教学计划还需充分考虑到学校的教学进度和时间分配,以确保课程的顺利进行。以下是一些经典的教学计划范文,供大家阅读学习,希望能对大家有所帮助。
罗鸣亮小数的意义教学设计范文(18篇)篇一
进一步认识小数,会进行小数和分数的转化(不包括将循环小数化为分数)。
2.教材分析
《小数的意义》是人教版四年级下册第四单元《小数的意义和性质》第一节的教学内容,是学生系统学习小数的开始。这是在学生三年级学习“分数的初步认识”和“小数的初步认识”基础上教学的,通过这部分内容的学习,使学生进一步理解小数的意义,为今后学习小数四则运算打好基础。
3.学情分析
本节课探究的内容是日常生活中的实际问题,具有很强的探索性和现实意义,学生学习探究的兴趣会很浓。教学中应因势利导,组织学生在小组中合作探讨,体会抽象和推理的数学思想方法。四年级的学生具备一定的独立思考能力,教学中可组织学生先独立思考,再在小组中相互交流,培养学生的探究品质和能力。
2.借助熟悉的十进制关系的现实原型多角度理解小数与分数的关系,通过自学,理解计数单位0.1、0.01、0.001。通过数数的活动,知道相邻两个计数单位间的进率是10。
1、通过说一说,想一想,量一量,小组合作交流,探究出小数的意义,达成目标1。
2、经历自学,数数等活动,独立探究,全班交流汇报,说出小数的计数单位和相邻两个计数单位间的进率,达成目标2。
理解一位、两位、三位小数的意义,知道相邻的两个计数单位间的进率是10。
理解一位、两位、三位小数的意义。
米尺、课件。
罗鸣亮小数的意义教学设计范文(18篇)篇二
教学内容:本节课教学内容是新人教版本四年级下册第四单元p32页。
1、教材分析
教学主要内容:
一位、两位、三位小数的意义。小数的计数单位,每相邻两个计数单位之间的进率是10.
教材编写特点:
简化了小数意义的叙述重视了对小数意义的理解加强了小数与实际生活的联系在探究的过程中注重给学生创设自主研究的空间。
教学的重点、难点:
理解一位、两位、三位小数的意义,知道相邻的两个计数单位之间的进率是10。
教学关键:
理解一位、两位、三位小数的意义。
基本活动经验:
在老师引导下,重视学生实际动手操作的能力、合理安排引导给学生自主探索的空间、借助学生已有知识经验的迁移,促进学生自主学习。
二、学情分析
小数的意义是学生系统学习小数的开始。这是在学生三年级学习“分数的初步认识”和“小数的初步认识”基础上教学的,通过这部分内容的学习,使学生进一步理解小数的意义,为今后学习小数四则运算打好基础。
学生学习该内容可能的困难:
教学时,学生必须依托分数和整数的相关知识,借助分数理解小数的意义,借助整数掌握小数的结构特征。理解每相邻两个计数单位之间的进率是10时,必须联系生活中的货币、长度或者重量等理解小数之间的关系。
学习方式:
充分的运用演示、操作、观察等直观的手段,把基本概念的本质属性和普遍意义形象地展示出来,是学生在头脑中建立起这些内容的丰富表象,再组织学生进行分析、讨论,加深这些知识概念的感性认识;最后对表象进一步加工,形成概念,从而实现对概念的深刻理解。
3、教学目标
知识与技能
1使学生结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。借助熟悉的十进制关系的显示原型多角度的理解小数与分数之间的关系,理解计数单位0.1、0.01、0.001。
2明确一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几.....知道相邻两个计数单位间的进率是10。
过程与方法
充分的运用演示、操作、观察等直观的手段,引导学生经历从直观到抽象、概括的心理活动过程,实现“动作表征”、“直观表征”、“符号表征”的循序渐进发展,进而培养学生发现和构建知识的能力、迁移和类推能力。
情感态度与价值观
培养学生的抽象、概括、归纳的思维能力和应用数学的能力。
4、教学过程
1、已知导入、情境感知
师:(出示教室场景图)同学们看,这个地方熟悉吗?
生:熟悉
师:是哪?
生:我们的教室
师:我们的教室,这是黑板的高度,讲台的长度,课桌的长度(课件出示)。
生:我知道了,讲台的长度、课桌的长度有1米多。
生:我知道讲台的长度跟1米差不多。
生:可以用重叠法
生:可以把黑板的高度那里,对直画一根虚线下来,再看
师:课桌的长度是1米多,具体多多少呢?你有办法吗?
2、展开,认识一位小数的意义
生:先测量出1米,多余的部分截取下来,再接着去测量。
师:谁还来说说......
生:先测量出1米,多余的部分截取下来,再拿多余部分去跟1米比较(边说边用手比划)。
师:你们看看,是这样的吗?(课件演示,将多余的部分截取下来,放在1米的下面测量)
生:是的。
师:接下来,谁有办法?
生:用多余部分去比,看看1米里面有几个那么长。
生:将1米平均分成10份,再比较。
师:比不出来啊,谁有办法?
生:1个1个去比,看看几个那么长正好是1米。就用除法解决。
师:是这样的吗?(课件演示)
生:是的
师:我们一起来数数
生:1个,2个,3个......正好10个这么长是1米。
(在出现问题的时候,想解决问题的办法:我们可以把已经知道的1米的刻度标记出来,再继续测量,先用多余部分去比较,发现正好10个那么长就是1米。所以多余部分是10份中的1份,也就是说将1米平均分成10份,这样的1份,它的长度正好是多余部分,所以多余部分可以用十分之一米表示;十分之一米用小数表示是0.1米。在测量或者计算时,我们往往不能正好得到整数的结果,这时,可以用分数或者小数表示。
师:那现在知道怎么具体表示了吗?说说我们刚才的思路。
生:因为老师在操作的时候,我们可以发现10个多余部分的长度正好是1米,也就是说每个多余部分的长度是1米的1/10,也就是1/10米。写成小数的话是0.1米。还可以用1分米表示。
生:根据观察我们发现,将1米平均分成10份,多余部分正好是10份中的1份,可以用分数1/10米表示,还可以用小数0.1米表示。
生:将1米平均分成10份,多余部分是1米的1/10,也就是1/10米,用小数表示是0.1米。
师:我们一起来说说:将1米平均分成10份,多余的部分正好是这10份中的1份,也就是1/10,1米的1/10是1/10米,也可以用小数表示为0.1米。
师:这就是我们这节课要研究的“小数的意义”(板书课题)
师:那你们知道小数0.1的意义了吗?
生:0.1表示的是十分之一。
师:你还能在1米(用手比划)中找到其他的小数吗?并说说它的意义。
生:0.3米(学生说,老师点课件,并根据课件演示,学生说意义)
师:那0.3里面有几个0.1呢?表示什么
生:0.3里面有3个0.表示十分之三。
师:还找到了其他的小数吗?
生:0.7米(老师点课件,学生说意义)0.7里面有7个0.1
师:那1米里面有多少个0.1呢?
生:1米里面有10个0.1米
师:10个0.1是1
仔细观察这些小数和分数(用手比划并引导学生观察分数),你发现了什么?
生:这些小数都表示十分之几。
生:这些分数的分母都是10,小数都是一位小数
生:分母是10的分数可以写成一起小数
生:10个0.1是1
师:说得非常好。一位小数表示十分之几。分母是10的分数可以写成一位小数,10个0.1就是1。一位小数,它的计数单位是十分之一,写作0.1。
我们一起把这句话小声齐读:分母是10的分数可以写成一位小数,一位小数的计数单位是十分之一,写作0.1。
师:我们在这个1米中找到了很多的小数,是不是只能在这里找到小数呢?
(出示数轴图)你能在这里找到小数吗?
生:能(学生上台寻找并说明理由。)
师:为什么是这里呢?
生:因为0-1之间分成了10份,每一份是0.1,表示十分之一。
生:0.1还可以表示刻度。也就是说:这里的每个刻度依次是0.1、0.2、0.3......
师:我们在学习数轴的时候知道数是按照从小到大的顺序依次排列的,所以0.1在这里。
师:那你能找到0.8吗?
生:某一个点,某一个范围(指出0.8的具体位置)
师:你是怎么找到0.8的?
生:数8个0.1(10份中数出其中的8份)
生:从1开始往左边数2个0.1(10-2=8)
师:那数轴上还有其他的小数吗?
生:有,学生说小数
师:如果将数轴无限的延长,这样的小数说得完吗?
生:说不完。
师:回归到米尺中,理清我们刚刚的思路:我们知道多余的这个部分—可以用分数十分之一米表示,用小数0.1米表示。所以课桌的长度是1.1米。
3、推进,认识两位小数的意义
师:课桌的长度已经具体的表示出来了,黑板的高度呢?
生:还是拿红色部分进行重叠,多余的部分截取下来。继续用红色部分测量(课件演示)。
师:遇到了什么问题?
生:测量时,多余的部分不够1米,
生:那就用蓝色部分比较。(学生边说,课件演示)也不够1分米。
师:那怎么办?
生:用刚刚的方法去比,看多少个紫色部分有是一个蓝色部分。用分米的下一个单位厘米表示。
师:(课件演示)我们发现......
生:我们发现10个紫色部分的长度就是蓝色部分
生:把蓝色部分平均分成10份,紫色部分是其中的1份
生:是1厘米
师:把蓝色部分平均分成了10份,那1米里面会有多少个这样的紫色部分呢?
生:有100个这样的紫色部分。
生:还可以用0.01米表示。
师:对的,1/100米写成小数是0.01米。
师:那红色部分有多少个0.01米蓝色部分呢?
生:1米里面有100个0.01米。1分米里面有10个0.01米
师:那这样的4份呢?可以怎么表示?
生:4/100米,写成小数0.04米
师:请同学们拿出抽屉中的软尺。
师:这根软尺长度是多少?
生:1米、10分米、100厘米、1000毫米。
师:看来长度单位的换算学的很好哦。
操作:拿出软尺,在软尺上找到1米,1分米,1厘米,1毫米。以米为单位,找出一个可以用小数表示的地方,跟同桌说一说,并将它写在练习纸上)。
学生汇报
生1:我找到的是0-99厘米。是99厘米,用分数表示是99/100米,用小数表示是0.99米。
生2:我找到的是0-20厘米。是20厘米,用分数表示是20/100米,用小数表示是0.20米。
生:老师对于生2找的还有表示方法,我可以用分数2/10米,用小数表示是0.2米。
生:一个是表示把1米平均分成100份,取其中的20份,是20/100米=0.20米;一个是表示把1米平均分成10份,取其中的2份,是2/10米=0.2米。
生:它们表示的长度是一样的,但是它们表示的意义是不同的。
师:仔细观察这些小数,你又有什么发现呢?
生:这些分数的分母都是100,小数都是两位小数
生:分母是100的分数可以写成两位小数
生:100个0.01是1
师:说得非常好。两位小数表示百分之几,它的计数单位是百分之一,写作0.01。
(课件出示:分母是100的分数可以写成两位小数,两位小数的计数单位是百分之一,写作0.01。)
师:通过我们刚才的探究,我们知道黑板高度中1米之外多余的这个部分—1厘米,可以用分数百分之一米表示,用小数0.01米表示。所以讲台的长度是1.01米。
4、拓展,认识三位小数、四位小数的意义
师:(出示课件显示1毫米)这是多长?
生:1毫米
师:你是怎么知道的?
生:.因为把1厘米平均分成了10份,其中的1份就是1毫米.....
师:1米里面有多少个这样的1毫米呢?
生:1000个(1米里面有1000个1毫米),因为1米=1000毫米
出示课件
师:将1米平均分成1000份,这样的1份是1毫米,这样的1份还可以怎么表示?
生:1/1000米,0.001米。
师:对的,把1米平均分成1000份,其中的1份是1/1000米,用小数表示为0.001米。
师:那这里的7份可以怎么表示?米尺中的1厘米可以怎么表示呢?
生:这里的7份可以用分数7/1000米表示,用小数表示为0.007米
生:米尺中的1厘米是1000份中的10份,用分数千分之十米表示,用小数0.010米表示。
生:1厘米也可以用分数百分之一米表示,用小数0.01表示。
师:也就是说10个0.001等于1个0.01。
师:观察这些小数,你发现了什么
生:还可以知道,分母是1000的分数可以写成三位小数,三位小数的计数单位是千分分之一,写作0.001。1厘米中有10个1毫米,所以0.01里面有10个0.001;1米里面有1000个1毫米,所以1里面有1000个0.001。
五、总结及应用
(观察板书可以知道)
分母是10.100.1000......的分数可以用小数表示。
小数的计数单位是十分之一、百分之一、千分之一......写作0.1、0.01、0.001......
每相邻两个计数单位之间的进率是( 10 )
生:因为我们刚刚在黑板上标记了
生:进率是100
生:进率是10.看黑板我们知道0.1米是1分米,0.01米是1厘米,0.001米是1毫米。它们之间的关系是10毫米=1厘米,10厘米=1分米。所以相邻两个计数单位之间的进率是10.
(学生根据小数的计数单位自己理解这句话,并且填空,说明理由。)
写出合适的分数和小数
说一说你的收获
生:我知道了“小数的意义”
生:我知道了分母是10.100.1000......这样的分数可以写成小数
生:我知道了小数的计数单位
......
是的,这些都是我们这节课的收获,希望大家在以后的生活或者学习中能够好好的运用这些知识。你们将会发现,原来数学与生活是息息相关的。
板书设计
1米 1 计数单位
1/10米=0.1米 十分之一 0.1 一位小数
1/100米=0.01米 百分之一 0.01 两位小数
1/1000米=0.001米 千分之一 0.001 三位小数
1/10000米=0.0001米 万分之一 0.0001 四位小数
五、教学反思
《课标》指出:学生的数学学习应当是一个生动活泼、生动和富有个性的过程,要让学生经历数学知识的形成过程。基于这一理念,在设计本课时,我注重让学生经历探究与发现的过程,使他们在动手、动脑、动口中理解知识,掌握方法,学会思考,获得积极的情感体验。
一、运用多种手段,提高教学实效
本节课中将现代化教学手段与常规教学手段相结合,提高了教学效率。从引入课题、讲授新课、反馈练习,大部分内容均制成多媒体课件,直观、形象、动态地展现知识的形成过程,刺激学生的感官,启迪学生思维,增大了课堂容量,大大提高了课堂效率。在授新一位小数的意义时,扎扎实实的抓住了重难点,两位小数的意义学习时,让学生借助实物(软尺)进行操作:找小数,写小数,说小数的意义,从而加深了实际与理论的联系,强化了对理论知识的理解,三位小数的引入更是在已有的软尺基础上,复习了长度单位之间的关系,从而让学生能够理解三位小数的意义。同时,本节课又注重了常规教学手段的运用,课题、一位、二位、三位小数的几个关系式等,均由老师板书。提纲挈领的板书,帮助学生形成完整的知识结构。
2、情景导入,回到最初
借助教参中的情景导入,但是在设计时抛开了已有的尺子测量,让学生只根据已有的1米进行思考。也就是在遇到不能用整数表示的时候,要想其他的办法进行解决(如:想出一个新的名数单位,比如分米、厘米、毫米来解决问题;或者想到用分数表示,借助分数从而过度到小数),让学生明白知识不是原本就是这样的。是因为我们在实际的问题当中不能解决,必须借助新的知识来解决,就此重新回顾了小数的产生与发展。
3、以学生的自主学习为活动前提,营造自我探索、自我发现的学习环境。
许多教师认为,小数的意义这一内容用传统的接受式教学方法比较恰当,因为小数的意义是约定术成的,新型的学习方式(动手实践、自主探究与合作交流)也只能是一种课堂的装饰。这种思想,是我在设计教学时考虑得最多,也是我最难突破的瓶颈。因此在本课的设计上,我以小数在生活中的实际意义为切入点,从学生的生活经验和知识背景出发,引导学生进行积极的体验。
六、案例研讨
《小数的意义》这一课。为我们诠释了如何让学生在基础数学的学习过程中,触及数学本质的深处,更深切的感受数学的精神、思维和方法的魅力。同时,本节课的教学不落俗套,特别是在教学设计上为我们展示了独有的环环相扣。
1、回归本质,回到最初
在第一个环节一位小数的意义的设计中,教师提出:“在没有测量工具的前提下,你能想办法知道课桌的长度吗”这个问题,学生想到了最为原始的办法:用非整数表示或者产生一个比米更小的名数来表示。这样的教学设计,让学生能触及数学本质。
2、数与型结合,便于学生理解
两位、三位小数的意义教学设计中,更是将实物——1米的软尺搬进课堂,让学生去观察、寻找“以米为单位可以用两位小数表示”的地方,从而让学生感受知识并不是凭空捏造的,而是有凭有据的,让学生理会到数学是一门严谨的学科。脱离实物过渡到三位小数时,让学生在操作、观察中感知,在感知后依据课件抽象、概括,在思维碰撞中提高认识的学习过程。
3、概念性的教学是否可以全面放开,让学生自己去发现、去总结
附:评课老师简介
何琴,小学高级教师,校级骨干教师。20xx年担任教育部“国培计划(20xx)”——中西部地区小学教师置换脱产研修项目培训导师,20xx年被聘为“第二批校级骨干教师”多篇教学论文获国家二等、省级二等、市级一等奖,多篇论文在《湖南教育》杂志上发表。曾代表长沙高新区参加“长沙市名优教师‘志愿支教、送教下乡’活动”,参加全国中小学“本色教育”说课比赛,荣获一等奖;在教育部“国培计划(20xx)——中西部农村小学骨干教师培训班上的示范课,曾经参加“长沙高新区小学数学教师素养比赛”荣获特等奖,参加“长沙市小学数学教师素养比赛”课堂教学竞赛荣获一等奖。工作理念:多一点鼓励,多一点期待,多一点平等,多一点沟通。教育理念:勤于好学才能乐于施教。
罗鸣亮小数的意义教学设计范文(18篇)篇三
知识目标:在学生在了解小数产生的过程中,理解分数与小数的联系,理解小数的意义,知道小数的计数单位。知道小数和整数一样,相邻计数单位间的进率都是10。
能力目标:在探究过程中培养学生的观察能力、分析能力、抽象概括和迁移能力。
小数的意义,计数单位及进率。
三年级时学生已学习了小数的初步认识,会认识小数以及读写法,知道了小数在实际生活中的应用,并会进行两位以内小数大小的比较,以及一位小数的简单加减法。在生活中,小数的应用也普遍,所以学生已经具备一定的小数认识的基础。
操作法,观察法,讨论法,引导尝试法。
教学课时:1课时
一、情景导入
2.认识他们吗?读一读,生活中,这样的数多不多?还在哪儿见过这样的数?
3.在我们身边随处都能找到小数,小数的用处可大了,所以,我们今后还要反复学习小数,接下来我们继续去数学王国探究小数的奥秘。
二、新课教学
(一)认识一位小数
出示一米长的纸条
1.估一下,大概有多长?
2.确定是一米长的纸条。
出示长方形的纸片,老师想知道这个表的长和宽,怎么办?(量)
3.用一米的纸条做尺子,来量数位表的长。
4.发现:不够一米。不能得到一个整米数,怎么办?(用更小的单位,把一米分成10个一分米)
(板书)1分米
1/10米
0.1米
把1米平均分成10份,每一份是1分米。
也就是说1分米是把1米平均分10份里面的1份,也就是1/10米
也可以用小数表示为0.1米
【设计意图】
用一米的单位来量,得不到一个整米数,然后用分的方法引出小数0.1,让学生理解小数的产生及其作用。
5.通过测量,得到:长是3分米。
3分米
3/10米
0.3米
6.学生活动
(1)把“1”平均分成十份,其中五份用分数表示是(?),用小数表示是(??)。
(2)在方格纸上涂出0.6,你打算把方格纸平均分成多少份?
涂其中的几份?
【设计意图】
即时练习,举一反三,通过想、说、做,使学生明白以为小数与分母是10的分数的关系,理解一位小数的意义。
(二)认识两位小数
1.量出长方形的宽
比2分米长点,但不够三分米,没法用整分米数表示怎么办?(用更小的单位厘米,把一米分成100个一厘米)
(板书)
1厘米
1/100米
0.01米
2.得到21厘米,用米作单位怎么表示?
21厘米
21/100米
0.21米
3.学生活动
(1)在方格纸上涂出0.06,你打算把方格纸平均分成多少份?涂其中的几份?
(2)如果要在方格纸上涂出0.65呢?
(三)认识三位小数
如果仔细看,这个数位表的宽比21厘米还多一点点,但又比22厘米少,如果要得到更精确的宽度,可不可以再分?(用更小的单位:毫米,把一米分成1000个1毫米)
1毫米
1/1000米
0.001米
(四)如果我们需要更加精确的数,可不可以再分呢?分的完吗?
【设计意图】
在认识了一位小数的基础上,有层次,有规律地认识两位小数,学习三位小数,降低了学生对概念的理解难度。
(五)小数的计数单位
课件演示:用一个正方体的分解来演示
小数的计数单位分别是:十分之一,百分之一,千分之一……
分别写作:
0.1、
0.01、
0.001……
(六)教学小数计数单位之间的进率
10个0.1是1,10个0.01是0.1,10个0.001是0.01,也就是说,小数中相邻的两个计数单位进率是10。
师:同整数一样,小数里面每相邻的两个计数单位进率都是10。
【设计意图】
直观演示,有两方面的作用,一是加深学生对用“分”的方法来学习小数意义的过程的理解,二是通过观察,能更容易的理解小数计数单位之间进率的理解。
三、巩固练习
“勇闯智慧岛”
1.看图写出分数和小数。
2.我是小法官
四、课堂总结
1.观察,思考,小数跟哪种数有着密切的关系?(分母是10、100、1000……的分数)
2.评价学生活动,下课。
罗鸣亮小数的意义教学设计范文(18篇)篇四
在学生初步认识分数和小数的基础上,使学生进一步理解小数的意义,认识小数的计数单位及相邻两个单位间的进率。
在操作中使学生体会小数产生的必要性。通过观察、比较,以及自主探究建立小数与分数之间的联系。
在学生积极参与数学活动的过程中,渗透数形结合的数学思想,培养学生的抽象概括和迁移能力。
教学重点:理解小数的意义,理解小数的计数单位及它们间的进率。
教学难点:理解小数的计数单位及它们间的进率。
米尺、彩带、磁条。
2.你们估计得对不对呢?让我们一起用直尺来验证一下。
3.谁愿意把你测量的结果告诉大家?
学生汇报预设:
学生1:我测量课桌面的长度是120厘米。
学生2:我测量课桌面的长度是1米2分米。
教师:课桌的长度如果以米为单位就是1.2米。
(1)在生活中,人们进行测量和计算时,往往不能正好得到整数的结果。这时常用小数表示。
(2)认识小数吗?在哪儿见过小数?今天我们一起学习小数的意义。
【设计意图】联系生活实际提出问题,让学生通过动手操作,在实际测量和记录的过程中发现有时得不到整数结果,从而引发认知冲突,激发学生进一步探究的欲望,感受小数产生的必要性。
1.认识一位小数。
教师:出示1米长的彩条,如果把1米平均分成10份,每份是多长?把1分米改写成
用“米”做单位的分数怎么表示?说一说你是怎么想的?
学生交流想法。
教师总结:米用小数表示就是0.1米。
教师:3分米,7分米改写成用“米”作单位的分数应该怎样表示呢?小数呢?请同学们试着写一写。
学生独立完成,教师巡视。交流分享学生的思考过程。
教师:仔细观察黑板上的每组分数和小数,你发现了什么?
结合学生回答,教师小结:像这样,小数点的右面有1个数字,这样的小数,就称为一位小数。也就是说,分母是10的分数,可以用一位小数表示。
练习:用小数怎么表示?呢?0.5怎样用分数表示?
参考答案:0.9,0.6,。
2.认识两位小数。
1厘米写成用“米”作单位的分数应该怎么表示?小数呢?4厘米呢?8厘米呢?
学生先独立完成,再合作交流。
教师:观察每组中的分数和小数,说一说你发现了什么?
学生1:分数的分母都是100。
学生2:小数点的右面都有2个数字。
教师小结:同学们观察得都非常正确。类似刚刚学习的一位小数,像这样,小数点的右面有2个数字的小数就称为两位小数。也就是说,分母是100的分数,可以用两位小数表示。
【设计意图】让学生根据一位小数表示十分之几,猜想出两位小数和什么样的小数有关,有意识地促进迁移,让学生体验成功,培养学生的学习兴趣和信心。
3.小数的意义。
教师:结合我们刚才对一位小数和两位小数的认识,自选两位以上的小数进行研究,完成表格。
学生先独立研究,再汇报交流结果,教师根据学生回答适时板书。
教师:通过你的研究,你发现了什么?
学生1:我发现分母是1000的分数可以写成三位小数。比如:把1米平均分成1000份,这样的一份就是1毫米,也就是米,写成小数就是0.001米。
学生2:三位小数就表示千分之几。
教师:其他同学还有谁也研究了三位小数的意义?谁愿意也来说一说?
学生预设:我选择的小数是0.023,也是一个三位小数,可用分数表示为千分之二十三。
学生:四位小数表示万分之几,五位小数表示十万分之几。
学生1:我认为分母是10、100、1000、10000等的分数可以用小数来表示。
4.认识小数的计数单位。
【设计意图】引导学生借助对“一位小数表示十分之几”“两位小数表示百分之几”的直观认识,独立探究三位小数、四位小数、五位小数……表示的意义,最后抽象概括出小数的意义,有效地锻炼了学生的多种能力,突破了重难点,同时也渗透了小数中相邻两个计数单位间的进率。
1.第33页做一做。
2.第36页练习九第1题。
3.填空:
0.6 里面有6个( );再增加( )个 0.1就等于1。
0.25里面有( )个0.01。
32个0.001是( );32个0.01是( );32个0.1是( )。
4.在括号里填上适当的小数。
学生先独立完成,教师再让学生汇报答案,集体评议。
【设计意图】通过不同层次的练习设计,让学生在对比练习的过程中不断加深对小数意义的理解,同时有意识地结合生活实际体现知识的应用价值,帮助学生根据小数意义理解生活中常见的小数所表示的含义。
1.今天这节课我们学习了哪些知识?你有什么收获?
2.介绍对小数发展具有杰出贡献的两位数学家。
【设计意图】通过问题帮助学生梳理本课所学的知识,最后通过课外延伸向学生介绍与小数发展相关的数学资料,让学生进一步感受数学文化,培养学生的数学素养。
罗鸣亮小数的意义教学设计范文(18篇)篇五
小数的意义是西师版教材四年级下册的内容。本节内容是学生在三年级下册学习“小数的初步认识”的基础上来学习的,同时小数的意义是学生系统学习小数知识的开始,是学生认数范围的一次扩充,也是对学生日常经验的一个归纳与总结。依据新课程理念,我在本节教学设计中力求让学生结合现实情境,进一步认识小数,充分调动学生的旧知,促进知识的正迁移,同时加强操作活动,引导学生主动获取知识。
1、让学生理解和掌握小数的意义,以及小数的计数单位,理解相邻两个计数单位的进率是十进关系。
2、让学生经历观察、操作、探索等活动,理解小数的意义以及数的计数单位,培养学生动手能力、推理能力和创新意识。
3、让学生感受数学与生活的密切联系,激发学生的求知欲。
重点:理解一位小数,二位小数的意义。
难点:理解三位小数的意义,同时归纳小数的意义。
课件、学习卡2张、米尺、皮尺。
一、创设情景,引入新知。
师:孩子们,北京奥运会的脚步离我们越来越近了,全国各地都在积极迎接奥运的到来,我们学校为了迎接奥运也举办了一场校动会。(课件出示,主题图)。
师:你们从这幅图上了解了哪些信息?
生:张兵跳远的成绩是2.36米。
生:王志跳高的成绩是0.92米。
生:校运会60米的纪录是7.8秒,100m的纪录是13.4秒,跳远的纪录是2.87m,跳高的纪录是1.06m。
生:我知道这些数都是小数。
师:孩子们真聪明,观察真仔细.那么你们想知道为什么会产生小数吗?
生:想。
师:现在我想让两位孩子来量一量黑板的长和宽。
学生上台用皮尺测量。
生:黑板长3米10厘米。
生:黑板宽95厘米。
师:孩子们黑板的长和宽是不是都是整数呢?
生:不是。
师:在测量的计算中,我们有时不能得到整数的结果,通常可以用小数表示。板书:小数。
师:孩子们,我们在三年级时都已经初步认识了小数,那么下面这些空我相信大家都能填出来吧!(课件出示)。
1角=()10元=()元0.1元是把1元平均分成10份,取其中()份。
1dm=()10米=()m0.1米是把1米平均分成()份,取其中()份。
5角=()()元=()元0.5元是把1元平均分成()份,取其中()份。
3dm=()()m=()m0.3是把()平均分成()份,取其中()份。
(生独立完成,并汇报)。
二、探索新知。
师:孩子们完成的真不错,来鼓励一下自己。好!现在请大家拿出老师课前发给你们每个小组(二人一组)的学习卡片1,然后听清老师讲要求。(课件出示)。
(1)、涂一涂:用斜线把其中十个直条涂出阴影,并用分数、小数表示,再把7个直条涂上阴影,用分数小数表示。
(2)、填一填:
分数()10。
分数()10小数()。
小数()。
(3)、说一说:0.7表示把一个正方形平均分成()份,取其中()份。
0.7里面有()个0.1。
0.1、0.7都是一位小数,都表示把1个整体平均分成()份,分别取其中的()份,()份。
(4)、讨论:一位小数表示几分之几?几分之几表示一位小数?
(5)、完成后,组内两个同学相互说一说。
(学生两人一组合作完成)。
师:好!孩子们我看大家完成的差不多了,谁来给大家汇报一下?
生:(上台用视频展示台把学习卡1展示)我们小组是这样涂的。
分数110分数710。
小数(0.1)小数(0.7)。
罗鸣亮小数的意义教学设计范文(18篇)篇六
1、在现实情境中认识两位小数、三位小数等,从而理解小数的意义,体会小数和分数的联系,会正确读写小数。
2、在用小数进行表达的过程中,感受小数与生活的联系,进一步培养数感和观察、比较、抽象的能力,增强学习数学的兴趣和信心。
一、回顾导入:
1、师:在三年级时我们一起认识了小数,你还记得吗?
(稍作停顿,学生回忆小数知识)
你对小数有了哪些了解?(生独立发言)
(可以是读写方法、意义、一位小数、组成部分、使用情况等)
2、师(板书:0.3):会读吗?(生齐读)
你是怎样理解0.3的?
3、揭题:今天起我们将继续学习小数的相关知识。
(出示课题:小数的意义和读写方法)
二、展开新授:
1、教学例1:
(1) 课件播放例1:
师:你能读出这三种物品的价格吗?
(个别读,师板书价格及读法)
0.05:请两生个别读再齐读,这个读法与以前学过的数的读法有什么不同?
小数部分依次直接读出数字就可以了。
(2) 用角或分做单位,说出这些物品的价钱。
生答师追问:
3角为什么可以写成0.3元?
5分为什么写成0.05元呢?
(1元=?分,1分是一元的几分之几?可以写成多少元?
5分是一元的几分之几,可以写成多少元?)
4角8分是一元的几分之几,可以写成多少元?
书p25/1(1)课件出示,直接口答。
(2) 齐读0.05、0.48:
0.05、0.48分别是一元的几分之几?
与以前认识的小数有什么不同?
揭示两位小数、一位小数的概念。
2、教学例2:
(1) 师:用分作单位的数是一元的百分之几,可以写成两位小数。生活中还有很多用到两位小数的情景。
(出示一把米尺):把一米平均分成100份,每份长多少?
1厘米是1米的几分之几?
可以写成小数是?
(2) 播放例2的课件,师稍作讲解。生独立完成书上的尺子图。
全班交流书写情况。
29厘米呢?
你想到了多少厘米,写成小数是多少米?
(3) 师:把一米平均分成1000份,每份长多少呢?
1毫米是1米的几分之几?可以写成小数是?
播放课件,稍作讲解。生独立完成书上的尺子图。
全班交流书写情况,并齐读这些小数,(指导:小数部分的零不能省略读)
(4) 师:他们是几位小数?
分别表示千分之几?
有没有四位小数呢?你能举个例子吗?
他表示多少分之多少?
按照这样的方法还有五位小数、六位小数位数更多的小数。我们以后将学到的圆周率还是个无限小数呢。
3、小结、揭示小数的意义:
师:齐读黑板上小数和对应的分数。
黑板上的这些小数是由怎样的分数改写成的?
你还发现了什么?
学生默读理解。
师:两个省略号分别省略的什么?你能补充吗?
三、巩固练习:
1、试一试:(课件播放题目)
师指导:第一幅图把正方形平均分成了几份?每一份是什么形状的?
第二幅图能?
第三幅图把什么看作整数1了?
平均分成了几份?你是怎样看出来的?
每一份是什么形状的?
独立填书。
全班交流,并结合图说说0.7、0.43、0.009分别表示什么?
2、练一练第二题,独立完成在书上。
全班交流。
3、练习五第二题、第三题。
独立练习,口头汇报。
0.300表示什么?
4、练习五第四、五题。
独立练习,全班交流。
四、总结:
师:谁能来归纳一下今天我们的学习内容? 你有哪些收获?
罗鸣亮小数的意义教学设计范文(18篇)篇七
一位、两位、三位小数的意义。小数的计数单位,每相邻两个计数单位之间的进率是10.
教材编写特点:
简化了小数意义的叙述重视了对小数意义的理解加强了小数与实际生活的联系在探究的过程中注重给学生创设自主研究的空间。
理解一位、两位、三位小数的意义,知道相邻的两个计数单位之间的进率是10。
教学关键:
理解一位、两位、三位小数的意义。
基本活动经验:
在老师引导下,重视学生实际动手操作的能力、合理安排引导给学生自主探索的空间、借助学生已有知识经验的迁移,促进学生自主学习。
小数的意义是学生系统学习小数的开始。这是在学生三年级学习“分数的初步认识”和“小数的初步认识”基础上教学的,通过这部分内容的学习,使学生进一步理解小数的意义,为今后学习小数四则运算打好基础。
学生学习该内容可能的困难:
教学时,学生必须依托分数和整数的相关知识,借助分数理解小数的意义,借助整数掌握小数的结构特征。理解每相邻两个计数单位之间的进率是10时,必须联系生活中的货币、长度或者重量等理解小数之间的关系。
充分的运用演示、操作、观察等直观的手段,把基本概念的本质属性和普遍意义形象地展示出来,是学生在头脑中建立起这些内容的丰富表象,再组织学生进行分析、讨论,加深这些知识概念的感性认识;最后对表象进一步加工,形成概念,从而实现对概念的深刻理解。
知识与技能。
1使学生结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。借助熟悉的十进制关系的显示原型多角度的理解小数与分数之间的关系,理解计数单位0.1、0.01、0.001。
2明确一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几.....知道相邻两个计数单位间的进率是10。
过程与方法。
充分的运用演示、操作、观察等直观的手段,引导学生经历从直观到抽象、概括的心理活动过程,实现“动作表征”、“直观表征”、“符号表征”的循序渐进发展,进而培养学生发现和构建知识的能力、迁移和类推能力。
情感态度与价值观。
培养学生的抽象、概括、归纳的思维能力和应用数学的能力。
1、已知导入、情境感知。
师:(出示教室场景图)同学们看,这个地方熟悉吗?
生:熟悉。
师:是哪?
生:我们的教室。
师:我们的教室,这是黑板的高度,讲台的长度,课桌的长度(课件出示)。
生:我知道了,讲台的长度、课桌的长度有1米多。
生:我知道讲台的长度跟1米差不多。
生:可以用重叠法。
生:可以把黑板的高度那里,对直画一根虚线下来,再看。
师:课桌的长度是1米多,具体多多少呢?你有办法吗?
生:先测量出1米,多余的部分截取下来,再接着去测量。
师:谁还来说说......
生:先测量出1米,多余的部分截取下来,再拿多余部分去跟1米比较(边说边用手比划)。
师:你们看看,是这样的吗?(课件演示,将多余的部分截取下来,放在1米的下面测量)。
生:是的。
师:接下来,谁有办法?
生:用多余部分去比,看看1米里面有几个那么长。
生:将1米平均分成10份,再比较。
师:比不出来啊,谁有办法?
生:1个1个去比,看看几个那么长正好是1米。就用除法解决。
师:是这样的吗?(课件演示)。
生:是的。
师:我们一起来数数。
生:1个,2个,3个......正好10个这么长是1米。
(在出现问题的时候,想解决问题的办法:我们可以把已经知道的1米的刻度标记出来,再继续测量,先用多余部分去比较,发现正好10个那么长就是1米。所以多余部分是10份中的1份,也就是说将1米平均分成10份,这样的1份,它的长度正好是多余部分,所以多余部分可以用十分之一米表示;十分之一米用小数表示是0.1米。在测量或者计算时,我们往往不能正好得到整数的结果,这时,可以用分数或者小数表示。
师:那现在知道怎么具体表示了吗?说说我们刚才的思路。
生:因为老师在操作的时候,我们可以发现10个多余部分的长度正好是1米,也就是说每个多余部分的长度是1米的1/10,也就是1/10米。写成小数的话是0.1米。还可以用1分米表示。
生:根据观察我们发现,将1米平均分成10份,多余部分正好是10份中的1份,可以用分数1/10米表示,还可以用小数0.1米表示。
生:将1米平均分成10份,多余部分是1米的1/10,也就是1/10米,用小数表示是0.1米。
师:我们一起来说说:将1米平均分成10份,多余的部分正好是这10份中的1份,也就是1/10,1米的1/10是1/10米,也可以用小数表示为0.1米。
师:这就是我们这节课要研究的“小数的意义”(板书课题)。
生:0.1表示的是十分之一。
师:你还能在1米(用手比划)中找到其他的小数吗?并说说它的意义。
生:0.3米(学生说,老师点课件,并根据课件演示,学生说意义)。
师:那0.3里面有几个0.1呢?表示什么。
生:0.3里面有3个0.表示十分之三。
师:还找到了其他的小数吗?
生:0.7米(老师点课件,学生说意义)0.7里面有7个0.1。
师:那1米里面有多少个0.1呢?
生:1米里面有10个0.1米。
师:10个0.1是1。
仔细观察这些小数和分数(用手比划并引导学生观察分数),你发现了什么?
生:这些小数都表示十分之几。
生:这些分数的分母都是10,小数都是一位小数。
生:分母是10的分数可以写成一起小数。
生:10个0.1是1。
师:说得非常好。一位小数表示十分之几。分母是10的分数可以写成一位小数,10个0.1就是1。一位小数,它的计数单位是十分之一,写作0.1。
我们一起把这句话小声齐读:分母是10的分数可以写成一位小数,一位小数的计数单位是十分之一,写作0.1。
师:我们在这个1米中找到了很多的小数,是不是只能在这里找到小数呢?
(出示数轴图)你能在这里找到小数吗?
生:能(学生上台寻找并说明理由。)。
师:为什么是这里呢?
生:因为0-1之间分成了10份,每一份是0.1,表示十分之一。
生:0.1还可以表示刻度。也就是说:这里的每个刻度依次是0.1、0.2、0.3......
师:我们在学习数轴的时候知道数是按照从小到大的顺序依次排列的,所以0.1在这里。
师:那你能找到0.8吗?
生:某一个点,某一个范围(指出0.8的具体位置)。
师:你是怎么找到0.8的?
生:数8个0.1(10份中数出其中的8份)。
生:从1开始往左边数2个0.1(10-2=8)。
师:那数轴上还有其他的小数吗?
生:有,学生说小数。
师:如果将数轴无限的延长,这样的小数说得完吗?
生:说不完。
师:回归到米尺中,理清我们刚刚的思路:我们知道多余的这个部分—可以用分数十分之一米表示,用小数0.1米表示。所以课桌的长度是1.1米。
师:课桌的长度已经具体的表示出来了,黑板的高度呢?
生:还是拿红色部分进行重叠,多余的部分截取下来。继续用红色部分测量(课件演示)。
师:遇到了什么问题?
生:测量时,多余的部分不够1米,
生:那就用蓝色部分比较。(学生边说,课件演示)也不够1分米。
师:那怎么办?
生:用刚刚的方法去比,看多少个紫色部分有是一个蓝色部分。用分米的下一个单位厘米表示。
师:(课件演示)我们发现......
生:我们发现10个紫色部分的长度就是蓝色部分。
生:把蓝色部分平均分成10份,紫色部分是其中的1份。
生:是1厘米。
师:把蓝色部分平均分成了10份,那1米里面会有多少个这样的紫色部分呢?
生:有100个这样的紫色部分。
生:还可以用0.01米表示。
师:对的,1/100米写成小数是0.01米。
师:那红色部分有多少个0.01米蓝色部分呢?
生:1米里面有100个0.01米。1分米里面有10个0.01米。
师:那这样的4份呢?可以怎么表示?
生:4/100米,写成小数0.04米。
师:请同学们拿出抽屉中的软尺。
师:这根软尺长度是多少?
生:1米、10分米、100厘米、1000毫米。
师:看来长度单位的换算学的很好哦。
操作:拿出软尺,在软尺上找到1米,1分米,1厘米,1毫米。以米为单位,找出一个可以用小数表示的地方,跟同桌说一说,并将它写在练习纸上)。
学生汇报。
生1:我找到的是0-99厘米。是99厘米,用分数表示是99/100米,用小数表示是0.99米。
生2:我找到的是0-20厘米。是20厘米,用分数表示是20/100米,用小数表示是0.20米。
生:老师对于生2找的还有表示方法,我可以用分数2/10米,用小数表示是0.2米。
生:一个是表示把1米平均分成100份,取其中的20份,是20/100米=0.20米;一个是表示把1米平均分成10份,取其中的2份,是2/10米=0.2米。
生:它们表示的长度是一样的,但是它们表示的意义是不同的。
师:仔细观察这些小数,你又有什么发现呢?
生:这些分数的分母都是100,小数都是两位小数。
生:分母是100的分数可以写成两位小数。
生:100个0.01是1。
师:说得非常好。两位小数表示百分之几,它的计数单位是百分之一,写作0.01。
(课件出示:分母是100的分数可以写成两位小数,两位小数的计数单位是百分之一,写作0.01。)。
师:通过我们刚才的探究,我们知道黑板高度中1米之外多余的这个部分—1厘米,可以用分数百分之一米表示,用小数0.01米表示。所以讲台的长度是1.01米。
4、拓展,认识三位小数、四位小数的意义。
师:(出示课件显示1毫米)这是多长?
生:1毫米。
师:你是怎么知道的?
生:.因为把1厘米平均分成了10份,其中的1份就是1毫米.....
师:1米里面有多少个这样的1毫米呢?
生:1000个(1米里面有1000个1毫米),因为1米=1000毫米。
出示课件。
师:将1米平均分成1000份,这样的1份是1毫米,这样的1份还可以怎么表示?
生:1/1000米,0.001米。
师:对的,把1米平均分成1000份,其中的1份是1/1000米,用小数表示为0.001米。
师:那这里的7份可以怎么表示?米尺中的1厘米可以怎么表示呢?
生:这里的7份可以用分数7/1000米表示,用小数表示为0.007米。
生:米尺中的1厘米是1000份中的10份,用分数千分之十米表示,用小数0.010米表示。
生:1厘米也可以用分数百分之一米表示,用小数0.01表示。
师:也就是说10个0.001等于1个0.01。
师:观察这些小数,你发现了什么。
生:还可以知道,分母是1000的分数可以写成三位小数,三位小数的计数单位是千分分之一,写作0.001。1厘米中有10个1毫米,所以0.01里面有10个0.001;1米里面有1000个1毫米,所以1里面有1000个0.001。
五、总结及应用。
(观察板书可以知道)。
分母是10.100.1000......的分数可以用小数表示。
小数的计数单位是十分之一、百分之一、千分之一......写作0.1、0.01、0.001......
每相邻两个计数单位之间的进率是(10)。
生:因为我们刚刚在黑板上标记了。
生:进率是100。
生:进率是10.看黑板我们知道0.1米是1分米,0.01米是1厘米,0.001米是1毫米。它们之间的关系是10毫米=1厘米,10厘米=1分米。所以相邻两个计数单位之间的进率是10.
(学生根据小数的计数单位自己理解这句话,并且填空,说明理由。)。
写出合适的分数和小数。
说一说你的收获。
生:我知道了分母是10.100.1000......这样的分数可以写成小数。
生:我知道了小数的计数单位。
是的,这些都是我们这节课的收获,希望大家在以后的生活或者学习中能够好好的运用这些知识。你们将会发现,原来数学与生活是息息相关的。
1米1计数单位。
1/10米=0.1米十分之一0.1一位小数。
1/100米=0.01米百分之一0.01两位小数。
1/1000米=0.001米千分之一0.001三位小数。
1/10000米=0.0001米万分之一0.0001四位小数。
《课标》指出:学生的数学学习应当是一个生动活泼、生动和富有个性的过程,要让学生经历数学知识的形成过程。基于这一理念,在设计本课时,我注重让学生经历探究与发现的过程,使他们在动手、动脑、动口中理解知识,掌握方法,学会思考,获得积极的情感体验。
一、运用多种手段,提高教学实效。
本节课中将现代化教学手段与常规教学手段相结合,提高了教学效率。从引入课题、讲授新课、反馈练习,大部分内容均制成多媒体课件,直观、形象、动态地展现知识的形成过程,刺激学生的感官,启迪学生思维,增大了课堂容量,大大提高了课堂效率。在授新一位小数的`意义时,扎扎实实的抓住了重难点,两位小数的意义学习时,让学生借助实物(软尺)进行操作:找小数,写小数,说小数的意义,从而加深了实际与理论的联系,强化了对理论知识的理解,三位小数的引入更是在已有的软尺基础上,复习了长度单位之间的关系,从而让学生能够理解三位小数的意义。同时,本节课又注重了常规教学手段的运用,课题、一位、二位、三位小数的几个关系式等,均由老师板书。提纲挈领的板书,帮助学生形成完整的知识结构。
2、情景导入,回到最初。
借助教参中的情景导入,但是在设计时抛开了已有的尺子测量,让学生只根据已有的1米进行思考。也就是在遇到不能用整数表示的时候,要想其他的办法进行解决(如:想出一个新的名数单位,比如分米、厘米、毫米来解决问题;或者想到用分数表示,借助分数从而过度到小数),让学生明白知识不是原本就是这样的。是因为我们在实际的问题当中不能解决,必须借助新的知识来解决,就此重新回顾了小数的产生与发展。
3、以学生的自主学习为活动前提,营造自我探索、自我发现的学习环境。
许多教师认为,小数的意义这一内容用传统的接受式教学方法比较恰当,因为小数的意义是约定术成的,新型的学习方式(动手实践、自主探究与合作交流)也只能是一种课堂的装饰。这种思想,是我在设计教学时考虑得最多,也是我最难突破的瓶颈。因此在本课的设计上,我以小数在生活中的实际意义为切入点,从学生的生活经验和知识背景出发,引导学生进行积极的体验。
《小数的意义》这一课。为我们诠释了如何让学生在基础数学的学习过程中,触及数学本质的深处,更深切的感受数学的精神、思维和方法的魅力。同时,本节课的教学不落俗套,特别是在教学设计上为我们展示了独有的环环相扣。
1、回归本质,回到最初。
在第一个环节一位小数的意义的设计中,教师提出:“在没有测量工具的前提下,你能想办法知道课桌的长度吗”这个问题,学生想到了最为原始的办法:用非整数表示或者产生一个比米更小的名数来表示。这样的教学设计,让学生能触及数学本质。
2、数与型结合,便于学生理解。
两位、三位小数的意义教学设计中,更是将实物——1米的软尺搬进课堂,让学生去观察、寻找“以米为单位可以用两位小数表示”的地方,从而让学生感受知识并不是凭空捏造的,而是有凭有据的,让学生理会到数学是一门严谨的学科。脱离实物过渡到三位小数时,让学生在操作、观察中感知,在感知后依据课件抽象、概括,在思维碰撞中提高认识的学习过程。
3、概念性的教学是否可以全面放开,让学生自己去发现、去总结。
附:评课老师简介。
何琴,小学高级教师,校级骨干教师。2011年担任教育部“国培计划(2011)”——中西部地区小学教师置换脱产研修项目培训导师,2012年被聘为“第二批校级骨干教师”多篇教学论文获国家二等、省级二等、市级一等奖,多篇论文在《湖南教育》杂志上发表。曾代表长沙高新区参加“长沙市名优教师‘志愿支教、送教下乡’活动”,参加全国中小学“本色教育”说课比赛,荣获一等奖;在教育部“国培计划(2011)——中西部农村小学骨干教师培训班上的示范课,曾经参加“长沙高新区小学数学教师素养比赛”荣获特等奖,参加“长沙市小学数学教师素养比赛”课堂教学竞赛荣获一等奖。工作理念:多一点鼓励,多一点期待,多一点平等,多一点沟通。教育理念:勤于好学才能乐于施教。
罗鸣亮小数的意义教学设计范文(18篇)篇八
1、了解小数的产生,理解和掌握小数的意义。
2、初步理解整数、小数与分数之间的内在联系,掌握相邻两个计数单位间的进率。
3、在合作与交流中的过程中,体验探究发现和迁移推理的学习方法,感受数学学习的乐趣。
1、测量讲台的长度。
我们学校的多功能教室更换了新的讲台和桌椅,你们能帮老师量一量新讲台的长度吗?
学生用米尺测量讲台的长度。
测量得不到整米的`结果。
2、揭示课题。
在进行测量和计算时,往往不能正好得到整数的结果,这时常常用小数来表示。今天这节课我们继续来认识小数。
1、一位小数。
(1)为了帮助大家理解小数,我们可以借助米尺。
(出示米尺图)。
(2)把一米长的尺子平均分成了多少份,每一份有多长?(1分米)。
(4)口答:3分米用分数表示是多少米?用小数表示是多少米?为什么?
(5)7分米是多少米?
(6)1/10可以写成0.1,3/10可以写成0.3,7/10可以写成0.7,像十分之几这样的分数我们都可以用零点几这样的小数来表示。
2、两位小数。
(1)如果把1米中的每一分米再平均分成10份,那么1米就平均分成了多少份?
(2)我们来看它的放大图。每一份是多少?(1厘米)。
1厘米是一米的几分之几?用分数和小数表示分别是多少米?
(3)3厘米呢?6厘米呢?
(4)13厘米是多少米?为什么?
(6)像1/100,3/100……,这些表示百分之几的分数我们可以用零点几几这样的小数来表示。
3、认识三位小数。
(2)我们来看它的放大图。这样的一份是多长?(1毫米)。
(3)1毫米是一米的千分之一。所以1毫米是1/1000米,也就是0.001米。
(4)想一想:6毫米和13毫米分别是多少米?为什么?
(5)35毫米呢?135毫米又该如何表示呢?
(6)表示千分之几这样的分数我们可以用零点几几几这样的小数来表示。
4、更多位小数。
(1)如果把一米平均分成10000份,这样的一份用小数表示是多少米?
(2)如果把1米平均分成100000份,这样的一份用小数表示是多少米?
(1)回顾前面的学习过程,什么样的分数可以用小数来表示呢?
生分组讨论,汇报讨论结果。
(2)分母是10、100、1000……的分数可以用小数表示。这就是小数的意义。
(3)0.1、0.3、0.7的小数点右面只有一个数字,像这样的小数就是一位小数。一位小数表示十分之几。
依次介绍两位小数、三位小数。
(1)0.3里面有几个1/10?0.03里面有几个1/100?
(3)每相邻两个计数单位间的进率是10。
三、巩固练习。
1、完成51页做一做。
2、完成55页第1、2题。
四、全课小结。
在今天的学习活动中你有什么收获?
罗鸣亮小数的意义教学设计范文(18篇)篇九
1.通过测量活动,进一步理解小数的意义,体会小数在生活中的实际应用。
2.会进行单名数和复名数单位之间的换算。
3.体会小数与分数之间的关系,会进行互化。
4.通过动手操作,培养学生合作学习的能力,养成良好的学习习惯。
通过探索单位换算的过程,进一步体会小数的意义。
把单名数化成复名数。
多媒体课件。
课时一
一、导入:
生:学生边观察边交流。师板书课题。
在观察过程中让学生收集数据,探讨并理解几分米或几厘米换算成以“米”作单位应怎样表示,鼓励学生想出不同的表示方法。
二、探讨与交流:
1、学生汇报:黑板长2米,又多出36厘米。
师:这些数有什么地方不一样吗?
生:数的单位不一样。
师:单位不同,计量起来不方便,那我们该如何解决这个问题呢?
生:把这些数据的单位换算成统一的。
师:你认为换算成哪个单位来计量更合适呢?
生:我觉得换算写成以“米”为单位比较合适(也有同学说换算成以“分米”为单位比较合适)。
师:那我们一起来讨论一下如何用“米”来表示黑板的长度吧。
2、活动要求:
(1)要求学生分组讨论把以“厘米”作单位的数换算成以“米”作单位的数应该怎样操作。可以使用不同的方法。
(2)汇报结果:鼓励学生用自己的语言说出自己的想法。
生:因为1米=100厘米,把1米平均分成100份,36厘米就是36份,就是100(36)米,如果用小数表示就是0.36米。所以黑板的长度就可以表示为2.36米。
师:(归纳)把1米平均分成10份,1份或几份可以用一位小数表示;
把1米平均分成100份,1份或几份可以用两位小数表示······
(1)一位小数表示十分之几;
(2)两位小数表示百分之几。
设计意图:进一步使学生掌握以“分米”“厘米”作单位的数换算成以“米”作单位的数,可以用小数表示。
三、探讨与延伸
师:刚才我们学习了长度单位的一种表示方法,那么,鹌鹑蛋和鸵鸟蛋的质量又如何表示呢?(师出示图片课件,生思考回答)
生:可以用克与千克来表示。
生1:鹌鹑蛋的质量是12克= 1000(12)千克=0.012千克。
生2:鸵鸟蛋的质量是先把500克用千克表示出来再加上原来的的1千克。500克=1000(500)千克=0.5千克,鸵鸟蛋重0.5千克+1千克=1.5千克。
师:(归纳)把1千克平均分成1000份,1份或几份可以用三位小数表示,也就是说三位小数表示千分之几。同学们通过思考,懂得了用小数表示物体的质量,大家表现得都很好。用小数表示物体的质量在生活中的应用很广泛,所以,大家都应该熟练掌握。
设计意图:结合情境图,让学生明白由低级单位数化成高级单位数的方法,培养学生的分析能力和合作学习能力。
四、生活与应用:
师:为了能更好的熟悉低级单位和高级单位数之间的互化,我们现在做个活动,前后位的同学相互合作,通过目视估算出对方的身高和体重。
活动要求:
1、目测估算出的结果要尽可能的接近事实。
2、把身高转换成以米为单位的数,体重转换成以千克为单位的数。
3、与其他同学互相交流,选出较为准确的数据,汇报给老师。
生:(认真估测、交流并汇报)
设计意图引导学生把课堂上学到的知识运用到生活中去,发现生活中更多的.数学信息。
五、巩固练习:
1、师:我们先看一看这个表格,哪位同学愿意来填一填?(师出示教材第5页“练一练”第一题课件)
学生纷纷举手抢答。师给予评议。
2、师:(出示课件“练一练”第二题。)同学们知道图片上的这只鸟叫什么名字吗?它是世界上飞的最快的鸟?叫军舰鸟。大家认真读题后,自己独立完成有关军舰鸟的数学信息。
六、总结:这节课我们学习了长度单位和质量单位换算的方法,其他的数量单位也是可以换算的。生活中,很多时候都需要进行单位换算,你可以与同学一起去找一找。
七、作业:教材第5页第4题。
八、板书设计:
36厘米=0.36米
12克=0.012千克
500克=0.5千克
九、后记:
这节课的内容主要是要求学生会把低级单位的数转化为高级单位的数,会进行单名数和复名数的互化。在单位换算方面,特别是在小数意义的基础上理解单位换算,相对孩子们来说有一定的难度,所以对于这部分知识,只是要求孩子们重在理解,掌握方法。
在备课时,我就考虑到由于孩子们在日常生活中对小数的接触不是很多,小数的意义又具有一定程度的抽象性,怎样在教学中找出孩子们生活与这一数学知识的契合点,让他们能自然地融入到学习中去,作了详细地分析。由于孩子们的接受能力有所不同,在教学中我对问题的设置与教材略有变化。我认为这样学生学习起来比较顺畅。
罗鸣亮小数的意义教学设计范文(18篇)篇十
1、理解小数的意义,能够说出小数各部分的名称。
2、正确掌握小数的读、写方法。
3、通过观察、测量体验小数与生活的关系。
4、在合作与交流中的过程中,感受数学学习的乐趣。
5、体验数学在身边,感受数学学习的价值和乐趣。
1、认识小数学概念。
2、小数表示形式。
3、理解小数的含义是本课的重点、也是难点。
一)创设情景,导入新课。
创设情景,引导学生交流搜集到的生活中的小数。
教师根据学生回答随机板书:
1、一张桌子的高度是米;
2、教室窗户的宽是米;
3、一份汴梁晚报价格是元。
4、每度电的价格是元。
5、一棵包菜的重量是千克。
6、奥运冠军刘翔的身高是米,体重是千克。
问题思考:
为什么在这些地方需要用小数来表示?
引导学生在读一读这些小数,在读的过程之中,如果有错误,教师当即指导。
问题:
1、这些都是小数,你知道关于小数的哪些知识呢?
2、关于小数你还想知道些什么?
3、今天我们就进一步研究小数的意义。(揭示课题)。
这样的设计在于把枯燥的数学知识与学生的'生活实际相联系,引发起学主的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力。
二)新授部分。
1、米表示什么意义?谁来说说(借助课件,帮助学生理解)。
引导学生完整说:刚才我们把1米平均分成10份,每份长1分米,就是1/10米,还可以写成米。谁也来就像这样完整说一说。
师:这就是米的意义。对照板书中的分数和小数,你能发现什么?
学生思考后再交流,十分之几可以写成一位小数,反之,一位小数也可以用十分之几表示。
问题:十分之五等于多少?等于多少?
每份长1厘米,就是1/100米,还可以写成米.
问:谁愿意再来说说米的意义。学生完整地说出:
1米平均分成100份,每份长1厘米,就是1/100米,还可以写成米。
想一想米表示什么?
重点让学生自己来说一说。
观察:对照板书,那么你们又有什么新的发现?
得到:百分之几可以写成两位小数,两位小数表示百分之几。
你又能发现什么呢?(得到:千分之几可以写成三位小数)请再举例。
师:如果将1米平均分成份呢?能再举例吗?
接着学习下面的几个小数:元、元、千克。
把小数在实际生活中的运用结合起来,使学生体验教学就在身边,感受数学学习的乐趣。
归纳:刚才我们分的是1米、1元、1千克等,都可以用整数“1”来表示,我们把整数1平均分成10份100份1000份、……这样的一份或几份是十分之几、百分之几、千分之几……还可以写成一位小数、两位小数、三位小数。
三)练习加强理解。
1、读小数:元米千米千克。
2、1厘米=()/()分米5角=()元。
3、王新买了三本书,价钱分别是9角8分、7角、3元2角。如何表示。
四)教学反思。
1、认识小数是小学阶段教学小数的知识,教学过程中引导学生与实际生活中量长度、买东西等具体事件联系起来,引导学生结合生活经验学习小数的内容。
2、本节课教学包括一位小数的意义、读写方法,是后继学习比较小数大小和小数加减计算的思考基础。学生在日常生活中大量的接触小数,小数的读和写并不是孩子的难点,让学生借助生活实际去理解小数的意义才是学生的学习的关键。
3、在教学过程中,考虑到学生已有的生活经验,用元、角引入降低学生理解的难度。让学生感受生活中处处有数学,领会到数学源于生活、用于生活的思想。
4、在教学中,教师应该有感染力的教学语言,让课堂气氛充分活跃起来,这方面有待于今后教学中加强。
5、学生对小数意义的认识需要经过一个循序渐进的过程,在教学中,应该对教学内容可以进行适度的重组和补充。
将本文的word文档下载到电脑,方便收藏和打印。
罗鸣亮小数的意义教学设计范文(18篇)篇十一
小数的意义和产生,课本50—51页内容。
1、我能通过观察知道小数的产生。
3、我知道小数的计算单位及单位间的进率。
一、知识链接。
1/、谈话引入:
我们已经初步认识了小数,小数是怎样产生的?小数的意义是什么呢?这节课我们就来学习小数的产生和意义。
二、探究新知。
1、探究活动:
认真阅读教材第50、51页内容,结合“导学案”中的学习提示,先自主探究,再在小组内相互交流,初步理解小数的产生和意义。
温馨提示:
(1)能你测量课桌的长度和宽度吗?测量时发现了什么?
(2)、你知道米尺是把1米平均分成了多少份吗?它的每一份用分数怎样表示?
(3)、你能用小数表示分母是10的分数吗?
(4)、你能用小数表示分母是100的分数吗?
(5)、你能用小数表示分母是1000的分数吗?
(6)、什么是小数,小数的计数单位是什么。
(7)、每相邻两个计数单位之间的进率是多少。
(8)、小数的'计算单位和分数的计数单位有什么不同之处。
2、我会总结:
(1)分母是10、100、1000……的分数可以写成小数,像这样用来表示十分之几、百分之几、千分之几……的数叫做小数。
(2)、每相邻两个计数单位之间的进率是()。
3、解决问题:
(1)0.457,每个数位上的数各表示几个几分之一?
(2)一个小数由5个1、3个0.1、6个0.01组成,这个小数是()。
1、判断:
(1)0.40里面有4个0.01()(2)35克=0.35千克()。
3、括号里能填几?你是怎么知道的?
(1)、0.3里面有()个,0.09里面有()个;0.08里面有()个。
(3)、找朋友:(用线把上下两组数连起来)。
0.0450.130.00010.9。
这节课我们学习了什么?你知道了什么?你还有什么问题?
罗鸣亮小数的意义教学设计范文(18篇)篇十二
1.结合具体情境,通过操作、观察、类比等活动理解小数的意义。
2.经历探索小数意义的过程,体会小数与生活的联系,培养归纳能力。
3.在学习小数意义过程中,培养探求知识的兴趣,提高独立探索和合作交流的能力。
一、创设情境,复习引入。
1.师:同学们,你们在日常生活中,都见过哪些种类的蛋呢?……看来大家见过的蛋还真不少。接下来,咱们一起走进《蛋的世界》,看看里面有多奇妙,好不好!这节课我们一起来探究小数的意义。(板书:小数的意义)。
生1:0.2表示把一正方形平均分成10份,取其中的2份,是十分之二也就是0.2。
师:说得很好,谁再来说一个?
生2:0.5表示十分之五,
生3:0.4表示十分之四。
生:能!
师:下面请同学们从这三个小数中,选择你喜欢的一个用画图的方式表示出来?好吗?
生:好!
师:哪位同学展示一下你画的小数?把你的想法和画法和同学们说一说?
生1:先画一条线段,平均分成10份,取其中的5份,是十分之五,也就是0.5。
师:老师想问问你,为什么取其中5份就是0.5?
生1:因为其中一份是0.1,5份就是0.5。
师:谁想再来展示一下?
生2:我先画一个长方形平均分成10份,取其中的2份,是十分之二,也就是0.2。
生:一位小数。
师:一位小数他们画法虽然不同,但是有共同点。谁来说说这两种画法的共同之处?
生:都是把一个物体平均分成10份,然后再取其中几份,来表示小数。
2.谈话:看来同学们前面的知识掌握的不错,课前,老师从几种动物的蛋的质量中也搜集了一些小数,请同学们看大屏幕。(课件出示情境图)。
二、结合情境,探究新知。
1.学习小数的读写。
(1)师:请同学们仔细观察情境图,你获得了那些数学信息?
(学生根据情境图说出信息)。
师:这个小数读作?第二个小数读作?
这位同学读得非常正确,谁想再来读一读?谁来说说读小数时应注意什么?
(读小数时,小数点前面部分和整数读法一样,小数点后面部分依次读出每一个数。)。
(写小数时,小数点前面部分和整数的写法一样,小数点后面部分依次写出每一个数。)。
(1)在正方形纸片上表示出0.25。
这组信息给我们提供了4个小数,像0.25、0.06这样的小数在图上怎样表示呢?老师为每位同学准备了一张画有正方形的纸,现在请同学们从这两个小数中选择一个小数在这个正方形中表示出来。
谁能到前面来说说你的想法和画法?
学生到前面交流。
师:你是把什么看作一个整体,平均分成()份,表示其中的()份,用分数表示是(),0.25里面有()个0.01。
老师想问问你,为什么取6份(或25份)就表示0.06(或0.25),一格(份)就是0.01,6份(或25份)就是0.06(或0.25)。
罗鸣亮小数的意义教学设计范文(18篇)篇十三
小学四年级数学(下册)第四单元《小数的意义和性质》。
第一课时。
四年级学生。
1.课程标准相关要求。
进一步认识小数,会进行小数和分数的转化(不包括将循环小数化为分数)。
2.教材分析。
《小数的意义》是人教版四年级下册第四单元《小数的意义和性质》第一节的教学内容,是学生系统学习小数的开始。这是在学生三年级学习“分数的初步认识”和“小数的初步认识”基础上教学的,通过这部分内容的学习,使学生进一步理解小数的意义,为今后学习小数四则运算打好基础。
3.学情分析。
本节课探究的内容是日常生活中的实际问题,具有很强的探索性和现实意义,学生学习探究的兴趣会很浓。教学中应因势利导,组织学生在小组中合作探讨,体会抽象和推理的数学思想方法。四年级的学生具备一定的独立思考能力,教学中可组织学生先独立思考,再在小组中相互交流,培养学生的探究品质和能力。
2.借助熟悉的`十进制关系的现实原型多角度理解小数与分数的关系,通过自学,理解计数单位0.1、0.01、0.001。通过数数的活动,知道相邻两个计数单位间的进率是10。
1、通过说一说,想一想,量一量,小组合作交流,探究出小数的意义,达成目标1。
2、经历自学,数数等活动,独立探究,全班交流汇报,说出小数的计数单位和相邻两个计数单位间的进率,达成目标2。
理解一位、两位、三位小数的意义,知道相邻的两个计数单位间的进率是10。
理解一位、两位、三位小数的意义。
米尺、课件。
罗鸣亮小数的意义教学设计范文(18篇)篇十四
第一课时。
四年级学生。
1.课程标准相关要求。
进一步认识小数,会进行小数和分数的转化(不包括将循环小数化为分数)。
2.教材分析。
《小数的意义》是人教版四年级下册第四单元《小数的意义和性质》第一节的教学内容,是学生系统学习小数的开始。这是在学生三年级学习“分数的初步认识”和“小数的初步认识”基础上教学的,通过这部分内容的学习,使学生进一步理解小数的意义,为今后学习小数四则运算打好基础。
3.学情分析。
本节课探究的内容是日常生活中的实际问题,具有很强的探索性和现实意义,学生学习探究的兴趣会很浓。教学中应因势利导,组织学生在小组中合作探讨,体会抽象和推理的数学思想方法。四年级的学生具备一定的独立思考能力,教学中可组织学生先独立思考,再在小组中相互交流,培养学生的探究品质和能力。
2.借助熟悉的十进制关系的现实原型多角度理解小数与分数的关系,通过自学,理解计数单位0.1、0.01、0.001。通过数数的活动,知道相邻两个计数单位间的进率是10。
1、通过说一说,想一想,量一量,小组合作交流,探究出小数的意义,达成目标1。
2、经历自学,数数等活动,独立探究,全班交流汇报,说出小数的计数单位和相邻两个计数单位间的进率,达成目标2。
理解一位、两位、三位小数的意义,知道相邻的两个计数单位间的进率是10。
理解一位、两位、三位小数的意义。
米尺、课件。
罗鸣亮小数的意义教学设计范文(18篇)篇十五
[教学内容]苏教版五年级上册第86页例1、“试一试”、“练一练”以及练习十五的相应练习。
[教学目标]1、使学生通过自主探索,理解并掌握小数乘小数的计算方法,能正确计算相应的式题。2、引导学生积极主动地参加教学活动,经历探索计算方法的过程,培养他们初步的推理能力以及抽象概括能力,并能用数学语言表达自己的想法并进行交流。
3、使学生进一步体会数学知识之间的内在联系,感受数学探究活动本身的乐趣,增强学好数学的信心。
[教学重点]理解小数乘小数的算理,掌握小数乘小数的计算方法。
[教学难点]理解把小数乘法转化成整数乘法后,得到的积回归小数乘法积的推理过程。
[教材简析]这部分内容主要是教学小数乘小数的计算,教材一共安排了两道例题和一个练习。例1呈现的是“小明”房间连同阳台的平面图。教材在引导学生根据长方形面积公式列出乘法算式后,要求先估算再计算。这里的估算既是为了让学生体会解决问题的不同方式,更是为了给接下来探索笔算方法提供一种支持----学生可以通过对笔算结果与估算结果的比较,判断笔算结果是否合理,从而确认相应计算方法的正确性。在让学生初步估算乘积以后,教材重点组织学生探索笔算方法。先告诉学生可以把算式的的两个小数都看成整数来计算,再结合直观图示讨论:按整数相乘后,怎样才能得到原来的积?启发学生理解:把两个因素看成整数,等于把原来的两个因素分别乘10,得到的积也就等于原来的积乘10再乘10,即乘100。由此,要得到原来的乘积,应该用整数相乘的积反过来除以100。
随后的“试一试”让学生继续利用利用例题的情境,求平面图中的阳台面积。教材通过直观的图示继续呈现了计算的思考过程,但把其中的关键步骤留给了学生填空,并在填空的基础上完成了计算,进一步加深对计算方法的理解。然后,引导学生比较例题和“试一试”的计算过程,发现两个因数中的小数位数与积的小数位数的关系,初步抽象出小数乘小数的计算方法。“练一练”第1题针对小数乘小数计算方法的关键环节,让学生根据因数中的小数位数直接在乘积中点上小数点。第2题让学生通过计算巩固刚刚学习的计算方法。
[学情分析]。
多媒体课件。
[教学过程]一、在情境中引发问题。
1、出示小明房间图:从图中你了解到哪些信息?你能提出什么数学问题?师:我们就先来解决第一个问题:房间的面积有多大?谁会列式?你为什么这样列式?2、揭示课题:
师:这里的计算结果与我们开始估计的结果可符合?说明同学们估计得准不准?
请两名学生板演,集体订正、注意纠正错误。3、完成练习十五第2题。
在书上改正,谁愿意上来展示,展台展示。四、在回顾与反思中提升经验,渗透转化的策略。
师:通过这节课的学习,你有什么收获?你觉得在计算小数乘小数的时候要注意些什么?
3.6×2.8=10.08(平方米)2.8×1.15=3.22(平方米)3.61.15×2.8×2.82889207223010.083.220答:房间的面积有10.08平方米。答:阳台的面积是3.22平方米。[作业布置]练习十五第1、3题。
罗鸣亮小数的意义教学设计范文(18篇)篇十六
苏教版《义务教育课程标准实验教科书数学》三年级(下册)第100~101页。
教学目标。
1.使学生经历认识小数的过程,初步了解小数的含义,会读、写一位小数,知道小数各部分的名称,知道自然数和整数。
2.使学生在解决实际问题的过程中,培养初步的自主探究、合作交流的意识,感受数学和生活的密切联系,增强学好数学的信心。
教学过程。
一、复习导入,唤起经验。
出示:1/2585/120.51.25.8。
提问:同学们,知道这些数分别是什么数吗?
谈话:后面的三个数,你平时在什么地方见到过?
学生可能会想到:铅笔芯的规格、眼睛的视力、商品的价格等。
揭题:是的,在日常生活中经常接触到这样的数。它们都是小数,今天我们一起来认识小数。(板书课题:认识小数)。
二、联系实际,探究发现。
1.提出问题。
提问:你想了解小数的哪些知识?
学生可能提出:小数是怎么来的?学了小数有什么用处?小数应该怎样读,怎样写?……。
2.教学第一个例题。
谈话:同学们想知道小数是怎样产生的吗?其实小数就来自我们的生活。先让我们来做这样一个活动:小组合作测量课桌面的长和宽,并用不同的数、不同的单位把测量结果表示出来。比一比,哪个小组想到的表示方法最多。
学生在小组内测量课桌面的长和宽,交流不同的表示方式。教师巡视,并作适当指导。
反馈:你们小组的测量结果是多少?想到几种不同的表示方法?
学生量出课桌面的长是60厘米,宽是40厘米,并用600毫米、60厘米、6/10米等表示课桌面的长,用400毫米、40厘米、4/10米等表示课桌面的宽。(根据学生回答,板书:6分米=6/10米,4分米=4/10米)。
提问:除了上面几种表示形式外,你还能用其他方法来表示吗?
如果学生主动想到分别用0.6米、0.4米表示课桌面的长和宽,则让学生说一说是怎样想到的,0.6米和0.4米分别表示什么意思。
如果学生不能主动地用小数来表示,则讲述:其实,6/10米还可以用小数0.6米来表示,0.6读作零点六。(板书:=0.6米0.6读作零点六)也就是说把1米平均分成10份,其中的6份可以用0.6米表示。
提问:你能说一说0.6米表示的意思吗?
学生回答后,让同桌间互相说一说。
引导:那么4/10米还可以怎样用小数来表示呢?(板书:0.4米0.4读作零点四)。
提问:0.4米表示什么意思?
学生交流时,分别让学生在米尺上指出0.1米、0.5米、0.8米的实际长度。
小结:十分之几米可以写成零点几米。
3.做“想想做做”第1题。
先让学生弄懂题意,然后把答案填在书上。完成后,电脑出示答案,集体校对。
4.教学第二个例题。
谈话:昨天三(5)班的李萍同学在育才商店里买了这样一些文具用品。我们一起来看看吧。
出示文具的图片及标价:
铅笔圆珠笔笔记本。
3角1元2角3元5角。
提问:一枝铅笔是3角钱,如果用元作单位,是多少元呢?(分别用3/10元和0.3元表示,并读一读、写一写。)。
讨论:一枝圆珠笔的价钱是1元2角,怎样用元作单位,用小数来表示圆珠笔的价钱呢?请先在小组里讨论讨论,再说一说你是怎样想的。
反馈时,着重引导学生体会:1元2角是1元多2角,2角可以用0.2元来表示,1元和0.2元合起来就写成1.2元,1元2角可以写成1.2元。(板书:1元2角=1.2元1.2读作一点二)。
提问:一本笔记本的价钱是3元5角,用元作单位的小数又怎么来表示呢?你是怎么想的?(板书:3元5角=3.5元3.5读作三点五)。
小结:几元几角写成小数就是几点几元。
5.做“想想做做”第2题。
让学生在书上完成填空,并说一说是怎样想的。
6.介绍自然数和整数。
让学生自由阅读书本第100页的最后一段,提出不懂的问题。
7.游戏。
男同学代表整数,女同学代表小数,看到你所表示的数请你站起来。
80.23.805995.411/41.6。
三、竞赛激趣,拓展延伸。
谈话:我们已经认识了小数。现在我们以小组为单位,一起来进行比赛好吗?
1.听录音,把听到的小数记录下来。
一只青蛙跳过0.4米的田埂,来到宽16.8米的河面上,踏上了0.2平方米的荷叶,狂叫三声,扑通一声掉进了深3.9米的河里。
2.做“想想做做”第3题。
出示题目,让学生抢答,并说一说每道题中分数、小数的意义。
3.回答下面的问题。
一包上好佳,价钱在1元到2元之间,请你猜猜它的价钱是多少?
小组合作讨论后把价钱写在纸上,交流时引导学生用“几元几角”和“几点几元”两种方式表达,并在数轴上分别找出每种可能价钱所在的点。
四、全课总结。
提问:今天你学得开心吗?你有什么收获?
五、拓展。
课件介绍十进分数的发展史和古代数学家刘徽的杰出成就。
罗鸣亮小数的意义教学设计范文(18篇)篇十七
教学内容:
内容分析:
本节教学内容是在三年级“分数的初步认识”和“小数的初步认识”的基础上进行教学的,是学生系统学习小数的开始。
小数实质上是十进分数的另一种表示形式,其依据是十进制位值原则。教材着重从“小数是十进分数的另一种表示形式”来说明小数的意义,使学生明确“分母是10、100、1000……的分数可以用小数来表示。”
三年级学生已经初步认识了分数和小数,再次基础上,课前让学生进行复习。在课堂上通过练习题进行新知的教学,先由教师指导学生认识一位小数,在学习两位小数和三位小数的时候,放手让学生小组探究,体现学习的自主性。通过直观的图形帮助学生理解小数的意义,知道分母是10、100、1000……的分数可以用小数表示。通过想一想、说一说、议一议等活动使学生认识小数的计数单位和数位,掌握小数的计数单位间的进率是10。通过一系列练习巩固认识小数的意义。
教学目标:
1、利用米尺和面积图研究分数和小数之间的关系,感悟小数的意义:分母是10、100、1000……的分数可以用小数表示。理解小数是十进分数的另一种表示形式。
3、知道小数每相邻两个计数单位间的进率是10。
教学重点:
教学难点:
小数每相邻两个计数单位间的进率是10。
教学过程:
课前谈话:三年级我们已经认识了小数,课前也带领大家根据学案复习了小数的知识,并要求大家把你写的小数进行了分类。
下面请同学们给同桌读一读你写的分数和小数,并互相说一说分类结果。
课件出示学案内容。
一.复习导入。
(出示一位学生的分类结果)。
师:请这位同学来回答,你把这些小数分成了几类?
生:三类。
师:你是怎么想的?
生:小数点后面只有一位的是一类,小数点后面是两位的是一类,小数点后面三位的是一类。
师:你们分的和他一样吗?
小数点右边的部分是小数部分(板书补充数位顺序表)。
小数部分只有一位的小数叫做一位小数,那小数部分只有两位的小数呢?
生:两位小数。
师:三位的呢?
生:三位小数。
师:今天我们一起来探究小数的意义(板书:小数的意义)。
二、新授。
(一)认识一位小数。
1、出示尺子图。
师:看这幅图,你是怎样填的?
生:分数:1/10米,小数:0.1米。
师:你是怎么想的?
生:把1米平均分成10份,其中的一份是1/10米,用小数表示是0.1米。
师:谁再来说一说?
2、出示面积图。
师:再看这个图,你还能用分数和小数表示吗?
生:分数是1/10,小数是0.1。
师:为什么它也能用0.1表示?
生:涂色部分表示把正方形平均分成10份,取其中的一份,用分数表示是1/10,用小数表示是0.1.
师:其他同学同意吗?也就是说它们都表示1/10。即1/10=0.1。
(出示课件:1/10=0.1)。
3、出示第二幅面积图。
师:那现在涂色部分是多少?
生:分数是3/10,小数是0.3。
师:0.3表示什么意思?
生:把正方形平均分成10份,取其中的3份,就是3/10,分数是0.3。
师:0.3里面有几个0.1?
生:0.3里面有3个0.1。
4、出示。
师:你还能用分数和小数表示涂色部分吗?给同桌说一说,并且说一说每个小数表示的意义。
(同桌互说)。
汇报:
师:第一个谁来说?
生:分数是6/10,小数是0.6。
师:0.6里面有几个0.1?
生:0.6里面有6个0.1。
师:第二个是多少?
生:分数是9/10,小数是0.9。
师:0.9表示什么?
生:把正方形平均分成10份,取其中的9份,就是9/10,小数是0.9。
师:0.9里面有几个0.1?
生:0.9里面有9个0.1。
5、课件出示。
师:这是我们刚才得到的几组小数和分数,观察这些分数,有什么特点?
生:分母都是10,都是平均分成了10份得到的。
师:也就是十分之几的数,十分之几的数我们可以用几位小数表示?
生:一位小数。
师:十分之几的数用一位小数表示(课件出示)。
给同桌读一读这句话。
6、课件出示。
出示。
生:10/10、1。
师:十分之十就是1。
1里面有几个0.1?
生:1里面有10个0.1(课件出示)。
7、出示。
师:这个图怎么表示?
生:1.2。
师:1.2里面有几个0.1?
生:1.2里面有12个0.1(课件出示)。
8、出示。
师:同学们仔细看,你发现了吗?一位小数都可以看做几个0.1(引导学生说)。
0.1就是一位小数的计数单位,读作十分之一(补充数位顺序表)。
十分之一所占的数位就是十分位(补充数位顺序表)。
师问:十分位的计数单位是什么?
生:十分之一。
师:十分位所占的数位是?
生:十分位。
师:老师在说一个小数:0.8。
8在哪一位?(生:十分位)。
它的计数单位是什么?(生:十分之一)。
有几个这样的计数单位?(生:8个)。
(二)认识两位小数、三位小数。
1、自主探究。
师:刚刚我们认识了一位小数的意义、数位和计数单位。那两位小数、三位小数呢?
接下来请同学们根据学案内容,结合老师给你的问题进行自主探究。
先请一位同学读一读。
学生活动。
2、练习反馈。
师:同学刚才讨论的很积极,这几个问题都解决了吗?
那老师出几个问题考考大家。
3、出示。
师:涂色部分是多少?
生:分数是1/100,小数是0.01。
师:你怎么想的?
生:把正方形平均分成100份,其中的一份是1/100,小数是0.01。
师:谁再来说一说?
出示。
师:这一个呢?
生:分数是4/100,小数是0.04。
师:0.04里面有几个0.01?
生:有4个0.01。
出示。
师:这是多少?
生:分数是21/100,小数是0.21。
师:0.21里面有几个0.01?
生:有21个0.01。
4、认识两位小数的计数单位和数位。
师:两位小数的计数单位是什么?(生:0.01)。
也可以说是百分之一(补充数位顺序表)。
百分之一所占的数位是?(生?百分位)(补充顺序表)。
两位小数表示的是?(生:百分之几的数)。
出示。
师:再看这个图,涂色部分是多少?
生:分数是1/1000,小数是0.001。
师:0.001表示什么?
师:谁再来说?
出示:0.125。
师:再看这个数,是多少?(生:零点一二五)。
没有图了,你还能说出他的意义吗?
师:0.125里面有几个0.001?
生:有125个。
6、三位小数的计数单位和数位。
师:三位小数的计数单位是什么?(生:0.001)。
也可以读作千分之一。
千分之一所占的数位是?(生:千分位)。
(补充数位顺序表)。
三位小数表示的是什么数?(生:千分之几的数)。
7、延伸。
师:那四位小数呢?(生:万分之几)。
计数单位是?(生:万分之一)。
往下说的完吗?(生:说不完)。
我们可以用省略号表示(补充数位顺序表)。
8、拓展。
师:小数部分有没有最小的计数单位?
生:有。
师:有不同意见吗?
师:你们听懂了吗?
想一想,0.1是怎么得到的?
生:平均分成10份,1份是0.1。
生:没有最小的计数单位。
师:小数部分有没有最大的计数单位?
生:十分之一。
9、修改数位顺序表。
师:拿出你刚才写的数位顺序表,看一看你写的对吗?
有问题的修改一下。
(三)计数单位间的进率。
1、出示:
师:第一个图的涂色部分用小数表示是?(生:0.1)。
第二个图的涂色部分用小数表示是?(生:0.10)。
你发现了什么?
生:两个图的涂色部分一样大。
师:也就是他们大小相同。(出示:0.1=0.10)。
有什么不同吗?
生:平均分的份数不同,一个平均分成了10分,一个平均分成了100份。
第一个表示1个0.1,第二个表示10个0.01。
你还有什么发现?
生:10个0.01是0.1(板书)。
师:一起读一遍。
2、出示(由1个0.1增加到10个0.1)。
生一起数到1。
师:你发现了什么?
生:10个0.1是1。
师:(板书)再读一读。
3、小结。
师(指数位顺序表):你有什么发现?
生:进率是10。
师:对,小数和整数一样,相邻两个计数单位间的进率是10。
罗鸣亮小数的意义教学设计范文(18篇)篇十八
在学生初步认识分数和小数的基础上,使学生进一步理解小数的意义,认识小数的计数单位及相邻两个单位间的进率。
(二)过程与方法。
在操作中使学生体会小数产生的必要性。通过观察、比较,以及自主探究建立小数与分数之间的联系。
(三)情感态度和价值观。
在学生积极参与数学活动的过程中,渗透数形结合的数学思想,培养学生的抽象概括和迁移能力。
教学重点:理解小数的意义,理解小数的计数单位及它们间的进率。
教学难点:理解小数的计数单位及它们间的进率。
米尺、彩带、磁条。
2.你们估计得对不对呢?让我们一起用直尺来验证一下。
3.谁愿意把你测量的结果告诉大家?
学生汇报预设:
学生1:我测量课桌面的长度是120厘米。
学生2:我测量课桌面的长度是1米2分米。
教师:课桌的长度如果以米为单位就是1.2米。
(1)在生活中,人们进行测量和计算时,往往不能正好得到整数的结果。这时常用小数表示。
(2)认识小数吗?在哪儿见过小数?今天我们一起学习小数的意义。
【设计意图】联系生活实际提出问题,让学生通过动手操作,在实际测量和记录的过程中发现有时得不到整数结果,从而引发认知冲突,激发学生进一步探究的欲望,感受小数产生的必要性。
(二)尝试探究,理解意义。
1.认识一位小数。
教师:出示1米长的彩条,如果把1米平均分成10份,每份是多长?把1分米改写成。
用“米”做单位的`分数怎么表示?说一说你是怎么想的?
学生交流想法。
教师总结:米用小数表示就是0.1米。
教师:3分米,7分米改写成用“米”作单位的分数应该怎样表示呢?小数呢?请同学们试着写一写。
学生独立完成,教师巡视。交流分享学生的思考过程。
教师:仔细观察黑板上的每组分数和小数,你发现了什么?
结合学生回答,教师小结:像这样,小数点的右面有1个数字,这样的小数,就称为一位小数。也就是说,分母是10的分数,可以用一位小数表示。
练习:用小数怎么表示?呢?0.5怎样用分数表示?
参考答案:0.9,0.6,。
2.认识两位小数。
1厘米写成用“米”作单位的分数应该怎么表示?小数呢?4厘米呢?8厘米呢?
学生先独立完成,再合作交流。
教师:观察每组中的分数和小数,说一说你发现了什么?
学生1:分数的分母都是100。
教师小结:同学们观察得都非常正确。类似刚刚学习的一位小数,像这样,小数点的右面有2个数字的小数就称为两位小数。也就是说,分母是100的分数,可以用两位小数表示。
【设计意图】让学生根据一位小数表示十分之几,猜想出两位小数和什么样的小数有关,有意识地促进迁移,让学生体验成功,培养学生的学习兴趣和信心。
教师:结合我们刚才对一位小数和两位小数的认识,自选两位以上的小数进行研究,完成表格。
学生先独立研究,再汇报交流结果,教师根据学生回答适时板书。
教师:通过你的研究,你发现了什么?
学生1:我发现分母是1000的分数可以写成三位小数。比如:把1米平均分成1000份,这样的一份就是1毫米,也就是米,写成小数就是0.001米。
学生2:三位小数就表示千分之几。
教师:其他同学还有谁也研究了三位小数的意义?谁愿意也来说一说?
学生预设:我选择的小数是0.023,也是一个三位小数,可用分数表示为千分之二十三。
学生:四位小数表示万分之几,五位小数表示十万分之几。
学生1:我认为分母是10、100、1000、10000等的分数可以用小数来表示。
4.认识小数的计数单位。
【设计意图】引导学生借助对“一位小数表示十分之几”“两位小数表示百分之几”的直观认识,独立探究三位小数、四位小数、五位小数……表示的意义,最后抽象概括出小数的意义,有效地锻炼了学生的多种能力,突破了重难点,同时也渗透了小数中相邻两个计数单位间的进率。
(三)巩固练习,强化认知。
1.第33页做一做。
2.第36页练习九第1题。
3.填空:
0.6里面有6个();再增加()个0.1就等于1。
0.25里面有()个0.01。
32个0.001是();32个0.01是();32个0.1是()。
4.在括号里填上适当的小数。
学生先独立完成,教师再让学生汇报答案,集体评议。
【设计意图】通过不同层次的练习设计,让学生在对比练习的过程中不断加深对小数意义的理解,同时有意识地结合生活实际体现知识的应用价值,帮助学生根据小数意义理解生活中常见的小数所表示的含义。
(四)总结梳理,拓展延伸。
1.今天这节课我们学习了哪些知识?你有什么收获?
2.介绍对小数发展具有杰出贡献的两位数学家。
【设计意图】通过问题帮助学生梳理本课所学的知识,最后通过课外延伸向学生介绍与小数发展相关的数学资料,让学生进一步感受数学文化,培养学生的数学素养。