教学计划是指在教育教学实践中,为了实现特定教学目标而规划的一系列组织、安排和控制教学活动的文件或计划。它是教学的基本工作,对于教师和学生都具有重要意义。针对不同学段和不同学科,这里整理了一些精选的教学计划范文,供大家参考借鉴。
最新人教版可能性教学设计(热门17篇)篇一
教学目标:
知识与技能:
1、会运用有序搭配列举出事件发生的所有可能的结果。
2、会判断事件的可能性的大小,体验游戏规则的公平性。
过程与方法:经历事件可能性结果的探究分析过程,体验列举分析问题的学习方法。
情感态度与价值观:通过游戏的公平性,培养学生的公平、公正意识,促进学生正直人格的形成。
教学重难点:会判断事件发生的可能性的大小。
教学过程:
一、回顾旧知,引出新知。
1、出示单元主题图:回顾击鼓传花游戏中的公平性。
说明:要判断游戏是否公平,关键是看男女生获得表演节目的可能性是否相等。
2、导入新课,揭示课题。(板书课题)。
二、自主探究,获取新知。
1、出示图,提出问题:
(1)图中的小朋友在玩什么游戏呢?(跳房子)。
(2)他们用什么游戏来决定谁先跳?(玩石头、剪子、布)。
2、通过游戏方式理解游戏规则。
两名学生玩“剪子、石头、布”的游戏感受这种游戏的多种情形。
3、判断游戏是否公平:
(1)你认为用“石头、剪子、布”决定谁先跳公平吗?
(2)怎样判断这个游戏是否公平呢?
4、自主探究,验证规则公平性。
(1)小组讨论:一共有多少种可能的结果?
讨论之后,完成表格。
(2)汇报交流。
你罗列出了几种可能的结果?(多生汇报)。
哪9种?
指名汇报。(根据学生填表情况汇报交流)。
预设:
a无序排列的所有可能的结果。
b有序排列出所有可能的结果。
结合课堂生成,灵活处理。
(3)说明:像这样有序思考,能很快列举出所有可能的结果,并能做到既不重复、不遗漏。
5、对比例2与例3,今天学习的可能性与例2有什么不同?
小结判断游戏公平性的方法和步骤。
三、应用、拓展。
1、教材第103页“做一做”
(1)引导学生读题,理解题意。
(2)学生独立解答,交流、订正。
预设:
1、列举法。
2、直觉判断。
2、拓展:练习二十二第1题。
四、小结。
通过今天的学习,你们有什么收获?
最新人教版可能性教学设计(热门17篇)篇二
教学目标:
知识技能:通过猜球、摸球、装球等游戏活动使学生初步体验有些事件的发生是确定的,有些是不确定的。
能力目标:尝试用“可能”、“不可能”、“一定”等词语来描述事件发生的可能性,获得初步的概率思想,培养初步的判断和推理能力。
情感态度:培养学生学习数学的兴趣,形成良好的合作学习的态度。
活动准备:
全班分成6个小组,每组准备1号、2号袋(分里外2层)、一个小篮。
老师准备一个黑袋子、3个透明袋、得星榜、图片、转盘等。
活动过程:
一、猜球游戏。
谈话:小朋友们,今天这节课刘老师和大家一起来做游戏,好吗?我们还设立了得星榜,要比一比6个小组中,哪个小组得星最多,合人得最默契。先来玩第一个游戏。猜球在哪只手里。
学生有的猜左手,有的猜右手。
提问:一定在右手吗?(不一定)从游戏中,你们发现“猜球”时会出现什么情况?
小结:也就是说,在老师摊开手之前,你们只能是猜测,球可能会在右手,也可能会在左手,这就是我们生活中“可能性”。(板书课题)。
[析:着眼于学生的年龄特点,创设有悬念的“猜球”游戏,让学生初步感受事件发生的可能性,使他们对即将学习的内容产生浓厚的兴趣和强烈的求知欲望,自然地进入最佳学习状态。
二、摸球游戏。
1、用“一定”来描述摸球的结果,体验事件发生的确定性。
指导学习摸球:先搅几下,摸一个,拿出来。放进去。搅一搅,再摸一个,拿出来……。
引导:为什么在这个口袋中,xxx摸到的都是红球呢?(生猜测)同意他的猜测吗?我们一起业验证一下吧!(请xxx把里袋拎出来)。
小结:对了,你们真聪明,一下就猜到了。袋子里装的都是红球,(出示图)那任意摸一个球,会怎样呢?(板书:一定是红球)。
2、用“不可能”来描述摸球的结果,体验事件发生的确定性。
谈话:你们也想来玩这个游戏吗?好,请组长拿出1号袋子。不过,在摸球之前先扣清楚摸球规则:由组长先摸,摸前手在口袋里搅几下,然后任意摸出一个,并告诉你们小组的同学摸到的是什么球,再把球放入袋中,依次传给其他组员摸,明白了吗?就让我们比哪组合作得最好?开始吧!
(让学生分组摸球,教师巡视指导)。
汇报摸球情况:每组派代表说一说,你们一组摸到了什么球呢?(黄球和绿球)。
提问:那你们能在这个袋子里摸到红球吗?为什么?
提问:请组长拿出里袋,看看是什么球?(黄球和绿球,随即出示图)。
提问:能摸到红球吗?为什么?(板书:不可能是红球)。
(请组长把黄球和绿球倒入小篮中,以供装球游戏中使用)。
3、用“可能”来描述摸球的结理想,体验事件发生的不确定性。
谈话:大家说得真棒!想不想继续摸球?请拿了2号口袋,试试你会摸出什么球呢?记住要按刚才的规则摸啊!
学生分组活动。
汇报摸球情况:你们摸到了什么颜色的球(黄球和红球)。
提问:猜一猜,老师在袋子里装了什么颜色的球请拎出里袋验证一下。
小结:袋子里装有黄球和红球,(出示图)你能摸到红球吗?那一定是红球吗?那会怎样呢?(板书:可能是红球,也可能是黄球)。
小结:通过摸球游戏,我们发现如果袋子里都是红球,任意摸一个,一定是红球。
如果袋子里有黄球和绿球,任意摸一个,不可能是红球。如果袋子里有红球和黄球,任意摸一个,可能是红球,也可能是黄球。
三、练习巩固。
1、练一练。
(2)(出示有2个绿球和3个红球的袋子)那从这个袋子里一定能摸出黄球吗?么?
(3)(出示装有5个黄球的袋子)这个袋子呢?为什么?
小结:让我们来看看现在各小组的得星情况,问:猜一猜哪组有可能夺得今天的最佳合作奖?那这一组一定会是今天的冠军吗?对!在比赛还没有结束前,我们每个小组都有可能获胜,大家可要继续努力啊!
2、转盘游戏。
提问:在转盘转动之前,先猜一猜它会停在哪里呢?请你用力转动转盘,让它自然地停下,看看最后的结果。
提问:通过这个转盘游戏你们发现了什么?
(发现指针可能指在蓝色区域,也可能指在黄色区域或红色区域。
3、装球游戏。
谈话:前面我们玩了摸球游戏,接下来我们要来装球,根据老师出示的要求,请先在小组内讨论,应该放什么球,不应该放什么球。讨论好了请组长把小篮里的球装在透明袋里,比一比哪个小组合作得又好又快!
安排3次装球活动,依次出示要求:
(1)任意摸一个球,一定是绿球。
(2)任意摸一个球,不可能是绿球。
(3)任意摸一个球,可能是绿球。
每次装球后,请组长把透明袋举起,展示本组装球情况,并说说为什么这样装球,老师相机引导、鼓励。
4、联系生活。
谈话:小朋友们,今天我们通过玩一玩、猜一猜、说一说,学会了用“一定”、“可能”、“不可能”来表述游戏中的各种情况,那在我们的生活中,同样有些事情是一定会发生,有些事情是不可能发生,也有些事情可能会发生。下面请小朋友们举例说说!
最新人教版可能性教学设计(热门17篇)篇三
教学目标:
2、通过丰富的游戏活动和对生活中几种常见游戏(或现象)剖析与解释,使学生初步体会数学与生活的紧密联系。
教学重点:体验事件发生的等可能性以及游戏规则的公平性,会用分数表示事件发生的可能性。
教学难点:能按要求设计公平的游戏方案。
教学具准备:多媒体课件,硬币,实验记录表,骰子,六个面上分别写上数字1-6的长方体,透明塑料桶,乒乓球等。
教学过程。
一、故事导入。
师:同学们,喜欢听故事吗?在课前我们一起来回忆一个经典的成语故事--《守株待兔》,请同学们认真的观看,看完后回答老师所提出的问题。(出示故事视频)。
学生认真观看故事。
师:农夫天天在这里等着捡兔子,他可能会等来什么样的结果呢?(生发表自己的看法,教师预设学生可能会出现说“什么都等不到”或者是“可能会再捡到兔子”。)。
师:农夫能否等到兔子,这是一件不确定的事,生活中许多事情的发生是不确定的,发生的可能性有大有小,我们在生活中经常会遇到应用可能性来决定输赢或者先后顺序的情况,今天我们就来进一步研究不确定事情发生的可能性。(揭题:可能性)。
二、探究新知。
1、动手体验,获取数据。
师:同学们喜欢运动吗?(喜欢)看过足球赛吗?
(课件出示:例1情景图)。
师:足球场上的裁判员在干什么?(抛硬币)为什么抛硬币?(决定谁先开球)。
师:那么大家觉得用抛硬币的方法决定谁先开球,这样公平吗为什么。
(学生发表自己的看法,教师预设生1:公平,因为硬币可能是正面朝上,也可能是反面朝上,所以公平;生2:公平,因为硬币可能是正面朝上,也可能是反面朝上,它们各占一半,所以公平……)。
师:既然认为是公平的,那么大家想一想正面朝上的可能性是多少?(学生发表自己的看法,教师预设生1:1/2;生2:50%;生3:0.5。)。
师:你是怎样想的?
师:那掷出反面的可能性是多少?为什么?(板书:正面:1/2,反面:1/2。)。
师:大家想一想,如果我抛掷10次,正面大约可能出现多少次?(5次)。
师:为什么?(正面出现可能性是1/2。)。
师:同意他的说法吗?(同意)。
师:那么正面朝上的可能性和反面朝上的可能性都是1/2,就进一步说明了用抛硬币的方法决定谁先开球,是公平的。为了深入探讨这个问题,我们先来做个试验,(出示课件实验要求):
2、试验完成后思考:正面朝上的次数与总次数有什么关系?
记录表格:。
试验次数抛硬币次数正面朝上次数。
第一次10。
第二次10。
第三次10。
第四次10。
总计40。
师:大家试验做完了吗?请各小组汇报。
课件出示统计表根据学生的汇报教师填入数据。
2、分析数据,初步体验。
师:大家来观察一下这些数据,你有什么发现?(学生发表看法,教师预设生:有些小组正面朝上的次数是总次数的一半,有些小组少一点,有些小组多一点,但是全班加起来接近总次数的一半。)。
师:同学们观察的都很仔细有这么多的发现,我们会发现有些小组正面朝上的次数不一定是总次数的一半,有些小组少一点,有些小组多一点,但是全班加起来正面朝上的次数就比较接近总次数的1/2。
3、阅读材料,加深体会。
师:其实在历史上,为了验证这一点有很多数学家也做过这样的实验,我们来看一看他们实验的结果是怎么样的(出示统计数据)。
历史上一些著名数学家做抛硬币试验的数据。
试验者抛硬币次数正面朝上的次数。
德.摩根40922048。
蒲丰40402048。
费勒100004979。
皮尔逊240001。
罗曼若夫斯基8064039699。
师:随着抛掷次数的不断增加,正面朝上的次数会怎样?(正面朝上的次数会越来越接近总次数的1/2。)。
师:那么反面朝上的次数呢?(也一样,会越来越接近总次数的1/2。)。
三、应用拓展,体验可能性。
游戏活动一:三色转盘。
师:刚才同学们表现的非常好,接下来我们轻松一下,同学们喜欢做游戏吗?(出示飞行棋游戏)。
师:玩过这种游戏吗?怎么玩?(学生发表自己的看法生,教师预设生1:掷骰子,掷出几就走几步,先到终点为胜利;生2:补充,棋盘上有一些要求,要根据要求走;生3:最后如果超出终点要退回等。)。
师:好,我把全班分成3个队,左边为红队,中间的为蓝队,右边的为白队,。
师:哪个队愿意先走(所有学生都举手)既然大家都想先走,我们就用转转盘的方式决定好吗?(出示转转盘)。
(生:不公平)。
师:刚才不是说行吗?怎么又不行了?(生:红色的可能性大,而白色和蓝色的可能性小。)。
师:你能用今天所学的知识解释一下吗?(生:红队占4份中的两份,可能性是1/2,所以红队可能性大,蓝队和白队的可能性都是1/4,因为它们都占4份中的一份)。
师:那么大家认为公平吗?(不公平)。
师:看来的确是不公平,谁能想个办法,把它变的公平(生:把这个圆平均分成3份,每种颜色一份,就公平了。)(出示平均分成3份的转盘。)。
师:这样公平吗?(公平)。
师:为什么这样就公平了?(生:每个队现先走的可能性是1/3)师:是相等的,是不是?那么我们来决定一下哪队先走的次序,同学们喊停我就停。
(确定走的次序后准备玩游戏并出示骰子.)游戏活动二:掷骰子。
师:决定了要走的次序了,那这有两个骰子看清楚了吗?每队再上来一位代表选择骰子。(学生都选择正方体的骰子)师:如果是你会选哪个?为什么?(生:长方体1,2出现的可能性大,别的面出现的可能性小,正方体6个面出现的可能性都一样是1/6,所以选正方体。)。
师:大家想为什么这个正方体每个面出现的可能性是一样呢?(生:因为这个正方体每个面的面积都一样,所以每个面出现的可能性都一样。)。
师:都是多少?(1/6)。
师:正方体每个面出现的可能性都是1/6相等的,那么这个长方体的每个面出现的可能性也一样吗?(不一样)。
师:为什么?(因为面积大小是不一样的)。
师:好了,同学们和我们这3个队的队长都选择了用这个正方体骰子做游戏那我们就用它来做游戏!(师生共同做完游戏)。
师:为什么呢?(每个队赢的可能性都是1/3,所以有可能会赢)。
师:那就是说每个队输赢的可能性能不能确定啊?(不能)。
四、思维拓展。
师:刚才同学们已经能够应用今天所学的知识来解决游戏中的问题了,非常好.请大家再看老师这有一个不透明塑料桶,猜一猜里面有什么?(出示不透明塑料桶)。
师:我来告诉大家,里面是乒乓球,一种是黄色的,一种是白色的,如果我从里面随意摸出一个乒乓球,摸出白乒乓球的可能性是多少?(学生发表自己的看法,教师预设生1:摸出白乒乓球的可能性是1/2;生2:我认为不对,他们的个数不一定。)。
师:那么你们还能否确定摸出白乒乓球的可能性?(不能)。
师:那么还需要什么条件你想知道什么条件?(生:我想知道黄乒乓球有几个?白乒乓球有几个?)。
师:那么让我们来看看它们的数量。(出示1个白乒乓球,6个黄乒乓球)。
师:现在你认为摸到白乒乓球的可能性是多少?(生:摸到白乒乓球的可能性是1/7)。
师:为什么?那摸出黄乒乓球的可能性是多少?(生:摸到黄乒乓球的可能性是6/7)。
教师:那任取一个,一定能取到黄球吗?
师:那么要使摸到白乒乓球的可能性变成1/9,这应该怎么办?为什么?
师:那么想一想,只可能加两个黄乒乓球吗?(还可以加别的颜色的球)。
师:要使摸到白球的可能性是黄球的1/2,该这么办?
五、全课总结1、师:通过这节课的学习,老师发现同学们都非常善于思考。你学的快乐吗?都有哪些收获?这节课我们学习了一件不确定事件的可能性,可以用一个数来表示,例如抛掷硬币,正面或反面朝上的可能性都可以用1/2来表示,刚才我们投掷骰子,每个面出现的可能性都可以用1/6来表示,那么这些知识在数学上都叫做概率.概率知识在日常生活中有应用广泛,比如天气预报,降水概率,航天发射等等都应用了概率的知识,它是怎么发展来的呢?请同学们来看。
2、阅读概率小史(播发音乐)。
板书设计:。
可能性。
正面:1/2白球:1。
反面:1/2黄球:6。
可能性:1/7。
最新人教版可能性教学设计(热门17篇)篇四
教学目标:
知识技能:通过猜球、摸球、装球等游戏活动使学生初步体验有些事件的发生是确定的,有些是不确定的。
能力目标:尝试用“可能”、“不可能”、“一定”等词语来描述事件发生的可能性,获得初步的概率思想,培养初步的判断和推理能力。
情感态度:培养学生学习数学的兴趣,形成良好的合作学习的态度。
活动准备:
全班分成6个小组,每组准备1号、2号袋(分里外2层)、一个小篮。
老师准备一个黑袋子、3个透明袋、得星榜、图片、转盘等。
活动过程:
一、猜球游戏。
谈话:小朋友们,今天这节课刘老师和大家一起来做游戏,好吗?我们还设立了得星榜,要比一比6个小组中,哪个小组得星最多,合人得最默契。先来玩第一个游戏。猜球在哪只手里。
学生有的猜左手,有的猜右手。
提问:一定在右手吗?(不一定)从游戏中,你们发现“猜球”时会出现什么情况?
小结:也就是说,在老师摊开手之前,你们只能是猜测,球可能会在右手,也可能会在左手,这就是我们生活中“可能性”。(板书课题)。
[析:着眼于学生的年龄特点,创设有悬念的“猜球”游戏,让学生初步感受事件发生的可能性,使他们对即将学习的内容产生浓厚的兴趣和强烈的求知欲望,自然地进入最佳学习状态。
二、摸球游戏。
1、用“一定”来描述摸球的.结果,体验事件发生的确定性。
指导学习摸球:先搅几下,摸一个,拿出来。放进去。搅一搅,再摸一个,拿出来……。
引导:为什么在这个口袋中,xxx摸到的都是红球呢?(生猜测)同意他的猜测吗?我们一起业验证一下吧!(请xxx把里袋拎出来)。
小结:对了,你们真聪明,一下就猜到了。袋子里装的都是红球,(出示图)那任意摸一个球,会怎样呢?(板书:一定是红球)。
2、用“不可能”来描述摸球的结果,体验事件发生的确定性。
谈话:你们也想来玩这个游戏吗?好,请组长拿出1号袋子。不过,在摸球之前先扣清楚摸球规则:由组长先摸,摸前手在口袋里搅几下,然后任意摸出一个,并告诉你们小组的同学摸到的是什么球,再把球放入袋中,依次传给其他组员摸,明白了吗?就让我们比哪组合作得最好?开始吧!
(让学生分组摸球,教师巡视指导)。
汇报摸球情况:每组派代表说一说,你们一组摸到了什么球呢?(黄球和绿球)。
提问:那你们能在这个袋子里摸到红球吗?为什么?
提问:请组长拿出里袋,看看是什么球?(黄球和绿球,随即出示图)。
提问:能摸到红球吗?为什么?(板书:不可能是红球)。
(请组长把黄球和绿球倒入小篮中,以供装球游戏中使用)。
3、用“可能”来描述摸球的结理想,体验事件发生的不确定性。
谈话:大家说得真棒!想不想继续摸球?请拿了2号口袋,试试你会摸出什么球呢?记住要按刚才的规则摸啊!
学生分组活动。
汇报摸球情况:你们摸到了什么颜色的球(黄球和红球)。
提问:猜一猜,老师在袋子里装了什么颜色的球请拎出里袋验证一下。
小结:袋子里装有黄球和红球,(出示图)你能摸到红球吗?那一定是红球吗?那会怎样呢?(板书:可能是红球,也可能是黄球)。
小结:通过摸球游戏,我们发现如果袋子里都是红球,任意摸一个,一定是红球。
如果袋子里有黄球和绿球,任意摸一个,不可能是红球。如果袋子里有红球和黄球,任意摸一个,可能是红球,也可能是黄球。
三、练习巩固。
1、练一练。
(2)(出示有2个绿球和3个红球的袋子)那从这个袋子里一定能摸出黄球吗?么?
(3)(出示装有5个黄球的袋子)这个袋子呢?为什么?
小结:让我们来看看现在各小组的得星情况,问:猜一猜哪组有可能夺得今天的最佳合作奖?那这一组一定会是今天的冠军吗?对!在比赛还没有结束前,我们每个小组都有可能获胜,大家可要继续努力啊!
2、转盘游戏。
提问:在转盘转动之前,先猜一猜它会停在哪里呢?请你用力转动转盘,让它自然地停下,看看最后的结果。
提问:通过这个转盘游戏你们发现了什么?
(发现指针可能指在蓝色区域,也可能指在黄色区域或红色区域。
3、装球游戏。
谈话:前面我们玩了摸球游戏,接下来我们要来装球,根据老师出示的要求,请先在小组内讨论,应该放什么球,不应该放什么球。讨论好了请组长把小篮里的球装在透明袋里,比一比哪个小组合作得又好又快!
安排3次装球活动,依次出示要求:
(1)任意摸一个球,一定是绿球。
(2)任意摸一个球,不可能是绿球。
(3)任意摸一个球,可能是绿球。
每次装球后,请组长把透明袋举起,展示本组装球情况,并说说为什么这样装球,老师相机引导、鼓励。
4、联系生活。
谈话:小朋友们,今天我们通过玩一玩、猜一猜、说一说,学会了用“一定”、“可能”、“不可能”来表述游戏中的各种情况,那在我们的生活中,同样有些事情是一定会发生,有些事情是不可能发生,也有些事情可能会发生。下面请小朋友们举例说说!
[评析:安排四个形式各样、有层次,有坡度的巩固练习,通过师生互动、生生互动的合作交流,构建平等自由的对话平台,使学生处于积极、活跃、自由的状态,能够得到始料未及的自我体验,产生思维火花的碰撞,使不同的学生得到不同的发展。
四、总结。
总评:
数学学习是一个动态的过程,《数学课程标准》在课程目标的阐述中使用了“经历(感受)、体验(体会)、探索”等刻画数学活动的动词。强调让学生经历知识的发生、发展,关注学生的学习过程,让学生体验数学。这在“可能性”一课中得到了充分体同。课堂上以学生亲身经历和体验过程为主线,设计了一系列的游戏活动,让他们在有趣的学习活动中,获得对知识的体验、感悟。
一、在活动中体验。
先从学生熟悉的、亲切的猜球游戏中自然引出具有数学意义的关系和特征,让他们兴致盎然地投入学习。然后让学生通过摸一摸(摸球)、猜一猜(袋中装有什么颜色的球)、拎一拎(验证)、练一练(说说摸球的结果)、转一转(转转盘)、装一装(按要求装球)、说一说(生活中有关可能性的事件)等实际操作活动,以此强化学生的自我体验,达到知情合一;让学生真切感受到有些事件的发生是确定的有些事件的发生是不确定的,获得对确定性和不确定性的直观感受;从而能够用语言来描述事件发生的三种情况:“一定”“可能”“不可能”。
二、在活动中思考。
赞科夫提倡:“教会学生思考,这对学生来说,是一生中最有价值的本钱。”在“可能性”的教学中;给予学生克分活动的同时,利用“最近发展区”的原则,设置一些“跳一跳、摘果子”的问题情境,引导学生在活动中思考。在学生进行摸球游戏时,让他们猜一猜:口袋里放有什么颜色的球?然后拎出里袋来验证,再让他们说一说:那任意摸一个球,会怎样呢?让学生经历“体验一猜想一验证一归纳”的过程,为学生提供自主探索、合作交流的的空间,养他们探究的能力以及科学的态度。
三、在活动中应用。
“数学从生活中来;到生活中去”。这个观点充分表明了理解知识、掌握知识的最终目的在于学以致用。而且,学以致用不止于结尾或课后,只要运用得当、合适,同样能收到意想不到的精彩效果。在“可能性”的教学伊始,教师就设立得星榜,看哪组合作得最默契,为新知的应用埋下伏笔。练一练后;教师小结各组得星情况;请学生猜一猜哪组有可能夺得最佳合作奖?这一组一定会是冠军吗?让学生主动尝试着从数学的角度运用所学的知识和方法,寻求解决身边数学问题的策略,而且把所学的知识灵活服务于课堂常规教育,顺势鼓舞每组的士气,树立学生的自信心和挑战欲。课尾时再次小结:今天的冠军是哪组?下次他们也一定是冠军吗?也是起到同样的效果。从而帮助学生更好地理解和运用可能性的知识解决问题,提高分析问题、解决问题的能力。
最新人教版可能性教学设计(热门17篇)篇五
1、认识简单的等可能性事件。
2、会求简单的事件发生的概率,并用分数表示。
教学重难点:
感受等可能性事件发生的等可能性,会用分数进行表示。验证掷硬币正面、反面朝上的可能性为。
教学准备。
主体图挂图,老师、学生收集生活中发生的一些事件(必然的、不可能的、不确定的),硬币。
教学过程。
一、信息交流。
1、学生交流收集到的相关资料,并对其可能性做出说明。
师出示收集的事件,共同讨论。
2、小结:在生活中有很多的不确定的事件,我们现在一起来研究它们的可能性大小。
二、新课学习。
1、出示主体图,感受等可能性事件的等可能性。
观察主体图,你得到了哪些信息?
在击鼓传花中,谁得到花的可能性大?掷硬币呢?
生:击鼓传花时花落到每个人的手里的可能性相等,抛一枚硬币时正面朝上和反面朝上的可能性也是相等的。
在生活中,你还知道哪些等可能性事件?生举例…..
2、抛硬币试验。
(1)分组合作抛硬币试验并做好记录(每个小组抛100次)。
抛硬币总次数正面朝上次数反面朝上次数。
(2)汇报交流,将每一组的数据汇总,观察。
(3)出示数学家做的试验结果。
试验者抛硬币总次数正面朝上次数反面朝上次数。
德摩根409220482044。
蒲丰404020481992。
费勒1000049795021。
皮尔逊24000111988。
罗曼若夫斯基806403969940941。
观察发现,当实验的次数增大时,正面朝上和反面朝上的可能性都越来越逼近。
3、师生小结:
掷硬币时出现的情况有两种可能,出现正面是其中的一种情况,因此出现正面的可能性是。
三、练习。
1、p.99.做一做。
2、练习二十第1---3题。
四、课内小结。
通过今天的学习,你有什么收获?
最新人教版可能性教学设计(热门17篇)篇六
邮编:312090。
电话:13017726662。
电子信箱:shenxiaojuan3@。
一、设计思想:
教学中利用二、三位数乘一位数8个小题的笔算,让学生再次经历了乘法的算理。练习中鼓励学生分类,进一步区分笔算乘法的进位不叠加、进位叠加的不同算法;鼓励学生展示错误,让学生带着思考、讨论、亲自体验,进一步深化了“进位叠加”的计算理念。这样的设计不但巩固了学生的笔算方法,还突破了“某一位上的乘积加上进来的数字要进位的”难度,提高了学生计算的正确力,大大降低错误率。利用应用练习的开放性,让学生灵活利用口算、估算、笔算去解决实际问题,这样也更好地加强了“算法多样化”的计算理念,既培养了学生“能为解决问题而选取适当方法”的能力,从而有利于发展学生的数感。
二、教材分析:
教学这个练习,教师必须重视学生掌握二、三位数乘一位数的笔算方法,巩固笔算过程中对算理的理解。在解决实际问题时教师还应鼓励学生合理利用笔算、口算、估算三种方法,让他们懂得算法多样的合理选择。教材中1~4是安排的是一次进位的乘法笔算练习题,其中有进位叠加。5~10有连续进位的乘法笔算计算题。11~12是两步计算应用题,提倡一题多解。13题是趣味数学,培养学生归纳推理的能力。教材这一系列的安排是学生已学习了万以内的笔算加法,也初步学习了笔算乘法中一位数乘二、三位数的进位不叠加和进位叠加的笔算方法。教材安排练习十八,主要是对前面例3、例4知识的进一步巩固和突破,通过计算练习和实际应用练习的训练,帮助学生提高多位数乘一位数的计算速度和正确力;也为下一节课学习乘的过程中处理“0”带来了方便;更为学习二、三位数的乘法打下良好的笔算基础。(因为在多位数乘法中始终分解成用几个多位数乘一位数的方法)。
三、学情分析:
学生已经掌握了万以内的加法计算,对万以内的加法计算已具备了计算能力,并初步学习了二、三位数乘一位数的进位不叠加和进位叠加的笔算。可是由于学生对多位数乘一位数还是刚新接授,计算起来还有这样那样的困难,他们还需要更多的练习与巩固,特别是最多可能发生的错误是:忘记加后而进上来的数;进位时加错(因为这里又要算乘又要算加);或错用进上来的数去乘另一个因数等。针对学生可能发生的错误,教师应对学生每计算一步,都看看有没有进位,进的是几,把进上来的数记在竖式相应位置的横线上。算前一位的积时,要想想有没有漏加后面进上来的数,算完以后,再查一两遍。为了让学生更有效地解决学习过程中的困惑,我有意在学生笔算时引导学生对这些笔算题进行分类,这样做是为了对连续进位笔算乘法有一个系统的整理,还鼓励学生勇于展示错误,从而分辨各种形式的计算问题,进一步降低难度,减少各种错误的出现。同时在解决实际问题的活动中渗透笔算、估算、口算,让学生不但掌握了计算技能,并能利用计算技能更有效地解决实际问题。
四、教学目标。
1、知识技能目标:巩固对一位数乘二、三位数的笔算方法,强化连续进位中的“进位叠加”的算理,并能通过计算解决一些生活中的实际问题。
2、过程与方法目标:培养学生自觉检查计算错误的意识,通过现实的数学问题,培养学生合理选择口算、笔算、估算的方法,正确有效地解决实际问题。
3、情感态度与价值目标:通过小组合作培养学生合作精神,并在数学实践活动中体验到数学的生活性和趣味性,体会到学数学的快乐。
五、重点和难点。
重点是进一步加强学生进行多位数乘一位数的“进位叠加”的笔算乘法。
难点则是“某一位上的乘积加上进来的数又要进位”的连续进位情况。
六、教学策略与手段:
整堂课我安排了:口算练习,笔算练习、应用练习、综合练习这几个环节,通过比较性的口算去降低“进位不叠加”和“进位叠加”的笔算难度,通过笔算练习进行分类与错误展示,巩固学生的笔算算理。利用应用练习的开放性进一步深入笔算,并能合理选择口算、笔算、估算三合一去解决具体问题。教学过程中还为学生创设了小组讨论、合作交流、相互竞争等学习环境。学生们在这种自由轻松的学习活动中勇于质疑,大胆展示错误,合理解决问题,感受了成功的喜悦。
七、课前准备:
(1)完成口算题和万以内的加法题若干。
(2)小黑板、课件。
八、教学过程:
(一)、口算练习,明确学习内容。
1、引入口算题。
师:小朋友,小精灵今天又来了,他带来口算题想考考同学们,你们愿意吗?请小朋友注意看,知道答案的就站起来回答。
(课件出示口算题)。
6×7=4×5=7×8=2×4=6×8=9×3=。
6×7+5=4×5+6=7×8+4=2×4+5=6×8+7=9×3+5=。
(学生口算时,有几组口算的速度快点,而有的则慢点)。
2提问。
师:口算有难度吗?通过口算你能联想到什么呀?(学生们纷纷反馈,很明显他们体会到有些乘加比较容易,而有些乘加比较复杂)。
生举例:老师6乘7得42加上后面的跟着的5,做起来比较简单,而6乘8得48加上后面跟上来的7,做起来很容易出错。
3、课题出示。
【设计意图】:通过比较性的口算练习让学生有易到难地去感受进位不叠加和进位叠加的计算过程,这样的训练方式不但可以在笔算中减少错误率,还能提高计算速度,有利于学生的计算效果。
(二)、计算练习,巩固笔算方法。
生:愿意。
1、计算并分类。
12×759×852×468×9314×4426×2459×7238×9。
(学生进行小组合作计算,老师让先完成计算组的学生上来板演)。
师:刚才的这些题我们可以怎样进行分类,谁能说给大家听(学生纷纷说开了)。
生1:我觉得可以这样分:
第一类:12×752×459×868×9。
第二类:314×4426×2459×7238×9。
理由是:第一类是二位数乘一位数,第二类是三位数乘一位数。
生2:我觉得可以这样分:
第一类:12×752×4314×4426×3。
第二类:59×868×9459×7238×9。
理由是:第一类是乘起来进位,加起来不进位,第二类是乘起来进位,加起来再次进位。
生3:我还可以这样分:
第一类:12×7314×4426×3。
第二类:314×4426×3。
第三类:59×868×9459×7238×9。
理由是:第一类是一次进位,第二类是隔位进位,第三类是连续进位。
生4:老师我还有一种:可以按一次进位,二次进位,三次进位来分类。
……。
【设计意图】通过分类进一步让学生对连续进位笔算乘法有了一个系统的整理,学生不但从外形上了解笔算乘法的结构,还从计算方法上区别了进位叠加与进位不叠加的不同算法,让学生在分类的过程中分辨各种形式的计算问题,为进一步降低难度,减少错误情况作了充分的准备。)。
2、寻找错误,强调算理。
师:通过刚才的计算与分类,你认为最大的困惑是什么?你想得到什么帮助?
生1:我发现刚才的笔算题比前几天的要复杂了:有的是一次进位;有的连续进位,而且每乘一位都需要向前进位。而前些天的题没那样难。
生2:我在做题中遇到的困难是:每乘一位都向前进位,每乘一位都要加上进上来的数,一共用了3次乘法和2次加法,等于做了5道口算题,特别复杂。
……。
师:你们观察得真仔细,别看一道小小的一位数乘法,这里面包含的步骤可多啦,更需要你们用耐心和细心去算。就是我们今天要进一步巩固的地方。
(学生展示自已的错误)。
(1)12(2)52(3)426(4)459。
×7×4×3×7。
----------------。
742812683223。
(学生相互找错误原因)。
生1:第一题的错误是忘记了后面2乘7进上来的数1。
生2:第二小题的错误是4与十位上的5相乘,乘得的积应是200,2要写在百位上,十位上只能写0,而这位同学把2却写在了十位上,所以错了。
生3:第四小题是进位时加错了,因为这里又要算7乘5,还要算加个位上9乘7的进上来的6。
生4:第三小题的错误与第一小题相差无几,2乘3得6后却忘加了6乘3进上来的1。
(从学生分析错误的过程中,教师要极时引导学生对笔算算理的深入理解)。
3、小结:
多位数乘一位数的计算题中,同学们要注意计算中的每一步,都要看有没有进位,进的是几,把进上来的数记在竖式相应位置的横线上;算前一位积时,要想想有没有漏加后面进上来的数;算完后再检查一两遍。
【设计意图】:寻找错误,让学生展示错误,是进一步巩固算理的一个重要途经,学生在错误面前可以认识到在计算过程中哪一点没有做到位,而教师则针对学生的错误作进一步的沟通和指导,通过师生互动,学生就会意识到我是因为忘记加后面的进上来的数;还是进位时加错;或是错用进上来的数去乘另一个因数等等。
(三)、应用练习,扩大思维范围。
谈话引入:刚才小朋友那么认真,在计算中出现的错误都能诚实地说出来,而且还能把这些错误纠正过来。小精灵看在眼里,他表扬我们小朋友是个诚实懂事的好孩子,老师真为大家高兴!希望继续努力,会有更出色的表现哦。
1、课件出示课本p/80页的第4题。
蓝球足球羽毛球中国橡棋球拍。
78元60元36元10元24元。
师:观察表你看懂了什么?能提哪些数学问题吗?并解答。
学生提出了这样的问题:
(1):买3个蓝球要多少无钱?解答:78×3=234元。
(2):买5个足球要多少元?解答:60×5=300元。
(3):买4个球拍要多少元?解答:24×4=96元。
(4):买9副中国橡棋要多少元?解答:10×9=90元。
……。
(学生除了提出了乘法问题,还有加法和减法问题,老师都必须加以肯定)。
生1:我是用笔算的。
生2:有2题我是用口算的,还有2题是用笔算的。
师:你为什么又用笔算又用口算啊?
生2:因为60×5、10×9直接用口算能说出得数,那我们只要用口算就够了。
师:说得多好呀!小精灵又要夸小朋友了,他告诉小朋友如果可以口算的题目我们尽量用口算,只有自已不会口算的又要知道准确结果的必须用笔算,小朋友听到了吧!
【设计意图】:这是一个开放题的练习,老师特意改变了一些练习中的几个数据,让学生在练习提问机会的同时,让他们充他体会到在解决实问题时,会选择合理的算法,既巩固了多位数乘一位数的计算法则,也能体验到用口算很快能求得结果的快活。
2、课件出示p/82第11题。
300个同学乘车去郊游,如果每辆车可以坐78个同学,3辆车够吗?如果不够的话第4辆车需要坐多少个同学?(课件出示情景图)。
师:小朋友你们认为这道题该怎么解决?
(有的学生马上回答了问题的结果,有的则还在思考和计算之中。为了更有效地组织学生解决实际问题,我要求学生解决数学问题必须有足够的证据。)。
师:说说你是怎么想的吗?
生1:因为我是用计算3辆车能坐234个同学,就能算第4辆车要坐66个同学了。
生2:我是先估计每辆车约可以坐80人,那么3个80就能估计出3辆车只能坐240个同学。
生3:因为一辆车坐78个同学,那我只要一个一个减下去就能知道3辆车够不够,当然第4辆车还要坐多少个同学也马上可以算出来了。
3、小结:
刚才三位小朋友能用不同的方法来解决同一个问题,小精灵看到我们小朋友能力可强呢!许多同学不但掌握了计算方法,还会合理选择方法来解决数学中的问题,如有的同学会用口算,有的同学会用估算。瞧小精灵在旁边为你们鼓掌呢!(课件表示拍手的动作)。
【设计意图】:在练习三位乘一位数的笔算乘法时,让学生意识到在解决实际问题不但可以笔算,也可以用估算或口算,让他们懂得凡是只需要知道大略的结果或无法求得准确结果的,可以选择估算,凡是能够口算的题目尽量用口算,只有自已不会口算、又要得到准确结果的就必须进行笔算。这样做不但更好掌握了多种算法,还更快速有效地去解决实际问题。
(四)、综合训练激发笔算趣味。
师:小精灵看着同学们在课堂上表现很出色,他想带同学们到了趣味王国玩一玩,小朋友想吗?我们一起跟着小精灵去吧!
1、小组比赛计算。
(出示p/81第8小题)。
学生集体计算,最后师生统计结果。
2、出示数学趣味题。
(课件出示p/82第13题的找规律)。
(教师组织学生小组讨论,从中找出规律)。
【设计意图】:课尾带给学生一份趣味与快乐,让他们劳累了一节课之后来感受数学的快乐。这样的设计不但激发了学生的学习兴趣,还丰富了数学思维。
八、板书:
多位数乘一位数的笔算练习。
12×759×852×468×9314×4426×2459×7238×9。
(1)12(2)52(3)426(4)459。
×7×4×3×7。
----------------。
742812683223。
忘记加后面的进上来的数。
进位时加错。
错用进上来的数去乘另一个因数。
最新人教版可能性教学设计(热门17篇)篇七
1、知道有些事情的发生是确定的,有些则是不确定的,并能用“一定”、“可能”、“不可能”等词语来描述。
2、知道事情发生的可能性是有大有小的,可能性的大小与物体数量有关。
3、培养学生的表达能力和逻辑推理能力。
二、教学重难点。
教学重点:体验事件发生的可能性。
教学难点:会用“一定”、“可能”、“不可能”正确地描述事件发生的可能性。
三、教具学具准备:
多媒体、纸盒子、白色和黄色的小球。
四、教学过程。
1.创设情境,引入课堂。
师:同学们,你们喜欢听故事吗?今天老师就给大家带来一个有趣的故事。希望同学们配合老师把故事讲完整。
相传古代有个王国,国王非常阴险而多疑,一位正直的大臣得罪了国王,被叛死刑,这个国家世代沿袭着一条奇特的法规:凡是死囚,在临刑前都要抽一次“生死签”(写着“生”和“死”的两张纸条),犯人当众抽签,若抽到“死”签,则立即处死,若抽到“生”签,则当场赦免。
你们认为这个大臣摸纸条时会出现什么结果?
预设生:奴隶可能摸到生,也可能摸到死。
师:对,大家用了一个词“可能”。就是两种结果都有可能。
预设生:一定死,不可能生。
预设生:一定生。
师:剩下的当然写着“死”字,不知真相的人们以为他吞下的是生,国王“机关算尽”,想让大臣死,反而搬起石头砸自己脚,让机智的大臣死里逃生。
(引入课题)师:生活中的事情就像故事中的一样,有些我们不能肯定他的结果,有些则可以肯定它的结果,类似的例子还有好多。这就是今天我们要一起研究的内容,事情发生的可能性。(板书:可能性)。
2.动手操作,探究新知。
师:和老师一起玩一个摸球游戏。游戏规则:老师和男生代表以及女生代表进行摸球游戏,如果摸出黄球,则该组加1分,否则不得分。每摸出一次后放回进行下一次,累计摸球5次,得分高的队伍获胜。
注意事项:每摸一次,老师在黑板上用“正字法”纪录一次,纪录完毕后放回去进行下一次,在下一次摸之前为了公平起见先摇一摇。
(预设结果:男生摸不到黄球,老师每次都摸到黄球,女生可能黄球。)。
师:游戏结束了,老师宣布老师获得了游戏的胜利,同意么,有什么质疑?
预设生:我们根本不知道盒子里装的什么颜色的球?
师:那我们一起验证一下,通过验证,我们发现3号盒子里面的球都是白色,1号盒子中的球都是白色,所以我们能确定摸出球的颜色,这时候我们可以用一定或者不可能来描述它的结果。(板书:一定不可能)。2号盒子中既有黄球,又有白球,所以我们不能确定摸出球的结果,这时候我们就应该用可能出现什么情况来判断它。(板书:可能)。
师小结:因此事物发生的可能性我们可以用一定,不可能以及可能三种情况来判断它。
3.走出游戏,走进生活。
师:除了游戏中,我们的.生活以及大自然中也蕴含着许多与可能性相关的问题,大家跟老师一起看一看。(出示图片)。
师:大家知道太阳从天空中的哪边升起时来是确定的么?
预设生:太阳一定从东边升起来,不可能从其他地方升起来。
师:一年有几个季节?一年有几个月?一个星期有几天?
预设生:一年一定有4个季节,一年一定有12个月,一个星期一定有7天。
师:今天下雨么?那三天后会不会下雨这个事情能确定么?
预设生:今天不下雨,三天后可能会下雨。
师总结:因此对于确定的事情我们就用一定或者不可能来描述,但是对于天气我们谁都不能很准确的说三天后会下雨还是下雪,亦或者是晴天,因此对于不确定的事情我们就用可能来描述。
4.巩固练习,深化提高。
师:通过前面的学习,同学们已经能很准确的判断游戏以及生活中发生的可能性,并且知道不确定事件发生的可能性有大有小,下面你们能通过本节课学习的知识根据老师的想法和要求自己设计一个转盘游戏么,互相交流讨论,合作完成。
(老师选取几个有特点的作品和同学互相交流讨论)。
5.课堂小结。
这节课你学到了什么新的知识?有什么收获和疑问呢?
师总结:生活中处处有数学,希望大家将学到的数学知识应用到生活实际中去,使我们的数学学习变得更加有意义。
6.作业布置。
最新人教版可能性教学设计(热门17篇)篇八
教学内容:p.98.主体图p.99.例1及练习二十第1-3题。
教学目的:
1、认识简单的等可能性事件。
2、会求简单的事件发生的概率,并用分数表示。
3、在教学中渗透环保教育。
教学难点:验证掷硬币正面、反面朝上的可能性为。
教学准备:主体图挂图或投影,老师、学生收集生活中发生的一些事件(必然的、不可能的、不确定的),硬币。
教学过程:
一、信息交流。
1、学生交流收集到的相关资料,并对其可能性做出说明。
师出示收集的事件,共同讨论。
2、小结:在生活中有很多的不确定的事件,我们现在一起来研究它们的可能性大小。
二、新课学习。
1、出示主体图,感受等可能性事件的等可能性。
观察主体图,你得到了哪些信息?
在击鼓传花中,谁得到花的可能性大?掷硬币呢?
生:击鼓传花时花落到每个人的手里的可能性相等,抛一枚硬币时正面朝上和反面朝上的可能性也是相等的。
在生活中,你还知道哪些等可能性事件?
生举例…..
2、抛硬币试验。
(1)分组合作抛硬币试验并做好记录(每个小组抛100次)。
抛硬币总次数正面朝上次数反面朝上次数。
(2)汇报交流,将每一组的数据汇总,观察。
(3)出示数学家做的试验结果。
试验者抛硬币总次数正面朝上次数反面朝上次数。
德摩根409220482044。
蒲丰404020481992。
费勒1000049795021。
皮尔逊24000111988。
罗曼若夫斯基806403969940941。
观察发现,当实验的次数增大时,正面朝上和反面朝上的可能性都越来越逼近。
3、师生小结:
掷硬币时出现的情况有两种可能,出现正面是其中的一种情况,因此出现正面的可能性是。
三、练习。
1、p.99.做一做。
2、练习二十第1---3题。
四、课内小结。
通过今天的学习,你有什么收获?
教学内容:p.101.例2及练习二十一第1-3题。
教学目的:
1、会用数学的语言描述获胜的可能性。
2、通过游戏活动,让学生亲身感受到游戏规则的公平性,学会用概率的思维去观察和分析社会中的事物。
3、通过游戏的公平性,培养学生的公平、公正意识,促进学生正直人格的形成。
教学重、难点:让学生认识到基本事件与事件的关系。
教学准备:投影仪、扑克牌。
教学过程:
一、复习。
3、盒子中有红色球5个,蓝色球12个,取一次,取出红色球的可能性大还是蓝色球?
二、新授。
1、在上题中,我们知道取出蓝色球的可能性大,到底取出蓝色球的可能性是多大呢?这就是我们今天要研究的问题。
出示击鼓传花的图画。
请学生说一说,击鼓传花的游戏规则。
小结:每一个人得到花的可能性相等,每个人得到花的可能性都是。
2、画图转化,直观感受。
(1)每一个人得花的可能性是,男生得花的可能性是多少呢?
生发表意见,全班交流。……..
我们可以画图来看看同学们的想法是否正确。画图……..
生:从图中可以发现,每一个人得花的可能性是,两个人就是,……9个人就是,女生的可能性也是。
(2)练习本班实际,同桌同学相互说一说,男生女生得到花的可能性分别是多少?
(3)解决复习中的问题。
拿到蓝色球的可能性是……。
3、小结。
4、巩固练习。
完成p.101.做一做。
(2)题讲评中须注意,指针停在每个小区域的可能性相等,因此次数也大体上相等,红色区域占了这样的3个,因此停在红色区域的次数就是一个区域的3倍。要让学生感受到这只是一可能性,出现的次数不是绝对的。
三、练习。
完成练习二十一。
1、第一题,准备9张1到9的扑克牌,通过游戏来完成。
2、第二题,学生在独立设计,全班交流。
3、第三题,独立思考,小组合作,全班交流。
四、课内小结。
通过今天的学习,你有什么收获?
最新人教版可能性教学设计(热门17篇)篇九
创设活动情境,促进新知建构。“用分数表示可能性的大小”是在学生(第一学段)学了“可能”与“一定”,初步体验了事件发生的可能性有大有小(四年级)和初步体验事件发生的等可能性的基础上进行教学的,是实现可能性从定性到定量描述的重要内容。“概率”因其有别于讲究因果关系的逻辑思维和确定性思维,具有独特的思想方法。因此,本课知识的建构和能力的形成不能只凭教师口述,而要通过创设数学活动情境,为学生提供观察、猜测、合作交流的机会,让学生在亲历活动过程中体会如何用数来表示可能性的大小。如课始摸球比赛后提出“如何表示从三个箱子中摸球的结果”,沟通了学生已有知识经验;“还有别的表示可能性大小的方法吗”则引导学生从活动中抽象出“数”,进而用“数”表示可能性大小,促进了知识的迁移;课末“归纳总结用数表示可能性大小的方法”,提升了学生对知识的系统认识,帮助学生建构新知。
加强合作交流,引导自主探索。《数学课程标准(实验稿)》指出:“动手实践、自主探索与合作交流是学生学习数学的重要方式。”教师以“分别用什么数来表示从这三个箱子中摸到白球的可能性大小”和“为什么用1/5来表示从2号箱中摸到白球的可能性”,引导学生自主探究、合作交流,教师适时引导,较好地体现了课程改革理念。
渗透数学思想,发展数学思维。在学生知道用数表示可能性大小的基础上,适时引入用线段上的点表示可能性大小,让学生感悟数形结合的数学思想;在引导的同时,抓住有利时机向学生渗透极限思想,不仅发展了学生的数学思维,还凸现了数学教学的基础性、发展性理念。
1.通过试验操作活动,进一步认识客观事件发生的可能性大小。
2.能用适当的数表示事件发生的可能性大小。
3.在具体情境中体验可能性的大小,加强对数学实践性的理解。
一、导出课题
1.激趣。老师提供三个箱子:1号箱里面放有5个黄球;2号箱里面放有1个白球和4个黄球;3号箱里面放有5个白球。请3个学生进行摸球比赛,摸到白球最多的获胜。摸球前,各自选一个球箱,并且只能在选定的箱中摸球。每次摸出1个球,记录后放回去再摸,每人摸6次。
2.揭题。教师从摸球的结果导出“不可能”、“可能”、“一定能”,进而从“可能”中引出可能性有大有小,同时引导学生质疑:还有别的表示可能性大小的方法吗?(教师板书课题)
[课始从学生熟悉的游戏引入,能激起学生的学习欲望。]
二、自主探究
1.引导学生独立思考,自主探究:可以用些什么数分别表示从这三个箱子中摸到白球的可能性大小。(师生共同完成表格)
2.学生汇报,老师板书学生的表示方法。
三、强化新知
1.讨论:
(1)从2号箱中摸到白球的可能性大小可用哪个数表示?(学生可能会用20%、0.2、1/5表示。)
(2)为什么可能性用1/5表示呢?(引导学生分析分子、分母分别与试验中的什么有关。)
(3)师(拿出2号箱中的1个黄球):摸到黄球的可能性怎样表示?为什么这样表示?
引导小结:从2号箱中摸球,可能摸到黄球,也可能摸到白球。但由于箱中黄球、白球的数量不同,所以摸到黄球和白球的可能性也不同。
2.探究:怎样表示“不可能”和“一定”。
(类似地让学生自行设计从“3号箱”中摸球的方案并解答。)
3.练习:教师往2号箱中依次加入1个黄球、1个白球、又1个白球,让学生分别说出能摸到白球、黄球的可能性大小。
四、总结提升
1.归纳总结用数表示可能性大小的方法。
2.提升认识,发展思维。借助线段图,让学生知道可能性的大小还可以用线段上的点表示。引导学生观察某点从线段的左端移到右端引起可能性大小的变化情况,直观地描述可能性的变化趋势。
最新人教版可能性教学设计(热门17篇)篇十
教学目标:
知识与技能:
1、会运用有序搭配列举出事件发生的所有可能的结果。
2、会判断事件的可能性的大小,体验游戏规则的公平性。
过程与方法:经历事件可能性结果的探究分析过程,体验列举分析问题的学习方法。
情感态度与价值观:通过游戏的公平性,培养学生的公平、公正意识,促进学生正直人格的形成。
教学重难点:会判断事件发生的可能性的大小。
教学过程:
1、出示单元主题图:回顾击鼓传花游戏中的公平性。
说明:要判断游戏是否公平,关键是看男女生获得表演节目的可能性是否相等。
2、导入新课,揭示课题。(板书课题)。
1、出示图,提出问题:
(1)图中的小朋友在玩什么游戏呢?(跳房子)。
(2)他们用什么游戏来决定谁先跳?(玩石头、剪子、布)。
2、通过游戏方式理解游戏规则。
两名学生玩“剪子、石头、布”的游戏感受这种游戏的多种情形。
3、判断游戏是否公平:
(1)你认为用“石头、剪子、布”决定谁先跳公平吗?
(2)怎样判断这个游戏是否公平呢?
4、自主探究,验证规则公平性。
(1)小组讨论:一共有多少种可能的结果?
讨论之后,完成表格。
(2)汇报交流。
你罗列出了几种可能的结果?(多生汇报)。
哪9种?
指名汇报。(根据学生填表情况汇报交流)。
预设:
a无序排列的所有可能的结果。
b有序排列出所有可能的结果。
结合课堂生成,灵活处理。
(3)说明:像这样有序思考,能很快列举出所有可能的结果,并能做到既不重复、不遗漏。
5、对比例2与例3,今天学习的可能性与例2有什么不同?
小结判断游戏公平性的方法和步骤。
1、教材第103页“做一做”
(1)引导学生读题,理解题意。
(2)学生独立解答,交流、订正。
预设:
1、列举法。
2、直觉判断。
2、拓展:练习二十二第1题。
通过今天的学习,你们有什么收获?
最新人教版可能性教学设计(热门17篇)篇十一
1、通过学习,让学生进一步感受事件发生的不确定性,增强学生量化的数学意识。
2、学会初步预测不确定事件发生的可能性的大小,理解并掌握用分数表示可能性大小的基本思考方法。
3、认识数学与生活的联系,使学生明确生活中任何幸运和偶然的背后都是有科学规律支配的。
4、进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。
理解并掌握用分数表示可能性的大小。
在认识事件发生的不确定现象中感受统计概率的数学思想。
演示课件、乒乓球、布袋、棋子、纸盒等。
一、情境与问题
1、课前谈话,狄青百钱定军心
2、问题引入
师:让我们用数学的眼光来审视这个故事,抛100钱币,有没有可能全部正面朝上?(生:有可能)
师:100枚全部正面朝上的可能性你认为有多大呢?(生:很小)
师:可能性有大有小。(板书:可能性的大小)
二、探究与交流
1、教学例1
出示例1场景图
问:裁判在做什么?(猜球。场景再现)
问:用猜左右的方法决定由谁先发球公平吗?为什么?
学生讨论后小结:乒乓球可能在左手,也可能在右手,猜对或猜错的可能性是相等的。
指出:用猜左右的方法决定由谁先发球时,每个运动员猜对的可能性都可以用1/2来表示。
师:你是怎样理解这里的1/2?
2、同步体验
学生提问:其中有几个球?其中几个黄球?
动手摸一摸,边摸边问:这时可以得出结论了吗?
(袋中放着一个黄球一个白球,从中任意摸一个球,摸到黄球的可能性是1/2。)
试一试:从口袋里任意摸一个球,摸到黄球的可能性是几分之几?
学生完成后,追问:如果口袋里再放入一个白球,任意摸一个,
摸到黄球的可能性又是几分之几?
问:摸到黄球的可能性怎么会不同呢?(任意摸一个球,摸到球的情况分别是两种三种四种,而摸到黄球只是其中的一种情况,所以摸到黄球的可能性分别是1/2、1/3、1/4。
问:如果要使摸到黄球的可能性是1/5,口袋里该怎样放球?
小结:放5个球,其中黄球1个。
三、迁移与提升
1、教学例2
出示例2中的实物图(逐一出示,学生说出各是什么牌)
问:把这些牌洗一下反扣在桌上,从中任意摸一张,摸到红桃a的可能性是几分之几?
讨论后明确:一共有6张牌,红桃a有1张,摸到红桃a的可能性是1/6。
一共有6张牌,摸到每张牌的可能性都是1/6。
问:你还想到什么问题?
小组讨论交流汇报。(小组选择有代表性的问题写在纸条上)
汇报一:从中任意摸一张,摸到“2”的可能性是几分之几?
(展示方法:摸到红桃2的可能性是1/6,摸到黑桃2的可能性是1/6,摸到“2”的可能性是1/3。一共有6张牌,“2”有两张,摸到“2”的可能性是2/6,也就是1/3。
汇报二:从中任意摸一张,摸到“红桃”的可能性是几分之几?
(对比练习:红桃a红桃2红桃3黑桃a黑桃2五张,从中任意摸一张,摸到“红桃”的可能性是几分之几?)
2、同步练习
看清楚每个骰子六个面上点数,落下后每个数朝上的可能性分别是多少?
(自由说一说)
3、阅读拓展
阅读教材94、95页,还有什么问题吗?
出示“你知道吗?”
四、实践和应用
1、成语里的数学(用分数表示成语里某个事件的可能性的大小)
十拿九稳百发百中智者千虑必有一失
2、操作和推测
根据多次摸的结果,猜一猜口袋里放着什么颜色的棋子?各是几个?
组织操作,搜集摸球结果,汇总发现。
指出:在大量重复试验的情况下,它的发生呈现出一定的规律性、运用数据进行推断。
可能性的大小离不开统计。
3、活动里的数学
现场设奖现场抽奖
学生拿出课前拿到的号码,打开抽奖软件,抽奖中询问:抽中一等奖的可能性是几分之几?获奖的可能性是几分之几?在抽出三等奖后再问一个类似的问题。
4、故事释疑
最新人教版可能性教学设计(热门17篇)篇十二
1、猜人名:咱们班有一位同学在这学期有很大的进步,你们猜猜是谁?(引出可能是....)。
2、老师温馨提示:他是一名男生,他的姓是一种动物。一定是某某某,不可能是某某。
(设计意图:激发兴趣,引出“可能”、“一定”、“不可能”,板书课题:可能性)。
1、初步感知事件发生的不确定性。
(1)组织交流,得到可能是....
(2)可能是黑桃k么?不可能。
(3)换成4张一样的牌,一定能抽到?
(1)哪个盒子一定能取出黄色乒乓球?
(2)哪个盒子不可能取出黄色乒乓球?
(3)哪个盒子里可能取出黄色乒乓球?
【设计意图:巩固“可能”,“一定”,“不可能”,并引出可能性是有大小的】。
(4)第二个盒子和第三个盒子都可能摸出黄色乒乓球,哪个盒子摸出黄球的可能性大呢?为什么?可能性真的有大有小么?下面我们来研究一下。
(5)摸棋子游戏:
将18个黄球,2个白球放入不透明的盒子里,组织学生依次从盒子中摸出一颗棋子,记录它的颜色,再放回去摇匀,重复20次。用统计表记录结果。
记录(画正字)。
次数。
黄球。
白球。
根据表格总结:取出黄球的次数要多些,也就是取出红棋子的`可能性要大些。
(6)再取一次取出哪种颜色的可能性最大?
3、验证结论。
实验:小组分工,一个人负责洗牌,组员轮流抽牌,另一个同学负责记录。汇报实验结果。
小结:以摸球为例,可能性的大小与在总数中所占数量的多少有关,在总数中占的数量越多摸到的可能性也就越大;占的数量越少,摸到的可能性也就越小。
(2)选一选。
(3)想一想。
六、课外延伸:中国的彩票中奖概率只1752万分之一,也就是说,每注2元的彩票,你要购买11万年之久才有机会中奖,所以我们要靠自己的勤劳与智慧创造财富。
最新人教版可能性教学设计(热门17篇)篇十三
教学目标。
1、经历与体验收集、整理、分析数据的过程,学会用画正字的方法收集整理数据,体会统计是研究解决问题的方法之一。
2、经历试验的具体过程,能对试验可能发生的结果做出简单判断,并做出适当解释,从中体验某些事件发生的可能性是相等的。
3、培养积极参与数学活动的意识,初步感受动手试验是获得科学结论一种有效方法,激发主动学习的积极性,进一步发展与他人合作交流的意识和能力。
教学。
重难点重点是通过活动认识一些事件发生的等可能性,难点是理解任意摸一次球,红球和黄球的机会是相等的。
教学准备教学课件,红球、黄球、布袋若干,正方体。
教学内容师生活动。
3—5分钟。
20—25分钟。
5—10分钟。
3—5分钟。
1、阿凡提的故事:阿凡提在地主巴依老爷家辛辛苦苦干了一年活,小气的巴依不想付工资给阿凡提,于是想了个歪主意.对阿凡提说:“阿凡提,我这儿这两张纸条让你抽,上面分别写着“付工资”“”和“不付工资”,如果你抽到哪一张,我们就按哪一张上写的办,你还是有一半机会的哦”。如果你是阿凡提,你会怎样想?(引出“可能”)。
2、复习“一定”“可能。”
(1)出示装有3个红球的口袋,提问:如果从中任意摸出一个球,该用哪种词语来描述摸球结果?(一定摸出是红球)。
(2)往口袋加入3个黄球,提问:如果从这样的口袋中任意摸出一个球,该用哪种词语来描述摸球结果?(可能摸出是红球,可能摸出是黄球)。
3、揭题:在我们生活中,有些事情一定会发生,有些事情不一定会发生,只能说具有可能性,今天,我们继续研究可能性问题。(板书:可能性)。
1、掷硬币游戏,初步感受可能性。游戏规则。
(1)竖着把硬币放在10厘米左右的高处让硬币自由落在杯中每人抛10次。
(2)用自己喜欢的方法在草稿纸上做好记录。
(3)抛完后,小组长统计本小组的情况并汇总,填好记录表,组内同学共同校对。
(4)活动时我们要互相合作,有秩序,保持安静。
教师统计:思考:出现正面和反面的.可能性是怎样的?先在小组里讨论.。
(结论:有正有反,次数差不多)。
2、摸球游戏。
(1)猜测。
学生自由猜测。(许多伟大的发明和发现都是从猜测开始的,如歌德巴赫猜想,但有了猜想还要继续验证。数学家陈景润经过验证,证明了歌德巴赫猜想因为实践是检验真理的唯一标准)。
(2)验证。
这仅仅是我们的猜测,向知道自己猜测的对不对,我们可以怎么做?(摸一摸)。
游戏规则:1、摸前先把袋中球搅一搅,然后转过脸去从中任意摸一个,摸出后回头看一看,给大家看自己摸到的是什么颜色的球,把球再放入口袋中,按这样,大家轮流摸,一共40次。2、组长用画“正”字的方法来记录。
3、摸完后,组长填写统计表,其他同学负责校对。
4、活动时我们要互相合作,互相谦让,控制好音量,请各小组在小组长的带领下分工。
怎样用画“正”的方法来记录,谁来给我们介绍一下?教师在黑板演示一下。
a、明确分工:活动时我们要互相合作,互相帮助,这样才能顺利完成任务,请各小组在小组长的带领下分工,组长记录,副组长数次数,其余监督。
b、活动体验:学生分组试验,填写统计表,教师巡回指导。
(3)归纳。
小组汇报统计结果,教师实物展示。
红球。
黄球。
合计红球黄球。
次数。
学生:摸到可能是红,也可能是黄,次数差不多。
可能红的多一些,也可能黄的多一些。
3、老师对学生的回答进行小结:在篓子里红黄球个数相同的情况下,从篓子里每摸一个球,摸得次数又比较多,那么摸到红黄球的次数是差不多的。这就说明在这种情况下,任意摸一个球,摸到红黄球的机会是相等的,也就是说摸到红黄球的可能性是相等的。
小结并揭示学法:说明从装有3个红球和3个黄球的袋子任意摸出一个球,摸到红球和黄球的机会是相等的,也就是说可能性是相等的。
提问:
(2)记录之后我们又对数据作了怎样的处理?(填入统计表板书:统计可)见我们用统计的方法来研究事情发生的可能性是一个很好的方法。
(3)通过试验和统计得到什么结论?(摸到红球和黄球的可能性是相等的)。
用的是什么方法?
小结:猜测----验证----结论。
过渡:想不想用我们刚才的方法做第三个游戏?
教师出示两个面上都有1、2、3的小正方体。
游戏规则:
1、按顺序上抛小正方形,不宜太高,看落下时“1”“2”“3”朝上的次数,按这样,大家轮流抛,一共30次。
2、组长指派一人用画“正”字的方法来记录。
3、抛完后,组长指派一人填写记录表和统计表,其他同学负责校对。
学生体验。填写表格。
朝上的数字123。
次数。
最新人教版可能性教学设计(热门17篇)篇十四
摘要:一直以来课堂都是学校教学的主阵地,是数学教学任务和目标高效完成的主要场所。如何充分利用课上45分钟,提高小学数学的课堂教学质量,是大家一直关心的问题。近几年,素质教育在小学教育中深入开展,新课程标准对小学数学课程教学做了重点指导,提高学生的综合素质、培养学生自主探究数学的能力成为其核心要求。众多一线数学教师深刻反思现代教学思想,钻研各种教学方法,进行了一系列教学改革与试验。在此过程中,我们力求博采众长,在教学交流中取其精华、去其糟粕,广泛汲取营养,将理论与实际相结合,边试验,边改进,边筛选。俗话说:“教无定法,贵在得法。”虽然在小学数学教学中还没有找到固定的模式,但是本人根据多年的教学经验,提出了一些设想,以期引起大家的重视。
关键词:小学数学;教学;提高;效率
由于长期应试教育的影响,传统的小学数学观念认为,要想提高教学效率,课堂秩序是首要的保证,这使得数学教育与整个普通教育一样偏离了素质教育的轨道。教师在台上教,学生在下面听,要求学生正襟危坐,“竖起耳朵”认真听,不许交头接耳,不许随意讨论,否则将会受到老师的批评甚至惩罚。教学把学生当作消极、被动地接受知识的容器。如此学生的数学素质得不到实质性的提高,削弱了数学素质在人的综合素质中所占的成分。现代的教学观相比较传统的教学观,发生了翻天覆地的变化,教师从教学的主体转变成为课堂的引导者和组织者,有效、合理地组织学生的学习活动;单一的“满堂灌”“填鸭式”的教学模式转化为自主合作探究式教学,授课形式生动活泼,使所有的学生都能学得主动,学得心甘情愿。数学教学大纲规定的数学教学目的是使学生掌握数学基础知识与基本技能,形成数学能力。要提高数学课堂教学效率,教师在数学教学中,要从整体教育观上,挖掘专业素质教育的内涵与外延,运用现代教学模式进行教学。
教法制约学法,是影响教学效率的最重要的因素。因此,选择一种科学、合理的教学模式,能够有效地启发学生积极思维,使教师的教法富有艺术性,具有强烈的吸引力和感染力,使数学课堂氛围变得轻松和谐,有助于激发学生的学习兴趣,促使他们主动地参与到教学中,充分体现学生的主体地位。传统落后的教学模式已经不能满足当代小学教育的需要,教师应转变教学理念,变“教”的课堂为“学”的课堂,把以教师为主体的课堂变为以学生为主体的课堂。据报道,美国中小学学校的许多教师每节课只利用10分钟讲解基础知识,剩下的时间教师将主动权交给学生,组织他们相互交流、探讨、消化,教师在一旁作为引导者进行引导,必要的时候予以提醒和纠正,结果教学效果事半功倍。无独有偶,国内很多地区,尤其是发达地区的小学,已有很多教师采取这种合作探究式教学模式,一节课最多只讲15分钟,其余的时间组织学生发挥主观能动性,针对自己在学习中发现的问题进行探究,教师引导学生独立思考,独立分析,培养他们的创新意识和发现问题、解决问题的能力。
教学手段是师生为达到教学目的、实现教学目标而相互结合的手段方式,其中包括教师的教法和学生的学法,而学生的学法的形成关键在于教师采取何种教学手段进行引导培育。课堂教学手段多种多样,教师单靠粉笔和黑板讲解,势必影响小学数学教学质量和学生的素质提高。在现实教学实践中,一节课中只采用一种教学手段的极少,通常都是教师根据不同的教学内容、不同的授课类型,结合学生的个性心理,采取不同的教学手段。单一地运用某一教学方式,久而久之,学生会产生乏味感,容易产生厌学心理,影响学生大脑智力的发展。因此,在数学教学中要灵活运用各种教学手段,做到综合交叉,做到丰富多彩、趣味十足,这样既能吸引学生的听课兴趣,调动他们学习的积极性,又能体现时代的特点和教者的风格,提高教学实效。多媒体作为一种现代较为普及的教学手段,其本身所具有的灵活多样性能够充分满足当代小学教育需求。在教学中恰当地运用多媒体既能准确直观地传递信息,使学生视、听触角同时并用,将学到的知识深刻地印在大脑中,又能节省不必要的讲解时间,大大提高课堂教学效率。
最新人教版可能性教学设计(热门17篇)篇十五
人教版义务教育教科书小学数学五年级上册第四单元《可能性》。
1.使学生初步体验有些事情的发生是确定的,有些事情的发生是不确定的,并能用“一定”“可能”“不可能”等词语来描述随机事件发生的可能性。
2.在活动过程中,使学生能够列出简单试验中所有可能发生的结果。
3.让学生经历“猜想—实践—验证”的过程,培养学生的猜想意识、表达能力以及初步的判断和推理能力,让学生在同伴的合作和交流中获得良好的情感体验。
4.使学生感受到生活与数学的联系,培养学生学习数学的兴趣。
通过活动让学生充分体验随机事件发生的确定性和不确定性。
课件、盒子、节目签、乒乓球等。
一、激趣导入,探究新知。
学生:想!
教师:先来认识我们的节目签吧!(课件出示节目签)。
学生:有唱歌、跳舞、朗诵。
教师(课件显示节目签翻转至背面,并打乱位置):请一位同学来抽签。
教师:请第一位同学来抽签,他会抽到什么节目呢?请大家先猜一猜。学生会对抽签结果进行猜测:可能是唱歌,可能是跳舞,也可能是朗诵,3种情况都有可能。教师在黑板上板书:可能。
教师(课件翻出中间一张:跳舞或其他签):第一位同学抽到的是什么节目?
学生:跳舞。
学生:唱歌和朗诵都有可能。
教师:确定吗?
学生:不确定。
教师:还可能抽到“跳舞”吗?
学生:不可能(板书:不可能)。
教师:理由是?
学生:因为两张签里没有跳舞。
教师:我请第二位同学抽取一张。(抽后汇报结果)(课件翻开第一张:朗诵)。
教师:请第三位同学抽签。现在只剩最后一张了,第三位同学会抽到什么呢?
学生:唱歌(一定是唱歌)。
教师:能确定吗?为什么?(教师板书:一定)。
学生:确定,因为只有一张签,一定是唱歌。
教师(小结):同学们,我们用“可能”“不可能”“一定”来描述抽签的情况。生活中还有很多这样的现象,这也是我们这节课要研究的数学问题——可能性。(板书:可能性)(设计意图:“可能性”对于五年级的学生来说并不是完全空白的,学生在生活和学习中已经具有一些简单随机现象的知识基础和生活经验。这里用学生熟悉的“联欢会上抽签表演节目”的生活实例导入新课教学,让学生在猜测中感受,在活动中明晰,以形成对“可能性”的初步认识,同时也有效地激发了学生的学习欲望,吸引学生参与到数学学习中来。)。
二、实践验证,领悟新知。
1.摸球实验。
教师:老师还为同学们带来了一个神奇的游戏盒子(出示盒子),从盒子里我们也能找到可能性的知识。
学生:想!
学生:一定会摸到红色乒乓球。
教师:理由呢?
学生:因为盒子里全是红色乒乓球,只能摸出红色乒乓球。
学生:可能摸到,也可能摸不到。
教师:想试试吗?为什么?
学生:想,因为结果不确定。组织学生体验摸球过程,每摸出一个记录一个,并将球放回去,摇匀后再进行下一次摸球试验。(引导学生摸球时不偷看,说明将球放回去是为了确保条件不变,摇匀是为了公平)。
学生:可能摸到,但不一定。组织学生再次体验摸球过程,并记录,如果连续出现几次红色球或者黄色球,提问:下一个一定是红色球或黄色球吗?让学生感受随机事件的不确定性,每次发生的结果与上一次结果没有直接关系。
学生:可能摸到!因为盒子里有红色乒乓球。组织学生再次体验摸球过程,并记录,让学生再次感受随机事件的不确定性,体会每次发生的结果与上一次结果没有直接关系。
教师:如果盒子里有10个黄球1个红球呢?还有可能摸到红球吗?学生:有可能。
学生:有可能。
教师:如果去掉这个红球呢?还能摸到红球吗?
学生:不可能。(教师要充分给予学生猜测、试验、交流的机会。在交流时,教师还要引导学生在感受的基础上用可能、不可能、一定等词语描述摸球的各种情况。)(设计意图:本环节旨在通过简单实验的对比,让学生亲历猜想、实践、验证、交流,丰富学生对确定事件和不确定事件的体验,初步感受随机事件发生的统计规律性和可能性的大小。)。
2.猜球实验。
学生:提供线索,自己猜。
学生:从盒子中摸出一个球。
教师:试试看。(学生从盒子里摸出一个球,并出示所摸出的球)。知道是哪个盒子吗?学生:不能确定,可能是a盒子、或者c(b)盒子,但可以排除b(c)。
教师:不确定,怎么办?
学生:再摸一次。学生再次从盒子里摸球,并出示结果,判断盒子,如果还无法判断,就继续摸球,直到能够判断是a盒子为止。
3.放球实验。
教师:同学们还想继续玩吗?
学生:想。
教师:可是老师的游戏盒子变不了了,想请同学们帮忙制作游戏盒子,愿意吗?
学生:愿意!
教师:但制作游戏盒子需要遵守规则,请看!(出示课件)按规则作出第一个游戏盒子。(为了方便用此图代替盒子,用磁扣代替乒乓球)怎么放?请同学汇报放球方法。
学生:放4个红球。
教师:那第二个盒子该怎样完成呢?(出示课件)请同学们三人一个小组,用圆形纸片代替乒乓球,在桌子上摆一摆,小组内交流自己的想法,做好小组汇报的准备。请学生汇报。因为结果多样,老师在黑板上操作呈现,并订正。
教师:用一句话概括所有的做法,可以怎样说?
学生:只要盒子里不装黄色球就可以了。
教师:第三个盒子又来啦!又怎样做呢?小组先摆一摆,先在组内交流讨论,再小组汇报。学生汇报,并评价。
教师:用一句话概括可以怎样说?
学生:至少要放一个蓝色球但不能全是蓝色球。(放1-3个蓝色球,再放其它颜色的球,直到放够四个球。)(设计意图:本环节旨在通过动手操作,让学生通过学习的可能性知识去判断如何放球,感知结果与条件的关系。)。
三、灵活运用,巩固新知。
教师:我们学会了游戏盒子的制作,自己设计一个更加有趣的游戏盒子,课余时间和同学尽情的去研究吧!现在我们运用这节课学到的知识去解决问题吧!
1.练习十一第2。
教师:认真读题,独立思考,并分享你的结论。
学生:不可能,因为没有7,0这两个数。
教师:如果老师想让掷出的结果一定是6朝上,可以怎样设计呢?
学生:只要正方体的六个面都写数字6就可以了。
2.出示第二题,判断对错。
判断事件发生的可能性描述的是否准确,学生用手势汇报判断结果,集体订正。教师根据问题适当拓展。第四小题,引导学生明确硬币有正、反两面,抛出后可能是正面朝上,也可能是反面朝上,是不确定的。(设计意图:通过学生们相互交流、评析,感受数学就在自己身边,体会数学学习与现实的联系。让同学们判断,是让学生认识到客观事件发生的确定性和不确定性与个人愿望无关。)。
四、交流归纳,全课小结。
教师:有一位聪明的将军通过抛硬币让一场战争取得了不可思议的胜利,想听这个故事吗?
学生:想。出示故事,听故事。
教师:我们抛出的硬币结果是怎样的?
学生:可能正面、也可能反面朝上。
教师:而将军抛出的硬币结果是?
学生:一定是正面朝上。
教师:聪明的将军巧妙将可能变成了(一定),从而激发了士兵的信心,战胜了强大的敌人。所以信心对我们每个人都非常重要,在面对困难和挫折时,我们要充满信心,通过努力去克服困难、解决问题,就能成功!
教师:这节课同学们表现的都非常棒!请同学们对自己优秀的表现做做简单的评价吧!学生自我评价,教师给予肯定和鼓励。教师:在课堂活动中,我看到同学们个个信心满满,能积极的思考问题,大胆的汇报交流,让我们愉快的度过一节有趣的数学课,老师为优秀的你们点赞!也有一句话与你们分享(课件出示),请齐读(人人都有可能成功!)。
最新人教版可能性教学设计(热门17篇)篇十六
2、小结:生活里可能性的事情还有很多很多,有些事情一定会发生,有些事情可能会发生,有些事情不可能会发生。希望同学们做生活中的有心人,找一找生活中的可能性。
共5课时总第55课时。
教学目标:
1、能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
2、通过实际操作活动,培养学生的动手实践能力。
3、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。
教学过程:
一、复习引入。
1、用自己的话说一说什么是“可能性”举例子说明。
2。、谈话导入:今天我们继续学习关于“可能性”的知识,板书课题。
二、探究体验。
1、出示例3,观察、猜测。
(1)出示小盒子,展出其中的小球色彩、数量(四红一蓝)。
(2)如果请一位同学来摸一个球,你们猜猜他会摸到什么颜色的球?
(3)和同桌说一说,你为什么这样猜?
2、实践验证。
(1)学生小组操作、汇报实践结果。
(2)汇总各小组的实验结果:几组摸到红,几组摸到了蓝色。
(3)从小组汇报中你发现了什么?为什么会有这样的情况?
(4)小结:摸到红色多,摸到蓝色的少,因为盒中球红多蓝少。
(1)小组成员轮流摸一个球,记录它的颜色,再放回去,重复20次。
(2)活动汇报、小结。
(3)实验过程中,要让学生体会到两点:一、每次摸出的结果是红色还是蓝色,这是随机的,不以人的主观意愿而变化。二、但摸的次数多了以后,在统计上就呈现某种共同的规律性,就是摸出蓝的次数比红多。
4、小组实验结果比较。
(1)比较后,你发现了什么规律?
(2)展示多组实验结果,虽然数据不一致,但呈现的规律是相同的。
三、实践应用。
1、完成p106“做一做”
(1)学生可以用数份数的方法来看三种颜色所占的区域大小。
(2)利用分数的知识让学生说一说每种颜色占整个圆面的几分之几,为以后学习可能性的精确值做铺垫(因为概率与这些分数相等)。
2、生独立完成p109第4、5题,然后集体讲解交流。
四、全课总结。
1、通过今天的学习,你学到了什么新的知识?
2、师总结。
共5课时总第56课时。
教学目标:
1、能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
2、通过实际操作活动,培养学生的动手实践能力。
3、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。
教学过程:
一、引入。
2、谈话导入,揭示板书课题。
二、探究体验。
(1)出示盒内球(一绿四蓝七红)。
(3)学生小组操作、汇报实践结果。
(4)汇总各小组的实验结果:几组摸到红色,几组摸到了蓝色,几组摸到了绿色?
(5)从小组汇报中你发现了什么?为什么会有这样的情况?
(6)师生齐小结。
(1)每小组一个封口不透明袋子,内装红、黄小球几个。(学生不知数量、颜色)小组成员轮流摸出一个球,记录它的颜色,再放回去,重复20次。
(2)活动汇报、小结。
(3)袋子里的红球多还是黄球多?为什么这样猜?小组内说一说。
(4)总数量有10个球,你估计有几个红,几个黄?
(5)开袋子验证。
三、实践应用。
1、生独立完成p107“做一做”,集体汇报交流。
2、生分小组完成p109第6题。
(1)学生说说掷出后可能出现的结果有哪些?猜测实验后结果?
(2)实践、记录、统计。
(3)小组讨论:从统计数据中发现什么?
(4)小结:两种结果出现的可能性是相等的。
3、生独立完成p109第7题。
四、全课总结。
1、通过今天的学习,你学到了什么新的知识?
2、师总结。
共5课时总第57课时。
教学目的:
1、通过练习让学生进一步感受可能性,知道事件发生的可能性是有大小的。
2、通过实际操作活动,培养学生的动手实践能力,合作交流能力。
3、巩固本单元知识。
教学过程:
一、复习导入。
1、按要求说一说盒子里是什么颜色的球?
(1)摸出的一定是红色。
(2)摸出的不可能是绿色。
2、谈话导入,板书课题。
二、探究体验。
1、完成练习二十四第8题。
(1)生分组进行掷骰子游戏。
(2)全班汇报交流,使学生进一步感受事件发生的等可能性。
2、完成练习二十四第9题。
(1)通过有趣的抽签游戏,让学生体会不确定事件发生的可能性的大小。
(2)让学生用“最不可能”和“最有可能”说一说其他两个事件发生的可能性。
3、完成练习二十四第10题。
(1)出示四个盒子,生猜硬币在哪个盒子里。
(2)简单统计猜测情况。
(3)揭示结果。
(4)说说为什么猜错的比猜对的多。
三、实践应用。
1、完成练习二十四第11题。
(1)开放题,学生会有多种涂法,只要涂色后正方体的红面比蓝面多就可。
(2)小组合作,说一说自己的想法和实验情况,在全班交流。
2、独立完成练习二十四第12题。
四、全课总结。
1、通过今天的练习,你有什么新的收获?
2、师总结。
教学反思:
最新人教版可能性教学设计(热门17篇)篇十七
学校是公平教育的主阵地,教育公平主要体现在每节课的课堂教学当中,这是一节以公平为素材的课,主要有以下几处特色与亮点:
1本活动是以学生为中心的参与式教学活动,通过学生亲身体验,合作探究获得知识。
2在设计活动时,给学生给出活动目标,即让学生明确通过活动,学到那些知识和技能,获得那些体验,得到那些发展;其次选择的材料是学生容易获得的,符合学生心理特证和年龄特征的,整节课以活动为中心,通过活动学生掌握了知识和技能,个性发展等方面达到了预期目标。
3为学生创设了问题情景,让学生自己提出假设,通过亲身活动,感受知识,从而获得知识和技能。
4突出了课堂的公平性,达到公平教育教学的目的。
本节课是以公平为素材的课,因此在本节课上教师要着重注意以下几个问题;1要为学生营造公平和谐的课堂氛围;2提高课堂参与均等机会;3还要为学生提供课堂提问均等性;4提高课堂公平进程。
1.学生初步体验有些事件发生是确定的,有些则是不确定的,会结合已有的经验对一些事情发生的可能性进行判断并能简单地说出原因。
2.学会列举记录简单事件有可能发生的结果。
3.学生知道事件发生的可能性的大小是不同的,能对一些简单事件发生的可能性大小进行比较。
4.能由一些简单事件发生的可能性大小逆推比较事件多少。
5.培养学生简单的逻辑推理、逆向思考和与人交流思考过程的能力。
摸球
转盘游戏
1能由一些简单事件发生的可能性大小逆推比较事件多少。
2培养学生简单的逻辑推理、逆向思考和与人交流思考过程的能
3感受公平的重要性。
40分钟
1两种颜色的玻璃球各10个。(黄色10个,红色10个)小布袋一条。
2游戏转盘一个。
3活动记录表各两份
第---------组
第一轮第一轮
第二轮第二轮
第三轮第三轮
可能性总结
第---------组
第一轮第一轮
第二轮第二轮
第三轮第三轮
可能性可能性
1分组活动。
按学生实际情况进行均衡分组,力求公平。
2第一组;做摸球活动。先猜测把猜测结果填入下表,然后摸球各成员每人摸出一球后观察颜色后放回小球并搅匀布袋中的小球,下一位摸球。将小组各成员摸到红球的次数和黄球的次数纪录在下表。
第---------组
第一轮第一轮
第二轮第二轮
第三轮第三轮
可能性可能性
第二组:转盘游戏活动。先猜测结果填入下表。然后各组成员每人转动一次转盘,当转盘停止转动后,观察指针停在那个区域,并把结果纪录下表。
第一轮第一轮
第二轮第二轮
第三轮第三轮
可能性可能性
3交换活动场地。第一组做转盘游戏活动,并根据猜测实际操作填表。第二组做摸球活动,并按照猜测,实际操作填表。
5各组展示两次活动的结果并回答下列问题:
7分组讨论下列问题:
在三轮摸球过程中,摸出红球和黄球的可能性与球的总数有什么关系?
指针停在阴影部分和空白部分的可能性与什么有关系?
在现实生活中怎样才能够做到公平公正?
8各组展示讨论结果。
9评介与总结。
1本活动旨在是参与者通过亲手实验,从随机事件中发现规律,从而建立真确的可能性的直觉,体验感受可能性的稳定性。
2随即现象结果的出现是偶然的,出现一个结果事先无法预料,但在大量的实验中它明显出现规律性————稳定性。
3本活动中,布袋中虽然所放红球数量和黄球数量虽然相等。但三轮摸球的纪录也不尽相同,摸球的次数越多红球出现的可能性和黄球出现的可能性就越稳定,依此做出的推断就越准确。
4本活动中,虽然在转盘上,黄色区域的面积占转盘总面积的八分之六(即四分之三),但指针并不一定都停在黄色区域,但随着转动转盘次数的增多,指针停在黄色区域内的可能性就越稳定。
5本活动中,让学生通过动手做实验知道只有可能性相等时,这个游戏才公平。