教学工作计划是教师进行教学管理和教学评估的重要依据,有利于教师提高专业素养和教学能力。以下是小编为大家收集的教学工作计划范文,供大家参考和借鉴。
加法结合律教案(实用15篇)篇一
教科书第4950页的例3例5,练习十一的第510题。
使学生理解并掌握加法结合律,能够应用加法交换律和结合律进行简便计算,培养学生分析推理的能力。
小黑板。
一、复习。
1.根据运算定律在下面的()里填上适当的数。
35+()=65+()()+147=()+274。
56+74=()+()a+200=()+()。
订正时,让学生说出是根据什么运算定律填数的。
2.下面各等式哪些符合加法交换律?
270+380=390+26030+50+70=30+70+50。
a+800=800+a。
3.四年级一班有48人,二班有50人,两个班一共有多少人?
计算完后,让学生应用加法的意义说明为什么用加法计算。
二、新课。
1.教学例3。
给上面的复习题3加上一个已知条件三班有49人,问题改为三个班一共有多少人?引出例2。
让学生读题后,指名说出已知条件和问题,教师用线段图表示出数量关系:
一班48人二班50人三班49人。
共?人。
提问:
指名说第一种解法:先把一班和二班的人数加起来,求出它们的和,再加上三班的人数。引导学生说出综合算式:(48+50)+49。强调说明,为了表明先算一班与二班人数的和,可以在48和50的外面加上小括号。
指名说出第二种解法:先把二班和三班的人数加起来,求出它们的和,再加上一班的人数。引导学生说出综合算式:48+(50+49)。强调说明,为了表示先算二班与三班人数的和,要在50和49的外面加上小括号。
提问:
这两种解法的结果怎样?
用什么符号连接这两个算式?(板书:(48+50)+49=48+(50+49))。
比较一下等号两边的算式,有什么相同点?(都是三个数相加,左、右两边的三个数相同。)。
有什么不同点?(加的顺序不同,等号左边先把48和50相加,再同49相加;等号右边先把50和49相加,再同48相加。)。
引导学生回答后,教师归纳整理:48、50和49这三个数相加,先把48和50相加,再同49相加;或者先把50和49相加,再同48相加,它们的得数一样,也就是和不变。
2.再出两组算式,引导学生比较,加以概括。
(1)教师:我们再观察一组算式,看一看它们有什么样的.关系。
板书:(12+13)+1412+(13+14)。
先让学生算一算,看两个算式的结果怎样,用什么符号连接。这组算式说明了什么。
学生回答后,教师归纳整理:12、13和14这三个数相加,先把12和13相加,再同14相加;或者先把13和14相加,再同12相加,它们的和不变。
(2)再观察一组算式,看一看它们有什么样的关系。
(320+150+230320+(150+230)。
让学生说一说这组算式说明了什么?
3.比较三个等式,突出下面三点:
(2)这三个等式中,等号左边三个算式有什么共同点?(加的顺序相同,都是先把前两个数相加,再同第三个数相加。)。
(3)再看右边三个算式有什么共同点?(加的顺序相同,都是先把后两个数据相加,再同第一个数相加。)。
提问:
每个等式中等号左边的算式和等号右边的算式,加的顺序相同吗?但它们的和怎么样?
谁能把我们发现的规律完整地说一说?
让几个学生试说后,教师完整地叙述一遍,说明这一规律叫做规律叫做加法结合律。再看一看教科书第49页的结语。
提问:
如果用字母a、b、c分别表示三个中数,怎样表示加法的结合律呢?(学生回答后,板书:(a+b)+c=a+(b+c)。
等号左边(a+b)+c表示什么意思?(先把前面两个数相加,再同第三个数相加。)。
等号右边a+(b+c)表示什么意思?(先把后面两个数相加,再同第一个数相加。)。
5.练习。
完成第50页上面的做一做题目。让学生把数填在书上,订正时,让学生说一说根据哪个运算定律填写的。
(1)教学例4。
出示:480+325+75。
让学生想一想,怎样计算比较简便?要应用什么运算定律?共同讨论。
教师板书:480+325+75。
=480+400计算时方框里的这一步。
=880可以省略不写。
(2)教学例5。
出示:325+480+75。
让学生想一想,怎样计算比较简便?要应用什么运算定律?
学生试算后,讨论订正。
教师板书:325+480+75。
=325+75+480指出应用加法交换律。
=400+480。
=880。
(3)比较例4、例5。
让学生说一说例4、例5在应用运算定律方面有什么不同?
教师小结:例4没有调换加数的位置,只应用加法结合律,先把后面两个数相加就可以使计算简便。而例5,要使325和75相加,必须先应用加法交换律把75调到480的前面,再应用加法结合律把325和75相加才能使计算简便。
然后启发学生说出例5也可以应用加法交换律把325调到480的后面,再应用加法结合律把325和75相加,使计算简便。
提问:
想一想,过去我们学过的哪些计算中应用了加法结合律?
如果学生想不出,再指出:
如9+8怎么想?9+8=9+(1+7)=(9+1)+7=17。
36+48怎么想?36+(40+8)=(36+40)+8=76+8=84。
应用加法结合律不仅可以做口算加法,还能使一些计算简便。
(4)做第50页下面的做一做。
让学生自己做,订正时,让学生说出是怎样应用运算定律的。
三、课堂练习。
1.做练习十一的第5、6、7题,做完后共同订正。
(1)第5题,要注意让学生弄清根据哪个运算定律来填数。
(2)第6题,要注意a+(20+9)=(a+20)+9这道题,看学生是否能判断出,这道题虽然有字母又有数目,但它仍符合结合律。
(3)第7题,要求学生先两道题说一说是怎样应用加法结合律的。如37+8,先把37分成30+7,应用结合律可以先把7+8相加,再和30相加。
四、布置作业。
加法结合律教案(实用15篇)篇二
教学目标:
1、使学生经历探索加法交换律和结合律的过程,理解并掌握加法交换律和结合律,初步感知加法运算律的价值,发展应用意识。
2、使学生在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高抽象思维能力。
3、使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。
教学重点:
让学生在探索中经历运算律的发现过程,理解不同算式间的相等关系,发现规律,概括运算律。
教学难点:
概括运算律,尝试用字母表示。
教学过程:
一、探索加法交换律。
1、看谁填得又对又快?
96+35=35+()204+()=57+204。
23+()=15+()()+257=()+63。
2、观察与发现。
提问:仔细观察这6个算式,你发现了什么?
3、猜测与尝试。
是不是所有的加法算式,加数交换位置以后,结果都相等呢?
4、生活中的应用。
图示:
5、用自己的话说说你的发现。
【预测:学生的说法可能不够简练和准确,教师用肢体、表情等引导学生说清楚,再归纳】。
教师小结:类似这样的`等式能写完吗?虽然咱们写出的等式各不相同,但是仔细观察,它们却蕴藏着共同的规律,那就是——交换加数的位置,和不变,这就叫做加法交换律。
6、用字母表示加法交换律。
教师:在数学上,我们通常用字母a和b来表示两个加数,那么,加法交换律可以写成:a+b=b+a。
7、加法交换律的应用之一:验算。
加法交换律是我们的老朋友了,想一想,什么时候曾经用过它?
加法验算,交换两个加数的位置再加一遍就是运用了加法交换律。
1.运用加法交换律使计算简便。
出示例题:回到操场,刚才是跳绳的同学,现在有什么变化?(屏示:23个踢毽子的女同学)。
学生独立完成,要求列出综合算式。
展示(选择有代表性的几种进行展示):
28+17+2328+17+2328+17+23。
=45+23=17+23+28=28+(17+23)。
=68(人)=40+28=28+40。
=68(人)=68(人)。
28+17+23。
思考,如果不使用加法交换律调整加数的位置,有没有办法先计算17+23呢?
【预测:学生能很快想到,使用小括号,可以改变原有的运算顺序,使计算简便。】。
指明一位学生板演。
3、猜测规律,举例验证。
这个发现,会不会仅仅是一种巧合呢?如果换成其他的三个数相加,左右两边的得数还会相同吗?你能不能再举些例子来验证?同桌互相验证,全班汇报。
学生观察,教师提问:计算28+17+23,按照四则运算法则,应该先算什么?(指明学生回答)。
归纳小结:先把前两个数相加,或者先把后两个数相加,结果不变,这就叫做加法结合律。
鼓励学生尝试用字母表示加法结合律。
6、巩固与练习。
你能在方框内填出合适的数吗?
(45+36)+64=45+(36+)。
(72+20)+=72+(20+8)。
560+(140+70)=(560+)+。
三、课堂练习。
1、你能把得数相同的算式连一连吗?
(1)72+16a.(75+25)+48。
(2)45+(88+12)b.16+72。
(3)75+(48+25)c.(45+88)+12。
(4)(84+68)+32d.84+(68+23)。
集体订正后,教师小结。
2、拓展练习。
四、课堂小结。
原来巧用运算律还能使一些计算更简便呢!这就是我们下一节课继续研究!
加法结合律教案(实用15篇)篇三
1、让学生在经历探索加法交换律和加法结合律的过程中,理解并掌握加法交换律和加法结合律,初步感受到应用加法运算律可以使一些计算简便。
2、在探索运算律的过程中,发展学生的分析、比较、抽象、概括能力,培养学生的符号感。
3、让学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。
教学重点。
理解加法的运算律。
教学难点。
概括加法的运算律,尝试用字母表示。
教学过程。
1、课件出示:这是同学们课外活动的情况。谁能来解决这个问题?根据学生回答,联系题意讲解,并板书:28+17=45(人),问:还可能怎样想:17+28=45(人)。
板书算式。
2、比较这两道算式有什么不同?
3、得数相同的算式我们可以用等号把它们连成等式。
4、举例:你能再说出几个这样的等式吗?自己写一写。学生说,老师相机板书等式,并追问:介绍一下你是怎么写的?核实是否相等。
5、概括规律:仔细观察,有什么规律?根据学生回答,相机引导发现规律。
6、用自己喜欢的方式表示这个规律?可适当提示:用符号、文字、字母。
学生思考,充分发表自己意见,教师给予肯定。
7、数学上,我们一般用a、b表示两个加数,可以写成:a+b=b+a.老师小结:
引出:加法交换律(板书)。
8、小练习:填数。
3、比较这两个算式:有什么不同?什么相同?得数为什么相同?我们可以用等号连成等式。
4、出示书上题目,说一说,算一算。
5、概括规律:仔细观察,你有什么发现?学生回答,教师引导发现规律。
6、你能不能再举几个例子?学生举例。
8、小练习:填数。
2、课后练习:
(1)下面等式各应用了什么运算律?学生说一说,对第三道重点分析,引出加法运算律有作用。
(2)比较体会运算律的作用,知道凑整百。
(3)凑整百小练习。
加法结合律教案(实用15篇)篇四
“加法交换律和加法结合律”是国标版苏教版小学四年级上册第8单元中的内容。本节内容安排了三个例题,分5课时进行教学,今天是其中的第一课时。加法交换律和加法结合律是运算中进行简便计算的两种必要的理论依据,他们是学生正确、合理、灵活地进行计算的思维素质,掌握的好坏将直接影响学生今后的简便计算和计算速度。这部分内容是在学生已经学过的加法计算和验算的基础上进一步探究,从感性上升到理性的内容。教材安排两个运算定律教学时,采用了不完全的归纳推理,教材从学生熟悉的实际问题的解答引入新课,列出两个不同的算式组成等式,再例举类似的等式进行分析、比较、找到共同点,抽象、概括出加法交换律和加法结合律。教材有意识地让学生运用已有的经验,经历运算律的发现过程,使学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理的构建知识。“想想做做”先安排了一些基本练习,以填空、判断等形式巩固对加法运算的理解,接着通过题组对比和凑整等练习,为学习简便计算作适当渗透和铺垫。
(二)学情分析。
(三)目标定位。
根据学生的生活经验和知识背景及本课的知识特点,我预设如下教学目标:
(1)教学技能目标:通过利用学生身边的材料,组成贴近学生生活的教学内容,使学生理解并掌握加法交换律和加法结合律,并能用字母来表示交换律和结合律。
(2)过程方法目标:通过学生的自主观察、比较、分析、归纳,合作交流等学习活动,使学生经历探索加法交换律和结合律的过程,并经过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。
(3)情感、态度、价值观目标:通过学生积极参与规律的探索,发现和归纳,使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考问题的意识和习惯。
教学重点:使学生理解并掌握加法交换律和结合律,能用字母表示加法交换律和结合律。
教学难点:使学生经历探索加法交换律和结合律的过程,发现并概括出运算定律。
教具学具:为了便于操作、交流和展示、及时与学生互动,本课准备多媒体一套。
二、说教学程序。
鉴于本课教学内容设定的目标及学生的认知规律和实际情况,预设如下四部分展开教学。
(一)探索加法交换律:
这部分分成4个环节进行。
1、在情境中初步感知规律。
课始从学校参加吴中区小学生运动会话题作为课堂信息,要求学生根据提供信息提出问题,从而导入新课,进行加法交换律的研究。
(设计意图:数学源于生活,生活处处有数学,用学生身边事情引入新知,很好地调动学生的学习积极性,在学生交流中提取有用的信息,为下而面的探究呈现素材,同时渗透思想品德教育。)。
2、在例举中验证规律。
(1)教师组织学生观察两个式子的特点,然后自己照样子仿写等式。
(2)运用自己字写出的等式,再次观察、比较有何相同点和不同点,从而初步感知其中的规律。
(设计意图:教师充分让学生自主活动,规律发现的过程。一方面组织学生写出类似的等式,帮助了学生积累感性材料,另一方面丰富了学生的表象,进一步感知了加法交换律。)。
3、在反思中概括规律。
(1)自己仿写式子,独立思考或小组讨论,用自己喜欢的形式表示出来。
(设计意图:通过学生独立思考,小组讨论,师生交流的多种形式,帮助学生用自己的语言来表示加法交换律,培养学生运用数学语言表述和概括的能力)。
(2)用字母来表示加法交换律。
(设计意图:学生在充分感知个性创造的基础上,构建了简单的数学模型,从用符号表示规律和用含有字母的式子表示规律,使学生体会到符号的简洁性,从而发展了学生的符号感。)。
4、练习。
(1)填空、(2)判断、(3)验算。
(设计意图:新课刚结束就配以填空、判断、验算多种形式的联系,既有利于概念的正确建立,同时也及时地巩固了新知。)。
整个探索过程与“交换律”相似,唯一不同的是由于学生已有了探索前面例子的经验,在这里教师可以完全放手,稍加点拨便于引导学生完成探索过程。
1、在情境中感受规律。
以上面4、练习题为内容,让学生提问题过渡到下一环节,非常自然,
(1)学生一起解决“三个项目共得多少分?”
(2)交流学生各自列式,并让学生说清列式理由。
(3)选择两种不同列式,探索规律。
(设计意图:抓住加法交换律和加法结合律的内在联系,利用学生已有知识经验,把加法交换律的学习,迁移类推到加法结合律的学习中来。)。
2、在计算中验证规律。
(1)教师出示两组题目,让学生观察结果是否相等,为学生接下来题目,探究打下基础。
(2)教师写出左边算式,让学生写出右边算式(与左边相等),使学生在教师的引导下,逐步感知加法结合律。
(3)学生依据自己经验,开始写出这一类型的等式题,让学生在实践操作与锻炼,并体会认识加法结合律。
(设计意图:学生在教师的点拨和引导下,逐步从观察——感知——理解,充分符合学生的认知规律。
(1)小组讨论,观察等式,左边和右边有什么变化,你发现了什么规律?
(2)按照这种规律,你还能写出这样的算式吗?
(3)用字母表示这样的规律。
(设计意图:这里主要通过学生讨论、交流、汇报等环节,正直组学生一个自主的空间。由于“运算律”属于理性的总结和概括,比较抽象,学生并不容易理解和掌握,因此多引导学生独立发现,思考、解答,有利于学生概括出相应的运算律。)。
三、实践应用。
(设计意图:我准备安排基础训练和拓展训练两个练习层次,通过层层深入,帮助学生进一步掌握本课知识,形成技能,并激发他们的创新思维,让学生感受解决问题的乐趣。
1、基础训练,分三个层次。
(1)想想做做1:运用了加法的什么定律?
通过寓教于乐的游戏方法进行练习,女生代表加法交换律,男生代表加法结合律,让学生体会在每个等式中应用了什么运算定律。
(2)想想做做4,每个学生选一组题独立完成,使学生通过比较,知道应用加法运算律有时可以使两个加数的尾数凑成整十数,使计算简便。
(3)想想做做5。
(设计意图:让学生意识到结合律往往要凑整,进行这题训练有利于提高学生的计算速度和正确率。为后头运用加法运算律进行简便运算打好基础。)。
2、拓展练习,分二个层次。
(1)在方框里填上适当的数。通过用图形式字母表示数来巩固加法运算定律,有利于学生抽象思维的形成。
(2)应用加法运算定律使计算简便:30+28+70+45+72。通过该题训练把一般的规律推广到更多的数字计算中,有利于知识的深化和综合运用知识能力的提高。
四、评价鼓励。
(设计意图:及时评价总结,肯定学生的学习,以促进学生更加自觉主动地进行学习,使本课学习内容的理解提升到一个更高层面。)。
五、教法、学法。
以上是本人对本课教学过程的预设,在实际教学过程中将尽可能结合学生的生活经验,为学生创设生活和活动情景,新授和练习尽可能从贴近学生身边的素材撷取,激发学生学习兴趣,在学习过程中让学生经历动手实践,自主探究,合作交流的活动,使学生体会“做数学的乐趣。”
板书设计:
(设计意图:简明扼要的、纲领式的板书反映本课主要内容,体现本课知识的形成过程,知识性、系统性在整个板书中充分体现。)。
读书破万卷下笔如有神,以上就是为大家整理的2篇《《加法交换律和加法结合律》教案》,希望可以启发您的一些写作思路,更多实用的范文样本、模板格式尽在。
加法结合律教案(实用15篇)篇五
加法结合律就要让学生尝试运用这种方法自己去探索规律了。由于加法结合律一个教学难点,教学中安排了三个层次,首先学生在观察等式,初步感知等式特征的基础上模仿写等式,在模仿中逐步明晰特征。第二层次在观察比较中概括特征,通过“由此你想到了些什么”引发学生由三个例子的共同特征联想到是否具有普遍性。从而得到猜想:是不是所有的三个数相加都具有这样的特征,再通过学生大量的举例,验证猜想,得出规律。
通过教师的引导,让孩子们从思考中获得了快乐,从运用中得到了启示,所以整堂课学生注意力都是高度集中的。鼓励学生用自己喜欢的方法表示规律。学生思维的浪花又一次激起,有图形表示的,有文字表示的,也有字母表示的',既是对加法交换律的概括与提升,又能发展符号感。
我还注意让学生在交流共享中充实学习材料,增强结论的可靠性。课上的时间有限,学生的独立举例是很有限的,我通过让学生小组交流、全班交流,达到资源共享。注意渗透数学的学习方法,即让学生踏踏实实经历了“列式计算——观察思考——猜测验证——得出结论”这一数学知识研究的基本过程。学生自己想,自己说,自己举例,自己得出规律,积极主动的探究活动贯穿始终,充分体现了学生的主体地位。
加法结合律教案(实用15篇)篇六
1、使学生探索加法运算律的过程,理解并掌握加法的交换律和结合律,并初步感知加法运算律的价值,发展运用意识。
2、学会用字母表示运算律,初步培养符号感和归纳、推理的能力。
3、在数学活动中,增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。
理解并掌握运算律,并进行运算。
主动探索法。
挂图、卡片。
一、情景导入。
1、谈话:同学们喜欢玩吗?玩什么?(师生做游戏进入新课)。
2、出示情景图,仔细看图,读懂图中的信息。
(1)同桌间说信息,提加法问题。
(2)展示学习成果(师相机贴出问题卡)。
(3)教师小结进入课题并板书:加法运算律。
二、探索加法交换律。
1、解决问题“跳绳的有多少人?”
(1)学生自练,展示学习成果。(指两名用不同方法计算的同学展示)。
(2)说说自己的发现。(同桌交流,展示)。
(3)师小结并板书28+17=17+28。
(4)让学生举例(自练)展示教师相机板书。
2、讨论交流:
a每组中的两个算式的异同。
b这几组算式是不是都具有这样的特点?
c说说自己发现的规律。(用自己的话或用自己喜欢的方式表示)。
d用字母a、b表示两个加数,怎样表示?(师生交流总结并板书)。
ea+b=b+a(说说字母各表示什么?)。
3、练习。
357+218(计算并验算)。
(1)出示问题二“参加活动的一共有多少人?”(学生自己练习,师巡视指用不同方法。
计算的同学上台板演)。
(2)让学生观察比较得出结果,师板书:(28+17)+23=28+(17+23)。
交流自己的发现。
(3)出示两组算式,观察并探索其中的规律。
用学习例1的方法总结出加法结合律,说说其中的字母及识字的含义。
四、巩固理解运算律。
卡片出示课后“想想做做”中的练习题(自练,指名说)(同桌交流,展示)。
五、总结提高。
1、这节课我们学习了加法的哪两个运算律?说说自己的收获。
2、教师小结:
加法交换律和加法结合率都是加法运算中存在的规律,涉及到的数都是加数。加法交换率涉及到的加数只是交换了位置,和不变;加法结合率涉及到的加数位置不变,只是改变了运算顺序,和也不变。
六、布置作业。
完成课后未完成的题目板书。
运算律加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)。
加法结合律教案(实用15篇)篇七
1、上课做到条理清晰,层次分明。我认真研读了教材,在尊重教材的基础上精心设计课堂教学过程。这节课教学目标明确,结构层次清晰,重点突出,教学方法灵活,也很恰当,体现了新课程的理念。
2、培养了学生探究精神。教学成功的重要前提之一就是要激活学生参与热情,打开思维的闸门,在“多向互动”和“动态生成”的教学过程中凸显知识的活性。
3、精心设计练习。教学中学生有一定的练习量,除了完成课本上的相关练习,我还补充设计了“填空题”,在教学加法交换律结合律之后,都安排了一组练习题强化概念。
加法结合律教案(实用15篇)篇八
1、让学生在经历探索加法交换律和加法结合律的'过程中,理解并掌握加法交换律和加法结合律,初步感受到应用加法运算律可以使一些计算简便。
2、在探索运算律的过程中,发展学生的分析、比较、抽象、概括能力,培养学生的符号感。
3、让学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。
理解加法的运算律。
概括加法的运算律,尝试用字母表示。
一、教师适当引导,进入新知。
1、课件出示:这是同学们课外活动的情况。谁能来解决这个问题?根据学生回答,联系题意讲解,并板书:28+17=45(人),问:还可能怎样想:17+28=45(人)。
板书算式。
2、比较这两道算式有什么不同?
3、得数相同的算式我们可以用等号把它们连成等式。
4、举例:你能再说出几个这样的等式吗?自己写一写。学生说,老师相机板书等式,并追问:介绍一下你是怎么写的?核实是否相等。
5、概括规律:仔细观察,有什么规律?根据学生回答,相机引导发现规律。
6、用自己喜欢的方式表示这个规律?可适当提示:用符号、文字、字母学生思考,充分发表自己意见,教师给予肯定。
7、数学上,我们一般用a、b表示两个加数,可以写成:a+b=b+a。老师小结:
引出:加法交换律(板书)。
8、小练习:填数。
3、比较这两个算式:有什么不同?什么相同?得数为什么相同?我们可以用等号连成等式。
4、出示书上题目,说一说,算一算。
5、概括规律:仔细观察,你有什么发现?学生回答,教师引导发现规律。
6、你能不能再举几个例子?学生举例。
8、小练习:填数。
四、总结新知,组织练习。
2、课后练习:
(1)下面等式各应用了什么运算律?学生说一说,对第三道重点分析,引出加法运算律有作用。
(2)比较体会运算律的作用,知道凑整百。
(3)凑整百小练习。
加法结合律教案(实用15篇)篇九
“加法交换律和加法结合律”是国标版苏教版小学四年级上册第8单元中的内容。本节内容安排了三个例题,分5课时进行教学,今天是其中的第一课时。加法交换律和加法结合律是运算中进行简便计算的两种必要的理论依据,他们是学生正确、合理、灵活地进行计算的思维素质,掌握的好坏将直接影响学生今后的简便计算和计算速度。这部分内容是在学生已经学过的加法计算和验算的基础上进一步探究,从感性上升到理性的内容。教材安排两个运算定律教学时,采用了不完全的归纳推理,教材从学生熟悉的实际问题的解答引入新课,列出两个不同的算式组成等式,再例举类似的等式进行分析、比较、找到共同点,抽象、概括出加法交换律和加法结合律。教材有意识地让学生运用已有的经验,经历运算律的发现过程,使学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理的构建知识。“想想做做”先安排了一些基本练习,以填空、判断等形式巩固对加法运算的理解,接着通过题组对比和凑整等练习,为学习简便计算作适当渗透和铺垫。
(二)学情分析。
(三)目标定位。
根据学生的生活经验和知识背景及本课的知识特点,我预设如下教学目标:
(1)教学技能目标:通过利用学生身边的材料,组成贴近学生生活的教学内容,使学生理解并掌握加法交换律和加法结合律,并能用字母来表示交换律和结合律。
(2)过程方法目标:通过学生的自主观察、比较、分析、归纳,合作交流等学习活动,使学生经历探索加法交换律和结合律的过程,并经过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。
(3)情感、态度、价值观目标:通过学生积极参与规律的探索,发现和归纳,使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考问题的意识和习惯。
教学难点:使学生经历探索加法交换律和结合律的过程,发现并概括出运算定律。
教具学具:为了便于操作、交流和展示、及时与学生互动,本课准备多媒体一套。
二、说教学程序。
鉴于本课教学内容设定的目标及学生的认知规律和实际情况,预设如下四部分展开教学。
(一)探索加法交换律:
这部分分成4个环节进行。
1、在情境中初步感知规律。
课始从学校参加吴中区小学生运动会话题作为课堂信息,要求学生根据提供信息提出问题,从而导入新课,进行加法交换律的研究。
(设计意图:数学源于生活,生活处处有数学,用学生身边事情引入新知,很好地调动学生的学习积极性,在学生交流中提取有用的信息,为下而面的探究呈现素材,同时渗透思想品德教育。)。
2、在例举中验证规律。
(1)教师组织学生观察两个式子的特点,然后自己照样子仿写等式。
(2)运用自己字写出的等式,再次观察、比较有何相同点和不同点,从而初步感知其中的规律。
(设计意图:教师充分让学生自主活动,规律发现的过程。一方面组织学生写出类似的等式,帮助了学生积累感性材料,另一方面丰富了学生的表象,进一步感知了加法交换律。)。
3、在反思中概括规律。
(1)自己仿写式子,独立思考或小组讨论,用自己喜欢的形式表示出来。
(设计意图:通过学生独立思考,小组讨论,师生交流的多种形式,帮助学生用自己的语言来表示加法交换律,培养学生运用数学语言表述和概括的能力)。
(2)用字母来表示加法交换律。
(设计意图:学生在充分感知个性创造的基础上,构建了简单的数学模型,从用符号表示规律和用含有字母的式子表示规律,使学生体会到符号的简洁性,从而发展了学生的符号感。)。
4、练习。
(1)填空、(2)判断、(3)验算。
(设计意图:新课刚结束就配以填空、判断、验算多种形式的联系,既有利于概念的正确建立,同时也及时地巩固了新知。)。
整个探索过程与“交换律”相似,唯一不同的是由于学生已有了探索前面例子的经验,在这里教师可以完全放手,稍加点拨便于引导学生完成探索过程。
1、在情境中感受规律。
以上面4、练习题为内容,让学生提问题过渡到下一环节,非常自然,
(1)学生一起解决“三个项目共得多少分?”
(2)交流学生各自列式,并让学生说清列式理由。
(3)选择两种不同列式,探索规律。
(设计意图:抓住加法交换律和加法结合律的内在联系,利用学生已有知识经验,把加法交换律的学习,迁移类推到加法结合律的学习中来。)。
2、在计算中验证规律。
(1)教师出示两组题目,让学生观察结果是否相等,为学生接下来题目,探究打下基础。
(2)教师写出左边算式,让学生写出右边算式(与左边相等),使学生在教师的引导下,逐步感知加法结合律。
(3)学生依据自己经验,开始写出这一类型的等式题,让学生在实践操作与锻炼,并体会认识加法结合律。
(设计意图:学生在教师的点拨和引导下,逐步从观察——感知——理解,充分符合学生的认知规律。
(1)小组讨论,观察等式,左边和右边有什么变化,你发现了什么规律?
(2)按照这种规律,你还能写出这样的算式吗?
(3)用字母表示这样的规律。
(设计意图:这里主要通过学生讨论、交流、汇报等环节,正直组学生一个自主的空间。由于“运算律”属于理性的总结和概括,比较抽象,学生并不容易理解和掌握,因此多引导学生独立发现,思考、解答,有利于学生概括出相应的运算律。)。
三、实践应用。
(设计意图:我准备安排基础训练和拓展训练两个练习层次,通过层层深入,帮助学生进一步掌握本课知识,形成技能,并激发他们的创新思维,让学生感受解决问题的乐趣。
1、基础训练,分三个层次。
(1)想想做做1:运用了加法的什么定律?
通过寓教于乐的游戏方法进行练习,女生代表加法交换律,男生代表加法结合律,让学生体会在每个等式中应用了什么运算定律。
(2)想想做做4,每个学生选一组题独立完成,使学生通过比较,知道应用加法运算律有时可以使两个加数的尾数凑成整十数,使计算简便。
(3)想想做做5。
(设计意图:让学生意识到结合律往往要凑整,进行这题训练有利于提高学生的计算速度和正确率。为后头运用加法运算律进行简便运算打好基础。)。
2、拓展练习,分二个层次。
(1)在方框里填上适当的数。通过用图形式字母表示数来巩固加法运算定律,有利于学生抽象思维的形成。
(2)应用加法运算定律使计算简便:30+28+70+45+72。通过该题训练把一般的规律推广到更多的数字计算中,有利于知识的深化和综合运用知识能力的提高。
四、评价鼓励。
(设计意图:及时评价总结,肯定学生的学习,以促进学生更加自觉主动地进行学习,使本课学习内容的理解提升到一个更高层面。)。
五、教法、学法。
以上是本人对本课教学过程的预设,在实际教学过程中将尽可能结合学生的生活经验,为学生创设生活和活动情景,新授和练习尽可能从贴近学生身边的素材撷取,激发学生学习兴趣,在学习过程中让学生经历动手实践,自主探究,合作交流的活动,使学生体会“做数学的乐趣。”
板书设计:
(设计意图:简明扼要的、纲领式的板书反映本课主要内容,体现本课知识的形成过程,知识性、系统性在整个板书中充分体现。)。
加法结合律教案(实用15篇)篇十
加法结合律就要让学生尝试运用这种方法自己去探索规律了。由于加法结合律一个教学难点,教学中安排了三个层次,首先学生在观察等式,初步感知等式特征的基础上模仿写等式,在模仿中逐步明晰特征。第二层次在观察比较中概括特征,通过“由此你想到了些什么”引发学生由三个例子的共同特征联想到是否具有普遍性。从而得到猜想:是不是所有的三个数相加都具有这样的特征,再通过学生大量的举例,验证猜想,得出规律。
通过教师的引导,让孩子们从思考中获得了快乐,从运用中得到了启示,所以整堂课学生注意力都是高度集中的。鼓励学生用自己喜欢的方法表示规律。学生思维的浪花又一次激起,有图形表示的,有文字表示的,也有字母表示的,既是对加法交换律的概括与提升,又能发展符号感。
我还注意让学生在交流共享中充实学习材料,比如说:让学生再写这样的算式进一步验证,增强结论的可靠性。注意渗透数学的学习方法,即让学生踏踏实实经历了“列式计算——观察思考——猜测验证——交流合作——得出结论”这一数学知识研究的基本过程。学生自己想,自己说,自己举例,自己得出规律,积极主动的探究活动贯穿始终,充分体现了学生的主体地位。
总的来说,这堂课取得了较好的效果,但是自我感觉不是很好,由于我的心理素质的问题,在课堂上一紧张,个别环节不够紧凑,这也是本人的教学机智不够灵活,缺乏经验,还应该在今后的教学中不断地探索、总结、完善自己。
加法结合律教案(实用15篇)篇十一
教学内容:教科书第49—50页的例3—例5,练习十一的第5—10题。
教学目的:使学生理解并掌握加法结合律,能够应用加法交换律和结合律进行简便计算,培养学生分析推理的能力。
教学难点:应用加法交换律和结合律进行简便计算。
教具准备:小黑板。
教学过程:
一、复习。
1.根据运算定律在下面的()里填上适当的数。
35+()=65+()()+147=()+274。
56+74=()+()a+200=()+()。
订正时,让学生说出是根据什么运算定律填数的。
2.下面各等式哪些符合加法交换律?
270+380=390+26030+50+70=30+70+50。
a+800=800+a。
3.四年级一班有48人,二班有50人,两个班一共有多少人?
计算完后,让学生应用加法的意义说明为什么用加法计算。
二、新课。
1.教学例3。
给上面的复习题3加上一个已知条件“三班有49人”,问题改为“三个班一共有多少人?”引出例2。
让学生读题后,指名说出已知条件和问题,教师用线段图表示出数量关系:
一班48人二班50人三班49人。
共?人。
提问:
指名说第一种解法:先把一班和二班的人数加起来,求出它们的和,再加上三班的人数。引导学生说出综合算式:(48+50)+49。强调说明,为了表明先算一班与二班人数的和,可以在48和50的外面加上小括号。
指名说出第二种解法:先把二班和三班的人数加起来,求出它们的和,再加上一班的人数。引导学生说出综合算式:48+(50+49)。强调说明,为了表示先算二班与三班人数的和,要在50和49的外面加上小括号。
提问:
“这两种解法的结果怎样?”
“用什么符号连接这两个算式?”(板书:(48+50)+49=48+(50+49))。
“比较一下等号两边的算式,有什么相同点?”(都是三个数相加,左、右两边的三个数相同。)。
“有什么不同点?”(加的顺序不同,等号左边先把48和50相加,再同49相加;等号右边先把50和49相加,再同48相加。)。
引导学生回答后,教师归纳整理:48、50和49这三个数相加,先把48和50相加,再同49相加;或者先把50和49相加,再同48相加,它们的得数一样,也就是和不变。
2.再出两组算式,引导学生比较,加以概括。
(1)教师:我们再观察一组算式,看一看它们有什么样的关系。
板书:(12+13)+1412+(13+14)。
先让学生算一算,看两个算式的结果怎样,用什么符号连接。这组算式说明了什么。
学生回答后,教师归纳整理:12、13和14这三个数相加,先把12和13相加,再同14相加;或者先把13和14相加,再同12相加,它们的和不变。
(2)再观察一组算式,看一看它们有什么样的关系。
(320+150+230320+(150+230)。
让学生说一说这组算式说明了什么?
3.比较三个等式,突出下面三点:
(2)这三个等式中,等号左边三个算式有什么共同点?(加的顺序相同,都是先把前两个数相加,再同第三个数相加。)。
(3)再看右边三个算式有什么共同点?(加的顺序相同,都是先把后两个数据相加,再同第一个数相加。)。
提问:
“每个等式中等号左边的算式和等号右边的算式,加的顺序相同吗?但它们的和怎么样?”
“谁能把我们发现的规律完整地说一说?”
让几个学生试说后,教师完整地叙述一遍,说明这一规律叫做规律叫做加法结合律。再看一看教科书第49页的结语。
提问:
“如果用字母a、b、c分别表示三个中数,怎样表示加法的结合律呢?”(学生回答后,板书:(a+b)+c=a+(b+c)。
“等号左边(a+b)+c表示什么意思?”(先把前面两个数相加,再同第三个数相加。)。
“等号右边a+(b+c)表示什么意思?”(先把后面两个数相加,再同第一个数相加。)。
5.练习。
完成第50页上面的“做一做”题目。让学生把数填在书上,订正时,让学生说一说根据哪个运算定律填写的。
(1)教学例4。
出示:480+325+75。
让学生想一想,怎样计算比较简便?要应用什么运算定律?共同讨论。
教师板书:480+325+75。
=480+400计算时方框里的这一步。
=880可以省略不写。
(2)教学例5。
出示:325+480+75。
让学生想一想,怎样计算比较简便?要应用什么运算定律?
学生试算后,讨论订正。
教师板书:325+480+75。
=325+75+480指出应用加法交换律。
=400+480。
=880。
(3)比较例4、例5。
让学生说一说例4、例5在应用运算定律方面有什么不同?
教师小结:例4没有调换加数的位置,只应用加法结合律,先把后面两个数相加就可以使计算简便。而例5,要使325和75相加,必须先应用加法交换律把75调到480的前面,再应用加法结合律把325和75相加才能使计算简便。
然后启发学生说出例5也可以应用加法交换律把325调到480的后面,再应用加法结合律把325和75相加,使计算简便。
提问:
“想一想,过去我们学过的哪些计算中应用了加法结合律?”
如果学生想不出,再指出:
“如9+8怎么想?”9+8=9+(1+7)=(9+1)+7=17。
“36+48怎么想?”36+(40+8)=(36+40)+8=76+8=84。
“应用加法结合律不仅可以做口算加法,还能使一些计算简便。”
(4)做第50页下面的“做一做”。
让学生自己做,订正时,让学生说出是怎样应用运算定律的。
三、课堂练习。
1.做练习十一的第5、6、7题,做完后共同订正。
(1)第5题,要注意让学生弄清根据哪个运算定律来填数。
(2)第6题,要注意a+(20+9)=(a+20)+9这道题,看学生是否能判断出,这道题虽然有字母又有数目,但它仍符合结合律。
(3)第7题,要求学生先两道题说一说是怎样应用加法结合律的。如37+8,先把37分成30+7,应用结合律可以先把7+8相加,再和30相加。
四、布置作业。
练习十一的第8、9、10题。
加法结合律教案(实用15篇)篇十二
教学参考书中对加法交换律和加法结合律是这样定义的:“在数学基础理论中,加法交换律和结合律通常是以集合论为依据加以证明的。此外,也可以用计数公理“计数的结果与计数的顺序无关”来说明:任意两个数a与b相加,不论是a+b(相当于先数a,再数b),还是b+a(相当于先数b,再数a),结果都一样。类似地,任意三个数相加,不论是先把前两个数相加,还是先把后两个数相加,仍然只是计数的顺序不同,所以不影响计数的结果。”
从这段文字中,我可以理解为:加法交换律和加法的结合律其本质是一样的,无论是计算顺序改变,还是计算结果改变,其本质是计算的结果没有发生改变。事实上,在简便计算中,加法的交换律和结合律经常是同时使用的。出于这样的理解,我在课堂上并不是非常的重视加法交换律和结合律之间的区别。由于自己对教材的理解偏差,学生作业本中有这样一道题目:根据56+72+28=56+(72+28,填空。呈现了以下的题目:++=+(+)其实,题目的本意是要求学生根据加法结合律来填写,由于学生对加法交换律和加法结合律的本质区别没有完全弄清楚,因此学生的答案五花八门、错综复杂起来:答案一、12+13+14=14+(12+13)答案二、12+13+14=13+(12+14)答案三、12+13+14=12+(13+14)。从这些答案中我们不难发现,学生想当然的认为,这个算式中的所有加数都是可以随便交换的,我想怎么交换就怎么交换,反正最后的和是不变的。当然从教参大范畴的定义来说也是无伤大雅的,但是作为我们初学加法的运算定律,这样模糊的教学是有欠妥当的。
当问题出现时,我们应该想办法去弥补,而不是寻找冠冕堂皇的借口。因此,我安排了以下环节:
3、观察,说说你的新发现。通过观察,学生发现了它们的相同点和不同点,进而认识到加法加法结合律只是改变了运算的顺序,并没有改变加数的位置。
通过以上环节的比较,学生清楚地明白了,加法交换律和加法结合律之间的区别。从而更正了它们之前的错觉。
加法结合律教案(实用15篇)篇十三
加法结合律是在前面学习加法交换律的基础上进行教学的。在这节课上庄老师通过复习旧知引入新课,并对于加法交换律的特点予以了强调:位置交换。在新知的学习过程中,通过观察三个等式的特点,引导学生发现其中的规律,并运用规律来解决生活中的实际问题。
1.教学语言简练,问题指向性强。在发现加法结合律后,教师引导学生思考:在计算中什么变了,什么没变?目的是让学生发现计算的顺序发生变化,从而更好地辨析与加法交换律的特点。
2.教学过程清晰条理,环环相扣。在教学中,从复习引入、学习新知、巩固练习到全课总结,教学时间分配合理,给与了学生充分的动脑思考、相互交流、相互启发的时间和空间。
1.要仔细揣摩新旧教材的编排思路,思考新教材为什么以解决问题的形式出现,这样做的目的是什么,有什么优点,做到立足教材、立足课堂、立足学生去审视本节课的教学。
2.对于带有小括号的算式应如何读,还是要回归正确的语言表述上,与文字题相对应,做好知识的衔接,让学生学会用数学的语言来表述加减乘除运算。
3.学生对于步骤多一步认为不简便,教师应引导学生说明原因,指出问题的所在。
4.对于用字母表示加法结合律,要理解教材为什么先用符号表示,再用字母表示的意图,还是要在读懂教材上再下一些功夫。
加法结合律教案(实用15篇)篇十四
《加法交换律和加法结合律》为《运算律》的第一课时,而在这一单元之前,学生经过了三年多时间的四则运算学习,并对这些已经有一些感性认识的基础:如在10以内的加法中,学生看着一个图可以列出两道加法算式;在万以内的加法中,通过验算方法的教学,学生已经知道调换加数的位置再加一遍,结果不变这个道理。最近教学完“加法的交换律和结合律”后,我进行了反思,对如何使学生经历探索加法运算律的过程,理解并掌握加法的交换律和结合律,并初步感知加法运算律的价值,如何发展学生的应用意识。有了进一步的感悟。
教学这两个运算律都是从学生解决熟悉的实际问题引入的,让学生通过观察、比较和分析,初步感受运算的规律。然后让学生根据对运算律的初步感知,举出更多的例子,进一步观察比较,发现规律。我有意识地让学生运用已有经验,经历运算律的发现过程,让学生在合作与交流中对运算律认识由感性逐步发展到理性,合理地构建知识。
加法结合律是本课教学难点,由于在探索加法交换律时,学生经历了“观察发现——举例验证——得出结论”的学习过程,在此基础上,再让学生探索加法结合律,教师加以适当的引导,为学生提供足够的自主探索的时间和空间,学生将已有学习方法渗透到探索加法结合律中,很容易感受到三个数相加蕴含的运算规律。学生不但理解了加法运算律的过程,同时也在学习活动过程中获得成功的体验,增强学生学习数学的信心。
在教学完加法交换律时,我及时把新学的知识和加法计算的验算结合起来,让学生回忆交换加数验算的方法,明确与加法交换律之间的联系。在教学完加法结合律时,又出示了两道口算题9+7、34+27,让学生回忆口算过程。这样引导学生把新旧知识及时沟通,加深了对已有知识经验的认识,同时加深了对新知的理解。在最后的提高巩固阶段,结合练习为下节课学习加法简便计算垫下了基础。
加法结合律教案(实用15篇)篇十五
这是四年级下册第三单元第二节课的内容,目标是要让学生理解和掌握加法结合律,并应用加法结合律使计算简便,还有就是要培养学生观察、归纳、概括的能力。
这节课应该由例题引入的,但是为了能让学生充分的感受到使用结合律使为了使计算简便的效果,我设计了两组题让学生做,分成男女生竞赛,男生做每组题的左侧题目,女生做右侧题目,等到做第三题的时候男生开始不满了:“老师,我们的题难的了,算的时候都得用笔算,而他们女生的题直接口算就能得出结果了”,于是我赶紧调整预设,让女生完成第三组题的左侧题目,男生完成右侧题目,从而也让男女生互相体验一下因为计算顺序不同而导致计算起来难易度也不同。这三组题的安排是这样的:1.(78+34)+6678+(34+66)。
2.(129+45)+155。
129+(45+155)。
3.(3185+497)+5033185+(497+503)。
通过这种竞赛的形式,更能让学生体会到简便计算为我们的'学习带来的好处和便利,于是学生就有了学习的动力和学习的渴望,所以,在正式进入新知的时候我采用了让学生自己得出结论的方法,问孩子们我们为什么要将后两个家数先结合起来,目的是要干什么?学生通过计算比较知道我们之所以要这样算,是要凑整,使得计算起来更简便,学生也就自然而然的记住了加法结合律的定义。
但是,本节课还是有不尽如人意的地方,由于前面安排学生探索新知的时间太长,导致后面很多加强训练的习题没有能够在本节课完成,课后还设计了一道奥数题让学生计算,但是因为时间关系只能作罢!在二班讲这节课是第二节,所以我注意在时间方面把控课堂,得出结合律的定义之后就开始检测和应用,因此二班做的练习相对五班的同学来说要多一些哦!
在教学本节课的过程中我还发现,学生的固定思维比较严重,大多认为定义说的先把前两个数相加,再加上第三个数或者先把后两个数相加,再加上第一个数就是固定不变的,于是,发现第一个加数和第三个加数可以凑整也不敢往一起结合进行计算,这同时也说明我在讲授结合律的时候就只是针对结合律讲的,没有注意到要跟交换律联系,如果将两节课的知识教师先做一个处理的话,相信学生能够做到有样学样,应用自如。在今后的教学中,如果前后课有联系的话,还是多做一些前后衔接的工作方便学生学习和提炼新知吧!