高一教案的编写要根据学科的要求和学生的实际情况进行灵活调整。以下是小编为大家整理的高一教案范文,供教师们参考和借鉴。
高一数学教学设计教案(热门17篇)篇一
8月,世界数学家大会在我国召开。这标志着我国在数学领域的研究已经跨入世界先进行列。然而作为文化组成部分的数学,你又了解多少呢?罗素在1前说了一句经常被人引用的俏皮话:我们不知道数学研究的是什么,也不知道研究的结果是真是假;20世纪最伟大的数学家之一外尔给数学下定义说,“数学是无穷的科学”。这些都让人们渴望了解数学,今天我们就学习《数学与文化》一课,来真正认识数学这门无穷的科学。
二、解题。
课文节选自《数学与文化》一书的绪言,是全书的总论。课文论述了数学作为“现代科学技术的语言和工具”的重要地位,分析了数学能够影响人类生活的几个特点,高度评价了数学在促进人类思想解放、使人类摆脱宗教迷信等方面的历史功绩,认为它最根本的特征是“表达了一种探索精神”,并把数学提高到文化盛衰、民族兴亡的高度来认识。
作者齐民友是当代著名数学家、博士生导师,曾任武汉大学校长。
三、研习课文。
1.整体把握,理清思路。
(1)默读课文,画出文中出现的成语以及直接表明作者观点的句子。
明确:
成语:泽被天下、风调雨顺、淋漓尽致。
表明作者观点的句子:a.首先,它追求一种完全确定、完全可靠的知识。b.另一个特点是它不断追求最简单的、最深层次的、超出人类感官所及的宇宙的根本。c.再一个特点是它不仅研究宇宙的规律,而且也研究它自己。
以上三点说明数学在人类理性思维活动中的特点,学生很容易找到。下面两点则需要细读文章来概括:a.它是现代科学技术的语言和工具。b.数学作为文化的一部分,其最根本的特征是它表达了一种探索精神。
(解说:课文虽较长但语言通俗,适合学生自读。可以让学生边读边画,一方面标示出成语,一方面将直接表明作者观点的句子画出来。重在引导学生自读并摘取要点。)。
(2)划分文章层次结构。
第一部分:第1段,指出数学作为“现代科学技术的语言和工具”的重要地位。
第二部分:第2-5段,分析数学影响人类生活的几个特点。
第三部分:第6-8段,评价数学对人类精神生活的深刻影响,指出数学表达了一种探索的精神,并从文化盛衰、民族兴亡的高度来认识数学。
(解说:把握文章层次结构,是进一步理解文章的基础。可以让学生列出文章结构提纲,以提高学生整体阅读的'能力。)。
2.具体研习,攻克重难点。
(1)第1段中哪些语句能说明数学作为文化的一部分的重要地位?
明确:“它几乎是任何科学所不可缺少的”,“它是现代科学技术的语言和工具”,“它的思想是许多物理学说的核心,并为它们的出现开辟了道路”,“它曾经是科学革命的旗帜”,这些语句都能说明数学在文化中的地位。而最直接的是“它是现代科学技术的语言和工具”。
(解说:设计这一问题,旨在培养学生提炼主要信息并进行筛选的能力。也许有学生会找到“没有任何一门科学能像它那样泽被天下”这一句,教师要适时引导:这一句只是形象的描述,不是确定的结论。)。
明确:数学追求的“完全确定、完全可靠”不同于语言表述的严密与准确。数学的对象必须有明确无误的概念,其方法必须由明确无误的命题开始,并服从明确无误的推理规则,以达到正确的结论。
(解说:设计这一问题,旨在让学生理解“完全确定、完全可靠”的含义。)。
明确:三个概念都是一个含义,数学方法指的由明确无误的命题开始,服从明确无误的推理规则,以达到正确的结论的理性思维的过程。
(解说:设计这一问题,旨在引导学生清晰认识人在认识宇宙和人类自己时必须持有的客观态度和标准。)。
明确:逻辑的要求和实践的检验是一种求真的态度,只有用这种求真的态度才能解开“宇宙和人类的真面目是什么”这样一个伟大而永恒的迷。此外,“无论是几千年的习俗、宗教的权威、皇帝的敕令、流行的风尚统统是没有用的”,正是数学所具有的这种求真态度使人类摆脱宗教等方面的影响,从而得到思想解放。
(解说:这是一句很难理解的话,首先要搞清楚“习俗、权威”等对什么是没有用的――是对认识宇宙和人类自己。然后确定逻辑的要求和实践的检验是一种求真的态度。正是这种求真的态度使人类思想得到解放,并摆脱宗教等方面的影响。设计这一问题,旨在引导学生从上下文中找到相关信息并进行筛选整合,从而得出较为准确的理解。)。
四、课堂小结。
这节课主要分析了数学作为文化的一部分所具有的第一个特点。作者从数学探讨的对象和方法指出了数学追求完全确定、完全可靠的知识的特点,并指出其在摆脱宗教等方面影响的作用。
第二课时。
一、继续研习课文。
(5)是什么在驱使数学不断追求最简单的、最深层次的、超出人类感官所及的宇宙的根本?欧几里德、牛顿等例子说明了什么问题?明确:从古希腊起,人们就有一个信念:世界是合理的、简单的,是可以用数学来描述的。这一信念促使数学追求最简单的、最深层次的、超出人类感官所及的宇宙的根本。欧几里德、牛顿等例子说明了科学经过了多次伟大的综合,而这种综合正是对数学进行研究时的那种化繁为简以求统一的过程。
(解说:设计这一问题,旨在让学生理解数学是在极抽象的形式下进行研究的,研究的过程是化繁为简以求统一。)。
(6)“难道看不出这也是一种把生命归结为最简单成分的不同位置、不同形式、不同数量而成的数学味很重的结构吗?”“由一堆砖石固然可以建成宏伟的纪念碑,却也可以搭起一座马棚,它们的区别究竟何在?”结合上下文,说出这两句话的含义。
明确:第一句话作者借dna的双螺旋结构一例说明人们在用数学去讨论物种的进化与竞争,讨论遗传的规律,并使人们认识到这种数学味很重的结构。这也恰恰证明了数学所追求的宇宙的根本――可以用数学来描述的、简单的、合理的世界。这种深层次的研究能破除迷信,体现了数学对人类生活的深刻影响。第二句话中,“它们的区别”也许就是“一堆砖石”“在数量上、形状上、结构上的差别”,这正是数学想解决的深刻的问题,这种研究是在极抽象的形式下进行的。
(解说:对这两句话的理解是这一课的难点,重在让学生理解数学在影响人类生活时所表现出来的深刻性和抽象性。)。
(7)第4段作者举了哪些例子来说明数学的自我完善性?
明确:希腊人开辟了研究无理数系的道路,越来越多的“不可能性”的出现,体现了数学在不断反思、不断批判自己;理性思维感到有问题时就要变,体现了数学在不断否定自己;从怀疑部分到怀疑自己的整体,都体现了数学的自我完善性。
(解说:这一段的阅读比较简单,学生很容易理解数学的发展是一个不断自我完善的过程,因而只设计一个例子来说明问题。)。
(8)在对全文进行.总结时体现了作者怎样的思想?
明确:作者高度赞扬了数学在人类理性发展中的成就,它深刻地影响了人类精神生活,促进了人的思想解放。数学作为文化的一部分,其永恒的主题是“认识宇宙,也认识人类自己”。在探索中,数学的理性思维给人类的思想解放打开了道路。同时,作者站在文化盛衰、民族兴亡的高度阐明数学的重大意义。
(解说:设计这一问题,旨在让学生体会作者的思想认识,从而理解文章的内涵以及作者的主要思想。)。
3.课堂训练。
结合课后练习四,让学生讲述自己了解的数学史上的小故事,结合自己学数学的体会谈谈对数学这门学科的认识。
(解说:这是一个比较开放的课堂训练,目的在于加深学生对数学的认识和理解。学生可以自由表述观点,不求统一。)。
二、布置作业。
课后阅读《数学与文化》绪言全篇,以加深对本课的理解。还可以阅读相关数学史的普及读物,提高自己对数学这门科学的认识。
高一数学教学设计教案(热门17篇)篇二
1.总理衙门的设立(设立的原因、时间、主要职权范围、性质及评价);辛酉政变;“借师助剿”;中外反动势力公开勾结;汉族官僚势力的扩大。
2.通过分析总理衙门设立的原因、主要职权范围、性质,使学生认识到总理衙门的设立,加强了清朝与外国的联系,但也便利了外国侵略者控制清政府,干涉中国内政。总理衙门的设立,加速了中国政治上的半殖民地化。通过学习辛酉政变和“借师助剿”,使学生认识到辛酉政变是中外反动势力正式勾结的开始,清朝统治日益腐败。
3.通过对清廷政策调整的讲述,让学生认识到:清政府的政策调整带有屈于列强侵略,力图剿杀农民革命的时代特点,清政府正逐渐沦为外国人侵华的统治工具。
教学建议。
教材地位分析。
在太平天国运动和第二次鸦片战争的双重打击下,清政府摇摇欲坠,已无力在镇压太平天国运动的同时,抵御列强的军事侵略。在这种情况下,清朝政局发生了巨大的变化。清政府被迫调整了对内对外政策,以巩固统治。清政府的阶级本质决定了其向列强妥协求和,以得到列强帮助,镇压人民革命。对内对外政策的调整导致了此后清政府处理对外事物时的软弱无力、卑躬屈膝以及一系列丧权辱国的条约的签订。政策的调整也使得主张对外妥协和好的洋务派当政,为以后的洋务运动的兴起和民族资本主义的产生准备了条件。此外,在镇压人民革命和抵御列强入侵时,满族的腐朽被彻底的暴露出来,清廷不得不开始倚重汉族地主,这样汉族官僚在清政府中所起的作用越来越主要,曾国藩、李鸿章、张之洞等人成为洋务运动的代表人物。汉族官僚势力扩大是19世纪60年代以后清朝政治的一大特征。
重点分析。
总理衙门、辛酉政变及其影响是本课的重点。清朝设立的总理衙门与前朝设立的对外机构在地位、设置背景等方面存在着很大的不同。它是中国在遭受外国侵略、主权丧失、沦为半殖民地社会的背景下成立的中央机构,这就注定了它将成为列强控制中国中央政府的工具。他的建立标志着清朝中央机构开始半殖民地化,对晚清政治产生了巨大的影响,也加速了中国半殖民地化的进程。
辛酉政变及其影响之所以是本课重点,是因为辛酉政变后清政府对外政策发生了根本性转变,由抵抗外来侵略变为妥协和好,并开始走上公开勾结的道路。清政府对外政策的改变,导致此后清政府在处理对外事物时,不惜以割地赔款、出卖主权来求得与列强和解,这使中国不可逆转的陷入了半殖民地的深渊,使人民陷入水深火热之中。慈禧的掌权与恋权也使中国失去了通过自上而下的改革走上资本主义道路的机会。
重点突破。
通过学生阅读课文,回答“总理衙门何时设立?”“总理衙门的管辖范围是什么?”“为什么要设立总理衙门?”等问题,使学生掌握有关“总理衙门”的基本问题。通过引导学生对比宋朝市舶司与总理衙门设立的背景、管辖范围等,使学生理解总理衙门有利于列强控制清朝的内政和外交,是清朝中央机构开始半殖民地化的标志。
通过学生阅读课文,回答“在辛酉政变之前,在清朝统治集团内部出现了怎样的变化?”“何时发生的辛酉政变?”“何人发动的辛酉政变?他们为什么要发动辛酉政变?”“为什么列强对辛酉政变采取“无异议”的态度?”等问题,使学生掌握有关“辛酉政变和‘借师助剿’的基本问题。通过引导学生思考“辛酉政变后清政府发生了怎样的变化?”,使学生理解辛酉政变产生的影响。
难点分析。
中外反动势力“合作”新格局为什么会出现。中外反动势力“合作”新格局的形成有着较为复杂的原因:一方面,太平天国运动使列强认识到只能通过扶植清政府,才能保护其业已取得的侵略权益,并获得更多的权益;另一方面,清政府在列强入侵和太平天国运动的双重打击下,以摇摇欲坠,由于阶级本性所决定,它必然选择依靠侵略者,镇压革命,维护自己的反动统治。由于学生运用历史唯物主义观点进行综合分析能力有限,因此在理解这一问题时会有些困难。
难点突破。
通过学生回答“辛酉政变后,在清政府中掌握实权的是哪些人物?他们的政治主张是什么?”“列强对待太平天国运动的态度为什么会由‘中立’转为协助清政府剿杀?”等问题,和讨论“清朝对内对外政策为什么会在19世纪60年代发生如此生变化?”“中外反动势力相勾结会给中国带来什么样的影响?”,使学生理解中外反对势力相勾结的局面出现的原因。
课内探究活动设计。
将学生分成若干组,以组为单位进行自学并进行小组讨论。之后,各组提出本组在自学中遇到的问题,由其他同学回答或大家讨论得出答案。教师就学生未涉及到的问题提问,使学生能较深入的理解本课内容。
第二章第一节清朝政局的变化。
重点:总理衙门辛酉政变及其影响。
难点:中外反动势力“合作”新格局为什么出现。
教学过程:
利用ppt文件向学生介绍本章学习内容。
通过提问学生:太平天国运动和第二次鸦片战争给清政府带来最直接的影响是什么?导入新课。
向学生提出其在自学中所要回答的问题:
清朝政局何时开始变动,怎样变动,为何要变,变化带来了哪些直接影响?
由学生分组进行自学,之后进行小组讨论,并整理出本学习小组在自学中遇到的本组学生无法理解的问题。
先由学生回答教师在前面提出的问题,之后,各组派出一名代表提出本组的问题,由学生讨论回答或教师引导学生分析得出答案。
学生有可能会提出一下问题:
“清朝政局的变化为什么是在19世纪60年代,而不是在第一次鸦片战争后?”、“19世纪60年代前的中国为什么不设立外交机构?”、“列强和慈禧为什么都要重用奕訢?”等问题。
在回答学生的问题时,教师应将这些问题根据本课内容以及问题的难易程度分类,按照课文内容的编排顺序逐一解决。并穿插教师提出的问题。
教师可以根据学生提出的问题的多少提出问题:
“总理衙门何时设立?”、“总理衙门的管辖范围是什么?”、“为什么要设立总理衙门?”、“宋朝市舶司与总理衙门有何不同,说明什么问题?”
“在辛酉政变之前,在清朝统治集团内部出现了怎样的变化?”、“何时发生的辛酉政变?”、“何人发动的辛酉政变?他们为什么要发动辛酉政变?”、“为什么列强对辛酉政变采取“无异议”的态度?”、“辛酉政变后清政府在哪些方面发生了怎样的变化?”、“辛酉政变后,在清政府中掌握实权的是哪些人物?他们的政治主张是什么?”、“列强对待太平天国运动的态度为什么会由‘中立’转为协助清政府剿杀?”、“清朝对内对外政策为什么会在19世纪60年代发生如此生变化?”、“中外反动势力相勾结会给中国带来什么样的影响?”
“清朝为什么改变倚重满族官员的既定方针开始重用汉族官僚?”、“被清政府倚重的汉族官员主要有哪些,他们有什么共同特点?”
高一数学教学设计教案(热门17篇)篇三
弹簧的弹性有一定的限度,超过了这个限度就不完全复原了。使用弹簧时不能超过它弹性限度,否则会使弹簧损坏。
(二)弹簧测力计。
1、测量原理。
它是根据弹簧受到的拉力越大,它的伸长就越长这个道理制作的。
2、让学生自己归纳使用弹簧测力计的方法和注意事项。
使用测力计应该注意下面几点:
(1)所测的力不能大于测力计的测量限度,以免损坏测力计。
(2)使用前,如果测力计的指针没有指在零点,那么应该调节指针的位置使其指在零点。
(3)明确分度值:了解弹簧测力计的刻度每一大格表示多少n,每一小格表示多少n。
(4)把挂钩轻轻拉动几下,看看是否灵活。
5、探究:弹簧测力计的制作和使用。
(四)课堂小结:1、什么是弹性?什么是塑性?什么是弹力?
2、弹簧测力计的测量原理。
3、弹簧测力计的使用方法。
(五)巩固练习:
1、乒乓球掉在地上马上会弹起来,使乒乓球自下而上运动的力是,它是由于乒乓球发生了而产生的。
2、弹簧受到的拉力越大,弹簧的伸长就。它有一个前提条件,该条件是,就是根据这个道理制作的。
3、关于弹力的叙述中正确的是()。
a、只有弹簧、橡皮筋等这类物体才可能产生弹力。
b、只要物体发生形变就会产生弹力。
c、任何物体的弹性都有一定的限度,因而弹力不可能无限大。
d、弹力的大小只与物体形变的程度有关。
4、下列哪个力不属于弹力()。
a、绳子对重物的拉力b、万有引力c、地面对人的支持力d、人对墙的推力。
5、两个同学同时用4.2n的力,向两边拉弹簧测力计的挂钩和提纽,此时弹簧测力计显示的示数是。
(六)布置作业:
六、课后反思:
高一数学教学设计教案(热门17篇)篇四
(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于y轴与x轴的正半轴的单调递减函数的位置,趋向分别接近于y轴的正半轴与x轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于x轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数无_。
奇偶性。
定义。
一般地,对于函数f(x)。
(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
1.认真研读《考试说明》和《考纲》。
《考试说明》和《考纲》是每位考生必须熟悉的最权威最准确的高考信息,通过研究应明确“考什么”、“考多难”、“怎样考”这三个问题。
命题通常注意试题背景,强调数学思想,注重数学应用;试题强调问题性、启发性,突出基础性;重视通性通法,淡化特殊技巧,凸显数学的问题思考;强化主干知识;关注知识点的衔接,考察创新意识。
《考纲》明确指出“创新意识是理性思维的高层次表现”。因此试题都比较新颖活泼。所以复习中你就要加强对新题型的练习,揭示问题的本质,创造性地解决问题。
2.多维审视知识结构。
高考数学试题一直注重对思维方法的考查,数学思维和方法是数学知识在更高层次上的抽象和概括。知识是思维能力的载体,因此通过对知识的考察达到考察数学思维的目的。你需要建立各部分内容的知识网络;全面、准确地把握概念,在理解的基础上加强记忆;加强对易错、易混知识的梳理;要多角度、多方位地去理解问题的实质;体会数学思想和解题的方法。
3.把答案盖住看例题。
参考书上例题不能看一下就过去了,因为看时往往觉得什么都懂,其实自己并没有理解透彻。所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看,这时要想一想,自己做的与解答哪里不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目的来源搞清了,在题后加上几个批注,说明此题的.“题眼”及巧妙之处,收益将更大。
4.研究每题都考什么。
数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,要通过一题联想到多题。你需要着重研究解题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,研究运用不同的思维方法解决同一数学问题的多条途径,在分析解决问题的过程中既构建知识的横向联系又养成多角度思考问题的习惯。
与其一节课抓紧时间大汗淋淋地做二、三十道考查思路重复的题,不如深入透彻地掌握一道典型题。例如深入理解一个概念的多种内涵,对一个典型题,尽力做到从多条思路用多种方法处理,即一题多解;对具有共性的问题要努力摸索规律,即多题一解;不断改变题目的条件,从各个侧面去检验自己的知识,即一题多变。习题的价值不在于做对、做会,而在于你明白了这道题想考你什么。
高一数学教学设计教案(热门17篇)篇五
1.使学生通过观察,初步理解简单的同分母分数加法的算理,并能正确计算.。
3.培养学生抽象概括与观察类推的能力.。
教学重点。
1.理解同分母分数加法的算理.。
2.会计算简单的同分母分数加法.。
教学难点。
理解同分母分数加法的算理.。
教学过程。
一、铺垫孕伏.。
复习旧知.。
(1)用分数表示图中涂色部分(投影)。
问:是几个?是几个?是几个?
(2)填空。
是4个是是个是个.。
(3)口算并说明计算理由.。
30+28056+6139+20。
二、探究新知.。
1.导入新授.。
这样的分数加法应该怎样计算呢?这节课我们就来学习简单的分数加法.。
(板书:简单的分数加法)。
2.教学例1.【演示课件简单的分数加、减法】。
(1)出示例1。
一张长方形纸,做纸花用去,做小旗用去,一共用去这张纸的`几分之几?
(2)分析数量关系,列出算式.。
教师板书:
教师提问:这道题应该怎样想呢?(演示动画分数加法例1)。
是2个,是1个,2个加上1个是3个,就是.因此。
(板书:)。
(3)计算并说出思考过程。
3.教学例2.【演示课件简单的分数加、减法】。
(1)(演示动画分数加法例2)。
提问:怎样列式?
(板书:)。
思考:得多少?你是怎么想的?
(2)教师出示图片,板书。
(3)再让学生说的思考过程.。
4.练习.。
(1)口答:
(2)计算并说思考过程.。
提问:1用分数怎样表示?(可表示为、、、)。
小结:可以根据我们的需要写成分子、分母相同的任意分数.。
三、随堂练习.。
1.填空。
(l)2个加上3个,是5个;就是。
(2)3个加上4个,是个,就是。
(3)2个加上7个是个,就是.。
2.判断正误,把不正确的改正过来.。
3.计算.。
4.一块皮子,做皮包用去这块皮子的,做皮鞋用去这块皮子的,一共用去这块皮子的几分之几?(列式计算,并说明理由.)。
四、课堂小结。
今天我们学习了同分母分数加法,你们发现了什么规律吗?
五、课后作业.。
文档为doc格式。
高一数学教学设计教案(热门17篇)篇六
教学目标:
1、情感目标:激发学生的表达欲望,培养学生善于探索的精神。渗透爱国主义教育,树立民族自豪感。
2、知识目标:通过演示和对简易天平的.实际操作,观察,探索等式的基本性质、从等式出发初步理解方程的意义,会判断是不是方程。
3、能力目标:通过简单的天平实验理解并掌握等式的基本性质。结合教学内容,培养概括、推理的能力。
教学重点:
建立方程的概念。
教学难点:
帮助学生建立“方程”的概念,并会应用。
教具准备:
天平、空水杯、水(可根据实际变换为其它实物)。
教学过程:
今天我们上课要用到一种重要的称量工具,它是什么呢?对,它是天平。同学们对天平有哪些了解呢?天平由天平称与砝码组成,当放在两端托盘的物体的质量相等时,天平就会平衡,根据这个原理,从而称出物体的质量。
1、实物演示,引出方程。
操作天平:第一步,称出一只空杯子重100克,板书:1只空杯子=100克;
高一数学教学设计教案(热门17篇)篇七
2、过程和方法目标。
(1)通过观察和实验了解弹簧测力计的结构。
(2)通过自制弹簧测力计以及弹簧测力计的使用,掌握弹簧测力计的使用方法。
3、情感、态度与价值目标。
通过弹簧测力计的制作和使用,培养严谨的科学态度和爱动手动脑的好习惯。
二、重点难点。
重点:什么是弹力,正确使用弹簧测力计。
难点:弹簧测力计的测量原理。
三、教学方法:探究实验法,对比法。
四、教学仪器:直尺,橡皮筋,橡皮泥,纸,弹簧测力计。
五、教学过程。
(一)弹力。
1、弹性和塑性。
学生实验,注意观察所发生的现象:
(2)取一条橡皮筋,把橡皮筋拉长,体验手感,松手后,橡皮筋会恢复原来的长度。
(3)取一块橡皮泥,用手捏,使其变形,手放开,橡皮泥保持变形后的形状。
(4)取一张纸,将纸揉成一团再展开,纸不会恢复原来形状。
让学生交流实验观察到的现象上,并对这些实验现象进行分类,说明按什么分类,并要求各类再举些类似的例子。(按物体受力变形后能否恢复原来的形状这一特性进行分类)。
直尺、橡皮筋等受力会发生形变,不受力时又恢复到原来的形状,物体的这种特性叫做弹性;橡皮泥、纸等变形后不能自动恢复原来的形状,物体的这种特性叫做塑性。
2、弹力。
我们在压尺子、拉橡皮筋时,感受到它们对于有力的作用,这种力在物理学上叫做弹力。
弹力是物体由于弹性形变而产生的力。弹力也是一种很常见的力。并且任何物体只要发生弹性形变就一定会产生弹力。而日常生活中经常遇到的支持物的压力、绳的拉力等,实质上都是弹力。
3、弹性限度。
高一数学教学设计教案(热门17篇)篇八
一、教材分析(结构系统、单元内容、重难点)。
二、学生分析(双基智能水平、学习态度、方法、纪律)。
较去年而言,今年的学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。
三、
教学目的要求。
1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。
2.通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数;理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。
3.理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。
4.几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法;再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。
四、完成教学任务和提高教学质量的具体措施。
积极做好集体备课工作,达到内容统一、进度统一、目标统一、例题统一、习题统一、资料统一;上好每一节课,及时对学生的思想进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。
一、教材分析(结构系统、单元内容、重难点)。
第1页。
元一次不等式(组)与简单的线性规划问题及应用;。
二、学生分析(双基智能水平、学习态度、方法、纪律)。
较去年而言,今年的学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。
三、教学目的要求。
1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。
2.通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数;理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。
3.理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。
4.几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法;再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。
四、完成教学任务和提高教学质量的具体措施。
一般说来,“教师”概念之形成经历了十分漫长的历史。杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。这儿的“师资”,其实就是先秦而后历代对教师的别称之一。《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。
一般说来,“教师”概念之形成经历了十分漫长的历史。杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。这儿的“师资”,其实就是先秦而后历代对教师的别称之一。《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。积极做好集体备课工作,达到内容统一、进度统一、目标统一、例题统一、习题统一、资料统一;上好每一节课,及时对学生的思想进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。
第2页。
要练说,先练胆。说话胆小是幼儿语言发展的障碍。不少幼儿当众说话时显得胆怯:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。总之,说话时外部表现不自然。我抓住练胆这个关键,面向全体,偏向差生。一是和幼儿建立和谐的语言交流关系。每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,消除幼儿畏惧心理,让他能主动的、无拘无束地和我交谈。二是注重培养幼儿敢于当众说话的习惯。或在课堂教学中,改变过去老师讲学生听的传统的教学模式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的机会,培养幼儿爱说话敢说话的兴趣,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地帮助和鼓励他把话说完、说好,增强其说话的勇气和把话说好的信心。三是要提明确的说话要求,在说话训练中不断提高,我要求每个幼儿在说话时要仪态大方,口齿清楚,声音响亮,学会用眼神。对说得好的幼儿,即使是某一方面,我都抓住教育,提出表扬,并要其他幼儿模仿。长期坚持,不断训练,幼儿说话胆量也在不断提高。
第3页。
高一数学教学设计教案(热门17篇)篇九
2.能力目标:使学生具有使用函数模型研究生活中简单的事物变化规律的能力。
3.情感目标:渗透数学来源于生活,运用于生活的思想。
重点让学生理解现阶段函数的概念,定义域的概念。
难点用函数模型去研究生活中简单的事物变化规律时,如何确定定义域。
学情。
分析授课班级为高一年级的学生,有朝气,有活力,爱实践,爱生活。本课之前,学生已经学习了初中函数概念,为本课的学习打下基础。
教法与学法教法:微课视频中包含情境教学法、多媒体辅助教学法的使用。
1.动画设计《世界在不断的变化》。
2.专业录频软件;
3.视频后期处理软件;
;
5.其它图片、背景音乐。
课前准备。
教学过程。
环节设计:教师活动、学生活动、设计意图。
环节一创设情境。
兴趣导入首先让学生观看视频《世界在不断的变化》。
老师解说:这个世界在不断的变化,有一句很有哲理的话“这个世界唯一没有变化的就是这个世界一直在改变”。聪明的人类为了在这个不断变化的世界中生存,想出了很多记录世界变化规律的办法。今天我们就来学习一个好办法,它就是数学函数,函数是研究事物变化规律的数学模型之一。
1看视频。
2听老师解说,函数是研究世界变化规律的数学模型之一。
3了解函数的作用,对函数产生兴趣。
通过让学生观看视频,并对学生讲解,让学生了解函数是用来研究事物变化规律的数学模型之一,这样学生能更深刻的理解函数的功能,即激发了学生学习热情,又回顾初中学习的数学函数的定义。
在某一个变化过程中有两个变更x和y,在某一法则的作用下,如果对于x的每一个值,y都有唯一的值与其相对应,就称y是x的函数,这时x是自变量,y是因变量.用一个生活实例加深对知识的理解。
实例:到学校商店购买某种果汁饮料,每瓶售价2.5元,那么购买瓶数x,与应付款y之间存在一种对应关系y=2.5x.瓶数x在自然数集中每取定一个值,应付款y就有唯一一个值与其对应,我们可以运用对应关系y=2.5x去进行方便的运算。
在这个例子中,我们发现自变更x只有在自然数集中取值才有意义,其实如果我们细心研究所有已知函数,就会发现确定自变量x的取值范围,是使用函数模型描述世界变化规律的前提.所以我们重新定义函数,将自变量x的取值范围用集合d来表示.函数的定义:
知识总结。
(1)函数的概念。
(2)强调用函数来研究事物变化规律的前提是确定自变量x的取值范围,即定义域。
学生回顾本次微课所学习的知识。让学生回顾本节课学习内容,强化本节课重点,为下节课打下基础。
环节四实例检测。
实例:文具店出售某种铅笔,每只售价0.12元,应付款额是购买铅笔数的函数,当购买6支以内(含6支)的铅笔时,请用表达式来表示这个函数.要求学生把做题结果拍成照片,发到邮箱,及时反馈.学生练习,并把做题结果拍成照片,发到我的邮箱,并通过qq与学生进行交流实例巩固今天学习的函数概念。
高一数学教学设计教案(热门17篇)篇十
一、教材分析(结构系统、单元内容、重难点)。
二、学生分析(双基智能水平、学习态度、方法、纪律)。
较去年而言,今年的学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。
三、教学目的要求。
1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。
2.通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数;理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。
3.理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。
4.几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法;再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。
四、完成教学任务和提高教学质量的具体措施。
积极做好集体备课工作,达到内容统。
一、进度统。
一、目标统。
一、例题统。
一、习题统。
一、资料统一;上好每一节课,及时对学生的思想进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。
一、教材分析(结构系统、单元内容、重难点)。
二、学生分析(双基智能水平、学习态度、方法、纪律)。
较去年而言,今年的学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。
三、教学目的要求。
1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。
2.通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数;理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。
3.理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。
4.几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法;再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。
四、完成教学任务和提高教学质量的具体措施。
积极做好集体备课工作,达到内容统。
一、进度统。
一、目标统。
一、例题统。
一、习题统。
一、资料统一;上好每一节课,及时对学生的思想进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。
高一数学教学设计教案(热门17篇)篇十一
使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。 6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
我们所使用的教材是人教版《普通高中课程标准实验教科书数学(a版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:
1.亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。
2.问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。
3.科学性与思想性:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。
4.时代性与应用性:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。
1. 选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。
2. 通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3. 在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
两个班一个普高一个职高,学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。
1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。
2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的`知识出发,启发学生思考。
3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。
6、重视数学应用意识及应用能力的培养。
俗话说的好,好的教学计划是教学成功的一半,作为一名优异的教师,做好一定的教学计划很有必要。
总结:制定教学计划的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学。希望上面的,能受到大家的欢迎!
高一数学教学设计教案(热门17篇)篇十二
突出重点.培养能力.。
三、课堂练习。
教材第13页练习1、2、3、4.。
【助练习】第13页练习4(1)中用一个方向的斜平行线段表示,用另一方向的平行线段表示如图:
凡有阴影部分即为所求.。
四、小结。
提纲式(略).再一次突出交集和并集两个概念中“且”,“或”的含义的不同.。
五、作业。
习题1至8.。
笔练结合板书.。
倾听.修改练习.掌握方法.。
观察.思考.倾听.理解.记忆.。
倾听.理解.记忆.。
回忆、再现内容.。
落实。
介绍解题技能技巧.。
内容条理化.。
课堂教学设计说明。
2.反演律可根据学生实际酌情使用.。
高一数学教学设计教案(热门17篇)篇十三
[教学方法]:讲练结合法
[授课类型]:复习课
[课时安排]:1课时
[教学过程]:集合部分汇总
本单元主要介绍了以下三个问题:
1,集合的含义与特征
2,集合的表示与转化
3,集合的基本运算
一,集合的含义与表示(含分类)
1,具有共同特征的对象的全体,称一个集合
2,集合按元素的个数分为:有限集和无穷集两类
高一数学教学设计教案(热门17篇)篇十四
学习是一个潜移默化、厚积薄发的过程。编辑老师编辑了:数列,希望对您有所帮助!
1.使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.
(1)理解数列是按一定顺序排成的一列数,其每一项是由其项数唯一确定的.
(2)了解数列的各种表示方法,理解通项公式是数列第项与项数的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式.
(3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的前几项.
2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.
3.通过由求的过程,培养学生严谨的科学态度及良好的思维习惯.
(1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的.计算等.
(2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系.在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列.函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法.由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法.
(3)由数列的通项公式写出数列的前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助.
(4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用来调整等.如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系.
(5)对每个数列都有求和问题,所以在本节课应补充数列前项和的概念,用表示的问题是重点问题,可先提出一个具体问题让学生分析与的关系,再由特殊到一般,研究其一般规律,并给出严格的推理证明(强调的表达式是分段的);之后再到特殊问题的解决,举例时要兼顾结果可合并及不可合并的情况.
(6)给出一些简单数列的通项公式,可以求其最大项或最小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的.
上述提供的:数列希望能够符合大家的实际需要!
高一数学教学设计教案(热门17篇)篇十五
2、实际问题中的有关术语、名称:
(1)仰角与俯角:均是指视线与水平线所成的角;
(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;
(3)方向角:常见的`如:正东方向、东南方向、北偏东、南偏西等;
3、用正弦余弦定理解实际问题的常见题型有:
测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;
2、实际问题中的有关术语、名称:
(1)仰角与俯角:均是指视线与水平线所成的角;
(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;
(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;
3、用正弦余弦定理解实际问题的常见题型有:
测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;
一、知识归纳
2、实际问题中的有关术语、名称:
(1)仰角与俯角:均是指视线与水平线所成的角;
(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;
(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;
3、用正弦余弦定理解实际问题的常见题型有:
测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;
二、例题讨论
一)利用方向角构造三角形
四)测量角度问题
例4、在一个特定时段内,以点e为中心的7海里以内海域被设为警戒水域.点e正北55海里处有一个雷达观测站a.某时刻测得一艘匀速直线行驶的船只位于点a北偏东。
高一数学教学设计教案(热门17篇)篇十六
(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。难点:柱、锥、台、球的结构特征的概括。
(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪四、教学思路。
1、教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。
2、所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
1、引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
3、组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;
(2)其余各面都是平行四边形;
(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。
4、教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
5、提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?
6、以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
7、让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。
8、引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
9、教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)。
2、棱柱的何两个平面都可以作为棱柱的底面吗?
3、课本p8,习题1.1a组第1题。
5、棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
由学生整理学习了哪些内容六、布置作业。
课本p8练习题1.1b组第1题。
课外练习课本p8习题1.1b组第2题。
高一数学教学设计教案(热门17篇)篇十七
3.能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题。
一、预习检查。
1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程为.
2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为.
3、双曲线的渐进线方程为.
4、设分别是双曲线的半焦距和离心率,则双曲线的一个顶点到它的一条渐近线的距离是.
二、问题探究。
探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同.
探究2、双曲线与其渐近线具有怎样的关系.
练习:已知双曲线经过,且与另一双曲线,有共同的渐近线,则此双曲线的标准方程是.
例1根据以下条件,分别求出双曲线的标准方程.
(1)过点,离心率.
(2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为.
例2已知双曲线,直线过点,左焦点到直线的距离等于该双曲线的虚轴长的,求双曲线的离心率.
例3(理)求离心率为,且过点的双曲线标准方程.
三、思维训练。
1、已知双曲线方程为,经过它的右焦点,作一条直线,使直线与双曲线恰好有一个交点,则设直线的斜率是.
2、椭圆的离心率为,则双曲线的离心率为.
3、双曲线的渐进线方程是,则双曲线的离心率等于=.
4、(理)设是双曲线上一点,双曲线的一条渐近线方程为、分别是双曲线的左、右焦点,若,则.
四、知识巩固。
1、已知双曲线方程为,过一点(0,1),作一直线,使与双曲线无交点,则直线的斜率的集合是.
2、设双曲线的一条准线与两条渐近线交于两点,相应的焦点为,若以为直径的圆恰好过点,则离心率为.
3、已知双曲线的左,右焦点分别为,点在双曲线的右支上,且,则双曲线的离心率的值为.
4、设双曲线的半焦距为,直线过、两点,且原点到直线的距离为,求双曲线的离心率.
5、(理)双曲线的焦距为,直线过点和,且点(1,0)到直线的距离与点(-1,0)到直线的距离之和.求双曲线的离心率的取值范围.