面积计算方法的教学渗透转化的数学思想,两者中我侧重于后者.
如何渗透数学思想呢从一开始,我让学生把不规则的图形变成已熟悉的图形,触动学生思维的联结点,凸显"转化"的动因.接着出示平行四边形,学生自然而然想到平行四边形可以转化成长方形.
在"你能将平行四边形转变成我们熟悉的图形吗"这个问题的驱动下,学生在静静的思考后,在"你能用自己的方法把你的想法表达出来吗"这一追问下,学生尝试画一画,剪一剪,拼一拼.操作的轨迹由想象操作到动手操作再到想象操作,学生的转化方法从模糊变为清晰.
3,在练习设计中知识的巩固和思想方法的应用并重.口算题是直接应用平行四边形面积计算公式,让学生进一步巩固知识.变式练习(右图)学生需要判断底和对应的高,此时我在一次提出可以把这个平行四边形看成怎样的长方形,从而能更深刻的理解底和高一定要对应的道理,对数学思想方法的认识也上升为数学思维策略,从而实现学生数学思维的提升.
平行四边形的面积教学设计(热门20篇)篇十七
1、激发主动探索数学问题的兴趣,经历平行四边形面积计算公式的推导过程,会运用公式求平行四边形的面积。
2、体会“等积变形”和“转化”的数学思想和方法,发展空间观念。
3、培养初步的推理能力和合作意识,以及解决实际问题的能力。
一、创设情境,激发矛盾。
学情预设:学生充分发表自己的看法,大多数学生会受以前知识经验和教师刚才设问的影响,认为平行四边形的面积等于底边长×邻边长。
边长×邻边长吗?
二、另辟蹊径,探究新知。
1、寻找根源,另辟蹊径。
2、适时引导,自主探索。
(1)学生操作。
学生动手实践,寻求方法。
学情预设:学生可能会有三种方法出现。
第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开。
第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。
(2)观察比较。
(3)课件演示。
是不是任意一个平行四边形都能转化成一个长方形呢?请同学们仔细观察大屏幕,让我们再来体会一下。
3、公式推导,形成模型。
先独立思考,后小组合作、讨论,如小组有困难,可提供“思考提示”。
a、拼成的长方形和原来的平行四边形比,什么变了?什么没有改变?
b、拼成的长方形的长和宽与原来的平行四边形的底和高有什么关系?
学情预设:学生通过讨论很快就能得出拼成的长方形和原来的平行四边形之间的关系,并据此推导出平行四边形的面积计算公式。在此环节中,教师要引导学生尽量用完整、条理的语言表达其推导思路:“把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形的面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。”并将公式板书如下:
4、变化对比,加深理解。
5、自学字母公式,体会作用。
请同学们打开课本第81页,告诉老师,如果用字母表示平行四边形的。
面积计算公式,应该怎样表示?你觉得用字母表达式比文字表达式好在哪里?
三、实践应用。
1、出示课本第82页题目,一个平行四边形的停车位底边长5m,高2.5m,它的面积是多少?(学生独立列式解答,并说出列式的根据)。
3分米2.5厘米。
平行四边形的面积教学设计(热门20篇)篇十八
教学目标:1、使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2、通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括能力,发展学生的空间观念。
教学过程:
一、导入。
1、用数方格的方法计算面积。
(1)我们已经知道可以用数方格的方法来得到一个图形的面积,请大家拿出你准备好的方格纸,用数方格的方法来数出方格纸中平行四边形和长方形的面积。(说明要求:一个方格代表1平方厘米,不满一格的都按半格算)把数出的数据填在方格纸的下面。
(2)同桌合作完成。
(3)汇报结果,可用投影展示学生填好的表格。
(4)观察表格的数据,你发现了什么?(平行四边形与长方形的底与长、高与宽及面积分别相等,这个平行四边形的面积等于它的底乘高,这个长方形的面积等于它的长乘宽。
(1)拿出你准备好的平行四边形和剪刀,自己想办法把平行四边形变成一个长方形。
(2)请学生演示剪拼过程及结果。教师演示剪--平移--拼的过程。
(3)我们已经把一个平行四边形变成了一个长方形,请大家观察,拼出的长方形和原来的平行四边形,你发现了什么?同桌互相说一说,可围绕以下3个问题讨论:
(4)同学交流,教师归纳相机板书。
(5)观察面积公式,要求平行四边形的面积必须知道哪两个条件?
s=ah(7)请大家想一想,我们是怎样推导出平行四边形的面积公式的?(渗透转化思想)。
三、巩固和应用。
1、出示例1,读题并理解题意。学生试做,交流做法和结果。
2、强调用公式计算的格式,s=ah=6*4=24(平方米)。
3、练习,82页1、2。
4、一块平行四边形钢板,底是15米,高是底的1。2北,这块钢板的面积是多少?
5、82页3。
6、出示两个同底等高的平行四边形,让学生讨论:面积相等吗。为什么?
四、小结:通过本堂课的学习,你有哪些收获?对于。
s=ah。
教学反思:1、数方格的方法有些学生忘了,课前铺垫不够好,有些耽误时间了。
2、对于学生动手操作过程中个别人出现的错误情况,如,把平行四边形多出的部分剪掉变成了长方形,因怕耽误时间,没能让他展示,并纠正。
3、让学生观察拼出的长方形与平行四边形有什么关系时,问题设计不好,学生不知道如何回答,因此耽误了时间,以至与后面习题做的也比较少。
平行四边形的面积教学设计(热门20篇)篇十九
2.通过数、剪、拼等动手操作活动,探索平行四边形面积计算公式的推导过程,渗透转化的数学思想,发展学生的空间观念。
3.在解决实际问题的过程中,感受数学与生活的联系,培养学生的数学应用意识。(现在目标应该写四基四能。)。
两张格子纸,一张白纸,可变形的平行四边形。
一、揭示课题:平行四边形(展示课件课本情景图)。
师:那么我们发现生活中处处有图形,,那么学校里面想对这两块花坛进行规划,在规划之前想比较他们的大小,比较他们的大小其实就是比较他们的什么?(展示单独两个花坛图片)。
生:面积(学生回答面积后,马上追问,什么是面积?)。
师:什么是面积?
生:面积就是一个图形所占平面的大小。
生:长方形和正方形。
师:它们的面积怎么求?
师:长方形的面积为什么等于长×宽?咱们是怎样求出来的?
(设计意图:引导学生回忆,数方格计算面积的方法,也就是数小方格的简便运算)。
师:长方形的面积我们已经学过,那么平行四边形的面积就是我们这节课要探究的。(板书课题)。
二、新授。
师:两个花坛不能直接看出他们面积的大小,但是如果老师把两个花坛的图形搬到方格纸中,能不能看出两个花坛哪个花坛的面积可以算出来?(展示方格纸)。
生:能。
师:怎么看出来?
生1:长方形的面积可以直接数格子数出来24个格子,是24平方米。
生2:长方形的长是6米,宽是4米,利用长方形面积公式:长方形的面积=长×宽=6×4=24。
师:长方形的面积可以直接数出来,那么平行四边形的面积能不能用数方格的方法,直接数出它的面积呢!
生操作。(拿出1号方格纸,不满一格的都按照半格计算)。
师:看看同学们都是怎么数的?
生:20个满格,8个半格,一共24个格,面积是24平方米。
(引导学生发现计算是最好的方法。设计意图:引导学生发现探索面积公式的必要性。)。
生:平行四边形的面积=底×高(猜测一下,平行四边的面积可能与什么有关?学生回答后,马上画出平行四边形的底和高,并测量。)。
生1:底是6米。
生2:高是4米。
(拿出2号方格纸)在方格纸上画一个平行四边形,并计算出平行四边形的面积。
生操作。
出示学生的作品,介绍一下是怎么想的。
生1:用拼的方法,拼成一个长方形,再数出面积。
生2:也是拼,剪掉上面的拼下面,剪下面拼上面。
师:刚才他们都用到了一个动词,是什么?(生:拼)。
师板书:拼。
生4:整块简拼,移到右边。
师:拼的过程其实也是我们数学当中的平移的过程。
师:不管是数格子,还是拼剪的方法,都算出了平行四边形的面积。
3、出示3号白纸,学生自己画一个平行四边形。
学生操作,小组讨论。
(此环节是本节课的重点和难点,应该放手让学生小组合作,讨论,并且汇报)。
展示学生作品。
小组讨论,学生操作剪一剪,拼一拼。
生1:不沿高剪得。
生2:先沿平行四边形的高剪开,把剪下来的三角形向右平移,拼在图形的右下方,把图形变成一个长方形,转化成长方形就能计算面积了。
师:看来平行四边形的面积和长方形的面积有关系,到底有什么关系呢?
师提醒:观察原来的平行四边形和转化后的长方形,发现它们之间有哪些等量关系?
学生讨论。
生1:平行四边形拼成后底成了长方形的长,高成了长方形的宽,长方形的面积是长×宽,所以平行四边形的面积=底×高。
(汇报时引导学生用完善的语言表达,把平行四边形沿着一条高剪开,把剪下的部分平移到平行四边形的另一侧,拼成一个长方形,拼成的长方形与原来的平行四边形面积相等,长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高,因为长方形面积等于长乘宽,所以平行四边形面积等于底乘高。学生边汇报,教师边板书)。
3、如果用字母s表示面积,a表示底,h表示高。
生:s=a×h。
利用公式来计算。
出示例题1(练习题的设计应先出带图的,再出文字的,体现直观到抽象。)89页第二题可以打在幻灯片上,为了节约时间可以只列式不计算,目的是练熟公式。
拓展练习:
a20米b20平方米c18米d18平方米。
(2)出示图形(强调高和底是相对的)。
(3)画出一个底是3cm,高的5cm的平行四边形。
师总结:等底等高的平行四边形面积相等,但是形状不一样。
三、拓展探究。
1、展示可以拉伸的平行四边形,演示由平行四边形拉成长方形的过程。
师:那么这个平行四边形在拉成长方形时面积发生改变了吗?
学生讨论。
学生1:没有改变。
学生2:改变。
学生辩论。
师:周长一样长的平行四边形和长方形,面积不一定也一样。
四、总结。
这节课我们学习了什么,回顾整堂课的过程。
用今天的方法还能解决以后的问题,比如说三角形、梯形的面积。
预知后事,自己分晓。
板书设计。
拼数。
s=a×h。
平行四边形的面积教学设计(热门20篇)篇二十
1、通过观察、实验操作、合作和讨论,使学生在进行平行四边形面积计算方法的推导过程中,理解并掌握计算方法;会正确应用所学的知识解答有关的问题。
2、通过操作、分析讨论等活动,培养学生
动手操作的能力和归纳、概括的能力,初步渗透转化等数学思想,进一步发展学生的空间观念。
3、通过实验探究,解决问题等活动,使学生初步学会从数学的角度提出问题,理解问题,解决问题,发展应用意识;同时能与他人交流思维的过程和结果,培养合作交往能力。
4、通过学习提高学生对数学的好奇心与求知欲,初步认识数学与人类生活的密切联系,体验数学活动的意义和作用。
使学生在进行平行四边形面积计算方法的推导过程中,理解并掌握计算方法。
能正确推导得出计算公式,会正确应用所学的知识解决简单的实际问题。
一、情景引入
1、联系实际选择建房用地。
(2)联系刚才的选择地的情况,让学生比较两块地的大小情况。
二、探究新知
1、面积计算公式的推导:
(1)讲解相关的要求。明确小组研究要求。
(2)操作验证。巡视,个别指导。
(3)集体交流,得出三个相等(长方形的长与平行四边形的底、长方形的宽与平行四边形的高、长方形的面积与平行四边形的面积)。
问:你剪拼成了什么图形,你从中发现了什么?(得出多种方法)
(4)明确各种相等(长方形的长与平行四边形的底、长方形的宽与平行四边形的高、长方形的面积与平行四边形的面积),推导面积公式。
引导:把平行四边形转化成长方形后,发现了什么(面积相等)我们还发现些什么(这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等。)
教师逐步点击交互,得出:
长方形的面积=长×宽
平行四边形的面积=底×高
(5)用字母表示面积计算公式。
(6)小结。(明确转化的方法。)
2、面积计算公式的应用:
(1)联系引入部分,提出利用计算的方法来比较那两块地的大小:请计算平行四边形的面积。
讨论后,给出底和高,进行计算。
(2)计算长方形面积,再次通过计算的方法说明两块地面积相等。
(3)试一试:计算平行四边形的面积。
3、教学小结。进行推导:
(1)明确研究的要求。
(2)动手操作:根据要求将平行四边形剪拼成长方形。(同组中相互交流。)
(3)得出多种方法,明确平行四边形剪拼成长方形后,它的面积大小没有改变,并逐步得出其它的相等的情况。
(4)结合媒体的剪拼过程的演示,集体交流,进一步明确三个相等,得出面积计算公式。
(5)了解认识、明确:s=a×h,s=a·h或者s=ah。
(6)进行小结。
4、初步运用公式。
(1)教学试一试,(2)练一练。
三、巩固应用
1、练习二“第1题”。
先让学生独立思考,画一画。交流时说出思考过程,进一步强化对平行四边形与转化成的长方形之间联系的认识。这是一个反向建构的过程。
2、练习二“第2题”。
可以先提问学生:求平行四边形的面积需要测量哪些数据?然后组织学生测量和计算,提醒他们测量时一般取整厘米数。
3、练习二“第3题”。
这是生活中实际存在的问题。既让学生应用公式解决问题,也渗透了估测的方法。解答完后让学生明白:计算的结果只是这块菜地面积的近似值,而这样的近似值一般已能满足解决简单实际问题的需要。
4、练习二“第5题”。
让学生在读懂题意的基础上先独立思考,给学有能力的同学以锻炼思维的机会,然后让同桌拿出准备好的两个同样大小的长方形木框。
四、课堂总结
今天学习了什么?你有什么收获?(让学生自由发挥。)
上述教学设计中,学生兴趣盎然,始终以积极的态度、主人翁的姿态投入到每一个环节的学习中。我们认为教学成功的关键在于学生是通过自主探究得到了知识,获得了发展。主要体现在以下几个方面:
(一)创设生活情境,激发探究欲望
小学数学内容来源于生活实际,它应当是现实的,有意义的、富有挑战性的。创设与学生的生活环境和知识背景密切相关的又是学生感兴趣的学习情境有利于让学生积极主动地投入到数学活动中去。上述教学中,教师带领学生选择建房用地,看到了平行四边形来源于生活实际,也体会到了计算它的面积的用处,这就使学生对学习的内容产生了浓厚的兴趣和亲切感,激发起他们强烈的求知欲望,使学生能以饱满的热情投身于新知识的探究之中。
(二)重视学生的自主探索和合作学习
在学生独立思考、自主探索的基础上组织学生进行合作交流这是本节课的重点环节,教师在放手让学生从自己的思维实际出发,给学生以独立思考时间的基础上让学生进行交流是十分必要的。由于学生的学习活动是独立自主的,因此面对同样的问题学生会出现不同的思维方式,让学生在独立思考的基础上进行合作交流能满足学生展示自我的心理需要,同时通过师生互动、生生互动,能够使学生从不同的角度去思考问题,能够对自己和他人的观点进行反思与批判,在合作交流中互相启发、互相激励、共同发展。上面的教学片断中,学生之所以能想到用割补法将平行四边形转化为长方形,正是通过学生之间的相互交流、相互启发才得到"灵感"的,而平行四边形转化成长方形的各种方法正是集体智慧的结晶。学生只有在相互讨论,各种不同观点相互碰撞的过程中才能迸发出创造性思维的火花,发现问题、提出问题、解决问题的能力才能不断得到增强。
(三)培养学生的问题意识
问题是数学的心脏,能给学生的思维以方向和动力,不善于发现、提出和解决问题的学生是不可能具有创新精神的。要培养学生的问题意识,首先教师要精心设计具有探索性的问题,教师的提问切忌太多、太小、太直,那种答案显而易见的一问一答式的问题要尽量减少。上述教学片断中,为了引导学生进行自主探究,我设计了这样一个问题:"你能想什么办法自己去发现平行四边形面积的计算公式呢?"这一问题的指向不在于公式本身,而在于发现公式的方法,这样学生的思维方向自然聚焦在探究的方法上,于是学生就开始思索、实践、猜想,并积极探求猜想的依据。当学生初步用数方格的方法验证自己的猜想后,我又提出了这样一个问题:“这个公式能运用于所有的平行四边形吗?”这个问题把学生引向了深入,这不仅使学生再次激发起探究的`欲望,使学生对知识理解得更深刻,同时更是一种科学态度的教育。其次,要积极鼓励学生敢于提出问题。教师对学生产生的问题意识要倍加呵护与尊重,师生之间应保持平等、和谐、民主的人际关系,消除学生的紧张感,让学生充分披露灵性,展示个性。在上述教学片断中,我积极的鼓励学生进行大胆的猜想,提出自己的问题。于是,“平行四边形面积该怎样求?是等于两条邻边乘积还是等于底乘高?”“该怎样来验证自己的猜想呢?”“怎样用数方格来数出平行四边形的面积?”“怎样用转化的方法把平行四边形转化成长方形呢?”……这些问题在学生的头脑中自然产生,学生在独立思考、相互交流、相互评价的过程中感受到自己是学习的主人,满足了学生自尊、交流和成功的心理需求,从而以积极的姿态投入到数学学习之中。