教学计划的编制需要根据学生的实际情况和学科特点进行个性化的调整和完善。通过研读优秀的教学计划范文,可以帮助教师增强教学设计和组织能力。
最大公因数教学设计(模板20篇)篇一
1、探索找两个数的公因数的方法,会用列举法和短除法找出两个数的公因数和最大公因数。
2、经历找两个数的〔〕公因数的过程,理解公因数和最大公因数的意义。
理解两个数的公因数,最大公因数及互质数的数学意义能够用列举法或短除法正确地找出两个数的公因数和最大公因数。
小组合作探究练习法。
小黑板出示复习题。
一、温故而知新。
1、温故——例1填一填、想一想。(让学生独立填写再反馈)。
12的因数:1、2、3、4、6、12。
30的因数:1、2、3、5、6、10、15、30。
2、引导学生思考:发现了什么?
让学生说出自己的感知,把话题集中到两个数的相同因数——公有因数方面,并指导学生用课本中的集合图揭示12和30各自的全部因数。
重点思考:两个集合圈相交的部分应该填哪些因数?
组织学生展开讨论交流反馈,同时引出本节课的课题前言:两个数的公因数。
二、新知探究。
1、两个数的公因数和最大公因数。
(1)讨论反馈自己的发现。
(2)公因数和最大公因数的概念。
2、怎样找两个数的最大公因数。
(1)由学生根据前面的探究过程,很自然地提出列举法。
(2)介绍短除法求最大公因数的方法。
板书介绍,并试求12和30的最大公因数。
学生试一试求下列各组的最大公因数。
16和246和127和9。
独立完成后指名板演,再进行集体讲评。
议一议:用短除法求最大公因数要注意些什么?
让学生在思考后明确:必须除到两商除了1再没有别的公因数为止。
思考:还发现了什么?
引导学生关注6和12、7和9这两组数,分析最后的结果为什么是6和1?
3、介绍互质数。
(1)互质数的意义。
(2)对互质数的探讨。
分析:2和34和158和912和61和184和25。
在学生议后,得出公因数只有1的两个数有哪些。
并得出结论:可以是不同的质数(2和3)一个数是质数一个是合数(4和15)两个都是合数(8和9)1和非零自然数(1和18)。
三、练习深化。
求下列各组数中的最大公因数。
24和307和918和631和338和57。
可以让学生独立思才,哪几组数可以直接得出?
四、全课总结。
1、理解两个数的公因数,最大公因数及互质数的意义能够用列举法或短除法正确找到两个数的公因数和最大公因数。
2、正确判断两个数的互质关系。
五、布置作业。
最大公因数教学设计(模板20篇)篇二
教材第82、83页练习十五的第2一9题。
1.培养学生独立思考及合作交流的能力,能用不同方法找两个数的最大公因数。
2.培养学生抽象、概括的能力。
投影。
1.完成教材第82页练习十五的第2题。
学生先独立完成,然后集体交流找最大公因数的经验,并将这8组数分为三类。
2.完成教材第82页练习十五的第3一5题。
学生独立填在课本上,集体交流。
3.完成教材第83页练习十五的第6题。
学生独立填写,集体交流,体会两个数的最大公因数是1的几种情况。
4.完成教材第83页练习十五的第7一11题。
学生独立审题,理解题意,然后试着解答,集体交流。
5.指导学生阅读教材第83页的“你知道吗”。
请学生试着举例。提问:互质的两个数必须都是质数吗?你能举出两个合数互质的例子吗?
通过本节课的学习,主要掌握了找两个数的最大公因数的方法。找两个数的最大公因数,可以先分别写出这两个数的因数,再圈出相同的因数,从中找到最大公因数;也可以先找到一个数的因数,再从大到小,看看哪个数是另一个数的因数,从而找到最大公因数。
最大公因数教学设计(模板20篇)篇三
课题:练习(1)。
教学内容:教材第9页练习第1-5题。
教学目标:
1、通过练习和思考,进一步掌握不整十、整百数乘一位的方法;能熟练利用除法求一个数是另一个数的几倍。
2、培养学生观察、推理、迁移的能力及语言表达能力。
3、培养学生善于动脑的良好习惯和学习数学的兴趣。
教学重点:加深理解“求一个数是另一个数的几倍”的数量关系。
教学难点:加深理解“求一个数是另一个数的几倍”的数量关系。
教学过程:
一、谈话导入。
我们已经掌握整十、整百数乘一位数方法,谁能来说一说我们计算时是利用什么方法进行计算的?(借助表内乘法)。
下面就让我们一起来利用表内乘法计算下面的题目。
二、整十、整百数乘一位数的练习。
1、练习第1题。
学生独立完成,说一说上下两题的联系与区别。
2、练习第2题。
学生分组完成,然后集体订正,教师注意巡视指导。
刚才同学们做的非常仔细,非常认真,正确率非常高,对于下面的练习有没信心?
(一)完成练习第3题。
1、出示情景图,让学生观察,说一说白菜有多少棵?青菜呢?
2、你能提出一个关于“倍”的问题吗?(青菜是白菜的多少倍?)。
3、让学生自己解答。(学生可以先圈一圈,也可直接列式,教师注意巡视指导)。
4、总结:求一个数是另一个数的几倍,我们可以直接列除法算式解答。
(二)完成练习第4题。
学生独立完成,注意要求学生列除法算式来解答,不熟练的同学可以先圈一圈,再列式。
(三)完成练习第5题。
学生独立完成,指名两名同学板演,再让其中一位同学说说自己是如何想的。
四、拓展延伸。
今年,妈妈27岁,小明3岁。
提出一个数学问题并解答。
追问:明年妈妈的岁数又是小明的几倍呢?
五、全课小结。
你知道如何求一个数是另一个数的几倍吗?
六、作业:完成3、4、5题。
七、板书设计:练习(1)。
课题:练习(2)。
教学内容:教材第10页练习第6-11题。
教学目标:
1、通过练习和思考,加深对“倍”的数量关系的认识,进一步认识“倍”。
2、掌握利用估算来解决实际问题的方法。
3、培养学生观察、推理、迁移的能力及语言表达能力。
教学重点:进一步理解“倍”的数量关系。
教学难点:进一步理解“倍”的数量关系。
教学过程:
一、复习导入。
1、填一填。
4个6可以说成6的()倍。3个5可以说成5的()倍。
5个8可以说成()的()倍。7个9可以说成()的()倍。
2、同学表现的真棒,下面就来解决求一个数的几倍是多少的实际问题吧!
1、练习第6题。
出示情景图,让学生仔细观察。然后提问:
(1)已知谁是谁的几倍?相当求几个几?用什么方法解答?
(2)学生独立列式解答。
2、练习第7题。
(1)出示情景图,先让学生仔细观察,让学生初步比较一下三个数量。
(2)提问:你能提出哪些用除法计算的问题?这里要求用除法计算,打算提哪类问题?
(3)根据学生回答,教师相机板书。
鸡只数是鸭的几倍?鸡只数是鹅的几倍?鸭只数是鹅的几倍?
让学生列式解答。
3、练习第9题。
学生独立完成,教师注意巡视指导。
汇报时让学生说一说是怎么想的。
4、巩固加深。
(1)出示练习第8题,先让学生独立完成。
(2)集体订正时,让学生说清楚是如何想的。
(3)观察下:书包比文具盒贵32元,这32元相当文具盒的几倍?
联系书包价钱是文具盒的5倍,思考:求书包比文具盒贵多少元?还有其它的方法可以解答吗?(这里根据教学实际情况,教师适当渗透“差倍”的概念。)。
三、利用估算解决实际问题。
1、练习第10题。
先让学生说一说通过什么的方法可以知道李叔叔8分钟大约打了多少个字?(引导学生说出估算的步骤和方法)。
2、练习第11题。
学生先和同桌说一说,再指名回答。
四、全课小结。
通过这节课你掌握了哪些知识?
五、作业:8、9、11题。
六、板书设计:练习(2)。
4个6可以说成6的()倍。3个5可以说成5的()倍。
5个8可以说成()的()倍。7个9可以说成()的()倍。
最大公因数教学设计(模板20篇)篇四
1、结合具体的生活情景,通过确定取值范围、动手操作验证、小组合作、交流,经历公因数和最大公因数的产生,并理解其意义。
2、渗透集合思想,体验解决问题策略的多样化。
3、培养学生的抽象能力和解决问题能力,并且会求100以内两个数的最大公因数,感知公因数和最大公约数在生活中的广泛应用。
4、以去“游乐园”游玩为契机激发学生学习数学的兴趣。
多媒体课件;小奖品;小组学案各一份;方格纸每组5张、彩笔;每个人制作学号卡佩戴好。
一、复习铺垫---抢夺气球。
1、情境引入。
(1)、出示“数学游乐园”
师:想去“数学游乐园”玩吗?(想)乐园里不仅有许多好玩的,表现好的还可以获得很多的奖励哦!
(2)、看现在乐园里正在举行“抢夺气球”的活动呢!谁想来抢呢?(回答课件中的问题,答对一个获得一个奖励)。
3的因数有:6的因数有:
8的因数有:12的因数有:
二、讲解新授。
你知道铺地砖的要求是什么吗?(交流“正方形地砖”“都是整块的”“边长还要是整分米数”什么是整分米数?)。
2、合作探究。
(1)阅读并讨论。
用长方形方格纸代表长16分米、宽12分米的储藏室地面,每个方格可以代表边长是1分米的正方形。小组讨论下,边长可以是几分米呢?(学生操作)。
(2)合作与交流。
a、交流边长是“4”为什么?
问:你们觉得行吗?
答:铺满。
b、交流边长是“2”出示一个角。
问:你觉得长边、短边可以分别铺几块呢?
答:铺满。
c、交流边长是“1”铺一个角。
问:你觉得长边、短边可以分别铺几块?
答:铺满。
(1)讨论交流。
还有没有别的铺法?边长是3分米的地砖行吗?为什么?边长是5分米呢?
(2)抽象公因数概念。
(1、2、4不仅是16的因数又是12的因数。1、2、4是12和16的公因数)。
同意吗?
那我们就用以前的方法找找16、12的因数。
16的因数有:1、2、4、8、1612的因数有:1、2、3、4、6、12。
你发现什么?
我发现1、2、4既是12的因数又是16的因数。
能不能简单的说说,它们是12和6的什么数吗?
1、2、4是12和16公有的因数,1、2、4是12和16的公因数。
说能说一说什么是公因数。
几个数共有的因数,就是这几个数的公因数。
那16和12的公因数有:1、2、4。
(3)用集合圈表示。
我们可以用集合圈来表示两个数的公因数。
现在中间的表示什么呢?应该填?
那这圈里的(指左边、右边)填?表示?
边长最大是几分米?你是怎么想的?
(从公因数中找最大的。边长大的话占地面积就要大,铺的块数就要少)。
实际上这4就是16和12的最大公因数,板书“最大公因数”
2、合作交流、探索方法。
小组谈论,实践交流。交流反馈、小结方法。
这些方法实际都是属于列举法,在解决问题时你可以选择自己喜欢的方法。
3、找一找,填一填。
8的因数:16的因数:
8和16的公因数:8和16的最大公因数:
想一想:8和16之间有什么关系?与它们的最大公因数有什么关系?
小结:如果较大数是较小数的倍数,那么较小数就是它们的最大公因数。
找一找,填一填。
5的因数:7的因数:
想一想:5和7的公因数有哪些?
小结:像这样的两个数:公因数只有1的两个数,叫做互质数。
互为质数的两个数的最大公因数是1.
三、巩固练习。
1、游戏:看谁站的对。
座位号是12的因数而不是18的因数的同学站左边、是18的因数而不是12的因数的站右边、是12和18公因数的站中间。
四、全课总结:学生畅谈本节课的收获。
最大公因数教学设计(模板20篇)篇五
1、使学生通过动手操作理解公因数与最大公因数的概念,并掌握求两个数的最大公因数的方法。
2、培养学生分析、归纳等思维能力。
3、激发学生自主学习、积极探索和合作交流的良好习惯。
理解并掌握求两个数的最大公因数的方法。
课件,长方形纸板,不同边长的正方形纸片(硬卡纸做的)。
一、创设情境,引导动手操作。
1.情境导入。
2.出示问题,明确要求。(理解重点要求,如整分米数,整块)。
3.学生猜测可选用几分米的地砖。
4.介绍教具,明确活动要求。
5.小组活动。
二、自主探索,形成概念。
1.展示学生作品,得出结果。
2.教师将不同铺法展示到课件上。
3.明确王叔叔对地砖的要求必须符合什么条件。(地砖的边长必须既是16的因数又是12的因数。)。
4.引出公因数和最大公因数的概念,揭示课题。
5.巩固练习课本80页做一做。
三、自主探究,掌握方法。
2.出示例2,独立思考,做在练习本上,指名板演,集体订正。
3.归纳方法,找出公因数和最大公因数的之间的关系。(几个数的最大公因数是他们公因数的倍数,他们的公因数是最大公因数的因数。)。
四、巩固练习,总结提升。
1.81页做一做,独立思考,指名回答,集体订正。
2.总结规律。(当两个数是倍数关系时,较小的数就是最大公因数。两个数的公因数只有1时,那他们的最大公因数就是1。)。
五、小结。
谈谈本节课有什么收获。
最大公因数教学设计(模板20篇)篇六
教学内容:
教学目标:
1.知识与技能:结合具体的生活情境,使学生进一步理解求一个数内包含几个另一个数的含义,建立“倍”的概念,初步把握“求一个数是另一个数的几倍”的数量关系和解答方法。
2.过程与方法:通过操作、观察、探讨等实践活动,培养学生动手操作能力、观察能力、解析能力、合作的意识和能力。
3.情感态度与价值观:让学生体会数学与日常生活的密切联系,增强应用数学的意识,结合教学情境使学生受到爱国主义的教育。
教学重、难点:
1.重点:理解“一个数是另一个数的几倍”的含义。
2.难点:学会用转化的方法来解决简单的实际问题。
教法与学法。
教法:谈话、指导相结合法。
学法:自主探究法。
教具、学具:
教具:相关教学课件。
学具:小棒(10根或15根)。
教学过程:
一、激趣引入。
(课件播放:神州五号载人飞船发射升空的激动人心的场面。)。
师:同学们,看到这个画面,你的心情怎么样?(高兴、自豪、激动……)让我们记住这一难忘的时刻吧!你们想不想像杨利伟叔叔那样象往遨游太空呢?(想)有志气!现在我们就用小棒摆飞机,代表我们的心愿吧!
二、探究新知。
1.教学例2。
(1)动手操作。
课件出示:老师摆1架飞机用了5根小棒。
师:你们想摆飞机吗?估一估,你手中的小棒能摆几架像老师这样的飞机?
(稍作停顿)自己动手摆摆!
(生动手操作后汇报)。
(2)观察思考。
课件出示:两架飞机。
师:这个同学用几根小棒摆几架飞机?他用摆小棒根数是老师的几倍?
(集体探究“同学们用摆小棒根数是老师用摆小棒根数的2倍。)。
(3)列式计算。
师:要求同学们用摆小棒根数是老师的几倍,就是求10里面有几个5,就是求10是5的2倍。可以用除法计算,我们可以这样列式:10÷5=2。
(重点强调:倍不是单位名称,它表示的是两个数量的一种关系,所以得数后面不要写“倍。)。
(4)小结。
师:今天我们学习解决“求一个数是另一个数的几倍”的实际问题,就是求一个数里面有几个另一个数,可以用除法计算。(板书完整课题)。
(5)练习。
完成54页做一做。
2.教学例3。
(1)课件出示例3主题图。
师:为了欢迎航天英雄杨利伟到学校做报告,这些小朋友正在排练节目呢!瞧,他们多么认真啊!从图上,你发现了哪些数学信息?(唱歌的有35人,跳舞的有7人,欣赏的有5人。)。
师:根据这些信息,你能提出一些数学问题并进行解答吗?
先让学生独立思考,再在小组内互相交流后列式解答。师巡视,重点指导学生写单位名称的情况。
(2)集体交流后,小组代表发言。
三、反馈练习,应用拓展。
1.课件出示“神五”杨利伟相片。
(1)信息站:你会提哪些数学问题?
(课件出示数据一):
神州飞船的高大约是9米教室的高大约室3米。
(课件出示数据二):
飞船舱内面积约是6平方米教室的面积大约是54平方米。
(课件出示数据三):
一件宇航服重约10千克小明的书包约重2千克。
(2)小组交流探讨。
(3)学生汇报。
重点让学生讲出用除法计算的理由。
2.55页做一做。
(1)课件出示“做一做”图片。
(2)学生提出问题并口头列式解答。
四、总结评价。
五、思维拓展。
开放题:第一行画6个三角形,第二行画圆,使他们之间存在倍数关系。
六、课外延伸。
板书设计。
求一个数是另一个数的几倍的实际问题用除法计算。
例2:10÷5=2例3:35÷7=5。
15÷5=3。
最大公因数教学设计(模板20篇)篇七
教学片断:
(黑板出示)求下面每组数的最大公约数,如能简便,请用简便方法计算;如不行,就用短除法来求。
生1:我认为第一组14和15可以用简便计算,它们相差1,最大公约数就是1。
生2:我认为你的想法是错误的,14和15互质。所以它们的最大公约数是1。
生3:(支持第一个学生)我举了好几个例。比如7和8相差1,最大公约数就是1。
生4:我认为只要是两个互质数,它们的最大公约数就是1。因此,最大公约数也是1,例如:第一组中的14和15,第二组中的8和15;而其中14和15的最大公约数是1,也正好相差1,这是一个巧合,也是正确的,但它不能代表所有互质数的求法,只能代表相邻的两个数的求法,有因为相邻的两个数一定互质,我们为何不把它归为一类:两个互质数,最大公约数就是1。
同学们听后纷纷投去赞许的目光。
师:同学们,道理只有越辩越明,经过刚才的讨论,我们得出一个结论:(投影出示)如果两个数是互质数,它们的最大公约数就是1。
生5:我们组认为第三组42和18求最大公约数也可以用简便方法,可以用公约数6去除,再看所得的商海有没有其它公约数,结果没有了公有质因数,所以,42和18的最大公约数就是6。
生6:反对!我们用短除法求最大公约数时,只能用质因数去除,怎么能用公约数去除呢?
生2:就是啊,只能用质因数去除,6是一个合数,不能用6去除。(教室里顿时议论纷纷开了……)。
师:既然这个最大公约数既是42的'约数,又是18的约数,因此就可以用42和18的公约数去除,大家之所以习惯用公有的质因数去除,是因为短除法当时从分解质因数演变过来的,但从最大公约数的意义考虑的话,是可以用它们的公约数去除的。
学生听得非常认真,并且表现出恍然大悟的神情。
生2:我发现第四组21和7也能用简便方法,它们的最大公约数是7,7的约数有7,21的约数也有7,所以它们的最大公约数是较小数7。
生4:我对刚才那位同学说的补充一点,因为21是7的倍数,所以,21的约数必定有7,7又是它本身的约数,因此,它们的最大公约数是7。
师:同学们刚才说得非常好,这就是第二个规律:(投影出示)如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
经过刚才的发言,举手的人少了,可是有一位同学仍然坚持不懈的高举着手,我便请他说说。
生7:除了老师上面的例子,我还有一个发现,就是相邻的两个奇数一定互质,它们的最大公约数也是1,虽然它包含在互质数这一类中,但仍也是特殊的。
他的回答令我和同学们大吃一惊,对于这个说法是否正确呢?我马上与学生们一起进行了验证,结果说法完全正确,顿时,教室里不由自主的响起了热烈的掌声,而且持续了好久。接下来同学们又认真看了课本中的例题,并积极做了相关的练习。
课后反思:
我在教学《约数与倍数》这个内容时,感觉比较头疼,因为这个内容的概念较多,学生难理解,要想学生学好、掌握好这个内容,除了要认真备好课,还要扎扎实实地上好每一课时。在教学中,如果对学生不放心,束缚学生的手脚,阻碍学生思维的发展,就不能培养学生的探究能力与创新精神。在这节课中,我把主动权完全交给了学生,学生自己在进行观察、假设、探究等高层次的思维活动后,得出的结论是我始料未及的。
在教学中,学生一直处在发现问题、解决问题的状态中,用自己的思维方式进行探究,形成了独特的见解,此时的合作便有了基础。当大家的意见一致时,就会充分展示自己的思想与表现欲;当有了不同意见时,才会擦出创新的火花。
从这节课中不难看出,课本已不能当做惟一不可改变的标准。虽然课本在学习时起到了至关重要的作用,但学生们却在此基础上进行了探索与创新。学生们总结出来的规律可能被分别归入书中的几类,但他们所发现的细微的特征是书上没有的。其实,转变学生学习的方式最关键是在于我们老师,一方面要我们老师不断学习,不断更新教学观念,树立先进的教学理念,另一方面也要求我们老师把先进的教学理念转化为教学行为。只有让学生充分从事探究学习活动,发挥他们的自主性、主动性、选择性与创新性,才能使他们真正成为学习的主人!
最大公因数教学设计(模板20篇)篇八
1、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。
2、在探索新知的过程中,培养学好数学的信心以及小组成员之间互相合作的精神。
初步了解两个数的公因数和最大公因数在现实生活中的应用。初步了解两个数的公因数和最大公因数在现实生活中的应用。
自主学习、合作探究。
(约5分钟)。
课件展示教材62页例3,今天我们要给这个房子铺砖大家感兴趣吗?要求要用整数块。
(约5分钟)。
1、几个数()叫做这几个数的公因数,其中最大的一个叫做()。
2.16的因数有(),24的因数有(),16和24的公因数是(),最小公因数是(),最大公因数是()。
3.a=225,b=235,那么a和b的最大公因数是()。
(约13分钟)。
小组合作学习教材第62页例3。
1、学具操作。
用按一定比例缩小的方格纸表示地面,用不同边长的正方形纸表示地砖,我们发现边长是厘米的正方形的纸可以正好铺满,没有剩余,其它的都不行。
2、仔细观察,你们发现能铺满的地砖边长有什么特点?把你的发现在小组里交流。
3、总结。
解决这类问题的关键,是把铺砖问题转化成求公因数的问题来求。
(约8分钟)。
根据自主学习、合作探究的情况明确展示任务,进行展示。教师引导讲解。
1、达标练习。
2、全课总结。
这节课你都学到了什么知识?有什么收获?
3、作业布置。
练习十五5,6题。
板书设计:
铺砖问题:求公因数。
最大公因数教学设计(模板20篇)篇九
1、探索找两个数的公因数的方法,会用列举法找出两个数的公因数和最大公因数。
2、经历找两个数的公因数的过程,理解公因数和最大公因数的意义。
3、通过观察、分析、归纳等数学活动,体验数学问题的探索性和挑战性,感受数学思考的条理性。
二、重点难点。
重点:经历找最大公因数的过程,正确找两个数的公因数和最大公因数。
难点:探索并掌握找最大公因数的方法。
三、教学设计。
(一)回顾旧知,导入新课。
1、之前我们学习了找一个数的因数,你们还记得吗?
2、我们来做个游戏,回顾一下。学号是20因数的同学请起立。
3、同学们掌握的真好,这节课我们来学习《找最大公因数》。
(二)自主学习,探索新知。
2、同学们找得真快真好,同学们认真观察它们的全部因数,你有什么发现,小组讨论。
3、师总结:1、2、3、6即是12的因数,又是18的因数,像这样的公共因数我们称之为公因数。
4、那最大的那个因数叫什么?——最大公因数。
(三)巩固新知,继续练习。
1、教科书p45练一练1—2,看哪组做的又快又准。
2、师小结,强调重点。
3、继续练习,练一练3—4。可让学生到黑板做,易错的集体纠正、强调。
4、在练习中,针对错误比较多的,进行集体讲解,少的则个别讲解。
(四)课堂小结。
1、今天我们在复习因数的基础上又认识了公因数和最大公因数。
四、板书设计。
即是12的因数,又是18的因数,像这样的数称为公因数。
五、教学反思。
本节课,我采取小游戏的形式勾起对旧知的回忆,再通过写出12和18的全部因数来引起学生的注意(1,2,3,6),既是12的因数又是18的因数,像这样的因数是12和18的公因数;6是12和18的最大公因数。
通过让学生在玩中学,学生们掌握的很好,在实践中学生们也能很好的应用。
最大公因数教学设计(模板20篇)篇十
课本p81的学习内容和练习十五的练习。
1、使学生加深对公因数和最大公因数意义的理解,掌握求两个数最大公因数的方法。
2、能在练习的过程中发现求两数最大公因数的两种特殊情况。
3、体现算法的多样化和个性化,培养学生独立思考和合作学习的能力。
掌握找两个数的最大公因数的方法。
掌握两种特殊情况下求两个数最大公因数的方法。
师:同学们还记得什么是公因数,什么是最大公因数吗?请你根据已知的信息,快速找出15和20的公因数与最大公因数。
15的因数:1,3,5,15。
20的因数:1,2,4,5,10,20。
15和20的公因数有(),最大公因数是()。
(指名口答加课件订正)。
师:在接下来要学习的分数计算和一些解决实际问题中,我们经常要用到最大公因数的知识。所以今天我们就一起来学习怎样求最大公因数。
(板书:求最大公因数)。
师:昨天同学们都进行了预习,你们找到求最大公因数的方法了吗?请在小组内交流一下。
师:请一位同学来汇报一下你是怎样求18和27的最大公因数的?
生:可以先分别找出18和27的因数,再找出它们的公因数,其中最大的就是最大公因数。
18的因数:1,2,3,6,9,18。
27的因数:1,3,9,27。
18和27的最大公因数是9。
师:这种方法先写出两个数的因数,再找出它们的公有因数,其中最大的就是最大公因数。所以我们在写出两个数的因数后,应该写上这样一句话:18和27最大公因数是9。
除了这种方法,同学们还会其他方法吗?请同学拿着学案纸上台投影展示汇报。
预设。
(1)课本第二种。
18的因数:1,2,3,6,9,18。
其中1、3、9也是27的因数,所以1、3、9是18和27的公因数,9是它们的最大公因数。
师:这种方法先找出18的因数,再看这些因数中谁是27的因数,那它们就是18和27的公因数,最大的一个自然就是最大公因数。能够先找18的因数,能不能先找27的因数呢?(能)。
师:(指着这种方法)我们只是想找出它们的最大公因数,大家动脑筋思考一下,这种方法还能不能更简化和优化一些?(引导学生发现,写出18或27的因数后,从大到小看谁是另一个数的因数,满足的第一个就是最大公因数)。
(2)其它的方法。
分解质因数法和短除法根据实际情况灵活处理。
1、预习评价,纠错巩固。
师:通过刚才的学习,你掌握了求最公因数的方法了吗?老师在课前收集了几份预习作业,你能发现这些练习的错误或做得不够好的地方吗?(投影展示典型错例。)。
2、阅读课本,提出质疑。
师:现在请同学们再阅读课本和反思刚才的学习过程,还有什么疑问吗?(课前了解学案再做预设)。
3、方法归纳,点拨提升。
其实两个数的公因数和它们的最大公因数之间也存在某种关系,你发现了吗?(多请几个学生来汇报他们的答案,并引导学生观察例2的板书,以及学案上多个例子,发现公因数是最大公因数的因数。)。
师:所有公因数都是最大公因数的因数。我们可以利用这个发现快速地检验自己是否找对了公因数和最大公因数。(让学生用例题和学案上1,2个例子来试试怎样检验)。
师:回顾刚才大家介绍的多种求最大公因数的方法,其中这种做法(指着黑板)直接根据最大公因数的定义来找,属于基本方法,每个同学都应该理解和掌握。在这种方法基础上,同学们可以选择自己喜欢和擅长的方法去求最大公因数。
师:现在老师马上考考大家,你有信心做对吗?
15和1230和45。
师:看来大家掌握得都不错,都能做对。老师要提高难度,不仅要做对,还要找出规律。请完成课本p81做一做,完成后在小组里订正和说一说自己的发现。
4和816和321和78和9。
(1)汇报最大公因数答案。
(2)说一说自己的发现。(多请几个学生说说发现,逐渐归纳成结论)。
师:当两数成倍数关系时,较小的数就是它们的最大公因数。当两数只有公因数1时(也就是大家在预习时在你知道吗里面了解到的互质数),它们的最大公因数也是1。
(3)教师小结。
师:像这样能够直接看出最大公因数的,就不用再从头去找公因数了,也就是不用写出计算过程,直接写出谁和谁的最大公因数是几就可以了。你们掌握了找最大公因数的两种特殊情况了吗?请迅速完成课本82页第3题,直接填写在书上。
(1)9和16的最大公因数是()。
a、1b、3c、4d、9。
(2)16和48的最大公因数是()。
a、4b、6c、8d、16。
(3)甲数是乙数的倍数,甲、乙两数的最大公因数是()。
a、1b、甲数c、乙数d、甲、乙两数的积。
师:看来直接找两个数的最大公因数并不能难倒大家,现在老师看看大家能不能运用知识来解决一些问题。
()()()()。
最大公因数教学设计(模板20篇)篇十一
这部分内容是在学生掌握了因数、倍数概念的基础上进行教学的,主要是为下续学习约分作准备。教材先创设了一个剪纸的问题情境,从实际生活中抽象出概念。这样处理的好处便于揭示数学与现实世界的联系,有利于学生理解公因数、最大公因数的概念及现实意义,也有利于培养学生的数学抽象能力。但是将解决问题与概念引入结合在一起,教学上自然会有一定的`难度,所以我将主题图的自由探索与尝试选正方形的大小来剪。适当降低了一些难度并提高了教学的效率,最后的效果还是不错的,很容易就引入了公因数和最大公因数的概念。
在现行《课标》中有关求最大公因数的要求是:“能找出两个自然数的公因数和最大公因数”。重在“找”,而现行教材的分子分母都比较小,学生熟练了以后都能准确的进行约分,关键还是在练习的力度上多下功夫。
融入生活实际。我把找公因数的问题融入实际生活情景中,比如:“有两根绳子,一根长12米,另一根长28米,要把它们截成同样长的小段,而且没有剩余,每段最长应是几米?一共截几段?”这时学生理解了求最大公因数的方法和作用,就不难解决这一问题。结合生活实际,使学生真正体会到数学学习的价值,并清楚地知道“为什么学”,真正做到了生活知识数学化。
最大公因数教学设计(模板20篇)篇十二
1、理解两个数的公因数和最大公因数的意义。
2、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。
3、培养学生抽象、概括的能力。
多媒体课件,方格纸(每人一张)。
(一)复习导入。
1.复习。
教师出示一组卡片,让学生说一说卡片上各数的倍数有哪些。
教师再出示一组卡片,让学生说一说卡片上各数的因数有哪些。
2.导入。
师:我们学会了求一个数的因数,想不想学习怎样求两个数或三个数公有的因数呢?今天我们就通过游戏来学习公因数和最大公因数。
(二)创设情境,引出问题。
今天我们来玩一个找伙伴的游戏。(课件出示游戏规则:学号是12的因数的同学站到讲台左边,学号是16的因数的同学站到讲台右边)同学们想好了吗?1~16号同学现在开始找伙伴。
学生开始找伙伴,站好后发现问题,有三个同学不知道该站在哪边才好。
师:你们3个为什么没有找到伙伴?
生1:我的学号是1,既是12的因数,又是16的因数,不知道该站在哪边才好。
生2:我的学号是2,既是12的因数,又是16的因数,不知道该站在哪边才好。
生3:我的学号是4,既是12的因数,又是16的因数,不知道该站在哪边才好。
师揭示概念:1,2,4是12和16公有的因数,叫做它们的公因数。其中,4是最大的公因数,叫做它们的最大公因数。
设计意图:游戏环节的设计在教学中能为学生营造一个轻松、愉悦的学习氛围,学生们在这样的氛围中积极地参与数学活动,既体验了成功的快乐,又提高了自己的判断能力。
1.明确方法,提出要求。
课件出示教材60页例2:怎样求18和27的最大公因数?
2.学生试做后,组内交流。
3.讨论:如果只找出一个数的因数,你能找出两个数的最大公因数吗?
(先找较小的数18的因数,再看因数中哪些是27的因数,最后找出最大的一个)。
4.反馈练习。
教师巡视,了解学生的做题情况。学生做完后,指名汇报,集体订正。
师:做完这道题,大家发现了什么?
(学生讨论后汇报)。
(四)课堂小结通过本节课的学习,我们主要认识了公因数、最大公因数的意义。
公因数和最大公因数在现实生活中有着广泛的应用,我们初步了解了它的应用价值。
(五)谈谈这节课你有什么收获?
最大公因数教学设计(模板20篇)篇十三
教学目标:
1、结合具体情境理解公因数和最大公因数的意义,学会求两个数的最大公因数的方法。
2、会用公因数、最大公因数的知识解决简单的实际问题,体验数学与日常生活的联系。
3、通过学生合作探究等活动,培养学生的合作能力和抽象概括能力,以及激发学生对探究数学知识的兴趣。
教学重、难点:
重点:理解公因数和最大公因数意义,会求最大公因数。
难点:理解公因数和最大公因数的意义。
教学准备:
ppt课件,长方形的方格纸,小正方形纸若干。
教学过程:
一、预设情境、提出问题。
二、探究交流,抽象概念。
(1)合作探究。
提供学具,学生操作。
(2)反馈交流。
得到:边长是1分米,2分米,4分米的地砖符合要求。
(3)讨论交流。
还有没有别的铺法?边长是3分米的地砖行吗?为什么?边长是8分米呢?
a、引出猜想:
b、枚举验证。
a、完成做一做。
引导学生概括公因数和最大公因数的概念(教师板书)。
三、尝试练习、探索方法。
四、巩固练习,完善新知。
6和915和204和1216和32。
(完成后,解决成倍数关系的两个数的最大公因数的求法)。
2、选择题。
a.4b.6c.8d.16。
(2)甲数是乙数的倍数,甲、乙两数的最大公因数是_。
a.1b.甲数c.乙d.甲、乙两数的积。
7/98/3618/729/154、*小巧匠。
12cm16cm44cm。
要把它们截成同样长的小棒,不能有剩余,每根小棒最长是多少厘米?
(完成之后,完善公因数的概念。)。
五、课堂小结:通过这节课的学习,你有什么收获?
msn(中国大学网)。
最大公因数教学设计(模板20篇)篇十四
各位老师:
分析教材。
本课是苏教版教材五年级上册第三单元《公倍数和公因数》中的内容。在四年级(下册)教材里,学生已经建立了倍数和因数的概念,会找10以内自然数的倍数,100以内自然数的因数。本单元继续教学倍数和因数的知识,要理解公倍数、最小公倍数和公因数、最大公因数的意义,学会找两个数的最小公倍数和最大公因数的方法。为以后进行通分、约分和分数四则计算作准备。
《课程标准》要求学生“动手操作、自主探索、合作交流”,结合教材的特点,我力求达到下面的教学目标:
1、经历找两个数的最大公因数的过程,理解公因数和最大公因数的意义。探索找公因数的方法,会正确找出两个数的公因数和最大公因数。
2、结合具体实例,渗透集合思想,培养学生有序思考的能力,让学生养成不重复、不遗漏、不重复的思考习惯。
3、培养学生能用自己的语言表述自己的发现,善于发现规律,利用规律解决问题的能力。
依据《课程标准》的要求和教学目标,我确定本课教学重点是理解公因数和最大公因数的意义,教学难点是会求两个数的公因数和最大公因数。
设计理念。
在教学中我发挥“教师是学习活动的组织者、引导者与合作者”的作用,激发学生兴趣、引导学生自己探索。学生才是学习的主体,让学生在玩中学、学中玩,合作交流中学、学后合作交流并根据学生原有的认识基础和认知规律,并结合“以学生的发展为本“的理念,力求突出以下三点:
1、将教学内容活动化,让学生在做中学。
2、采用小组合作学习,让学生在交往互动中学。
3、充分利用原有的认知经验,在迁移中学。
教学过程。
依据教材特点及小学生认知规律和发展水平,整个教学过程安排了四个环节:
分为五个步骤:
2、想象延伸:接下来让学生思考还有那些边长是整厘米数的正方形也能铺满大长方形。学生思考后,回答边长是1厘米,2厘米,3厘米的正方形也能铺满大长方形。引导学生说出只要边长“既是”18的因数“又是”12的因数,就能铺满大长方形。从而引出公倍数的概念,再强调因为一个数的因数的'个数是有限的,所以两个数的公因数的个数也是有限的(最小是1),让学生在自主参与、发现、归纳的基础上认识并建立公因数的概念的过程。
3、归纳总结:只要正方形的边长既是12的因数又是18的因数,这样的正方形就能铺满大长方形。1、2、3、6既是12的因数又是18的因数,它们就是12和18的公因数。
4、根据学生的总结我及时板书课题,让学生的形象思维转变成抽象思维。
5、反例教学:让学生说明4是12和18的公因数吗?为什么?
学生通过上面的一正一反教学总结出:公因数要同时是两个数的因数。
为了及时巩固,完成练一练:先让学生在图上画一画,找出公因数和最大因数,填写在书上。
(设计目的:通过具体的操作和交流活动,帮助学生理解公因数,使知识不在枯燥无。让学生到感受成功的喜悦。)。
最大公因数教学设计(模板20篇)篇十五
反思本课教学,我认为教师做的比较成功的地方有以下几个方面:
一、复习和新知的传授能够联系学生的学习、生活实际。
首先教师让每个学生把自己的学号别在胸前,本节课的教学围绕学号展开,也就是借助学号这个载体,让学生复习质数和合数的概念,同时在教学最大公因数概念的时候,也是借助学号完成的,这样的设计联系了学生实际,借助学生最熟悉的学号这个载体,完成了从旧知到新知的过渡,符合学生的`认知规律,同时也有助于学生对新知的理解。
二、教师注重创设情境、激起学生的认知冲突来揭示新知。在这个环节中,教师让12的所有因数和18的所有因数同时到前面来站好,当学生找不到位置的时候,教师引导全体同学作裁判,这些同学应该站在什么位置?从而来揭示出公因数和最大公因数。这种情境的创设符合学生的认知规律,调整了学习节奏和精神状态,对学生探索、构建新知起着积极的推动作用。同时可以激发矛盾,突出知识的生长点,唤起学生思考和解决问题的激情。在这个前提下“公因数”和“最大因约数”的概念就水到渠成了。
三、课堂教学中体现了精讲多练。
本节课,教师从复习导入到新知结束,只用了不足15分钟。余下的时间学生做练习,学生自主练习的时间比较长。学生在练习的过程中不断探索、不断发现规律。练习的设计主要是体现分层次教学,让学生在分层次的练习活动中探索并掌握求两个数最大公因数的方法,掌握这些规律,有助于学生今后求最大公因数的速度和正确率。练习容量比较大,有助于学生更好的达到本节课的教学目标。
最大公因数教学设计(模板20篇)篇十六
教学目标:
1.使学生理解和认识公因数和最大公因数,能用列举的方法求100以内两个数的公因数和最大公因数,能通过直观图理解两个数的因数及公因数之间的关系。
2.使学生借助直观认识公因数,理解公因数的特征;通过列举探索求公因数和最大公因数的方法,体会方法的合理和多样;感受数形结合的思想,能有条理地进行思考,发展分析、推理等能力。
3.使学生主动参加思考和探索活动,感受学习的收获,获得成功的体验,树立学好数学的信心。
教学重点:
教学难点:
教学准备:
小黑板。
教学过程:
一、铺垫准备。
1.直观演示,作好铺垫。
出示边长6厘米和边长5厘米的两个正方形。
提问:观察这两个正方形,哪一个能正好分成边长都是2厘米的小正方形?
2.引入新课。
谈话:根据上面我们看到的,如果一个长度是原来边长的因数,就能正好全部分割成小正方形。现在就利用这样的认识,学习与因数有密切联系的新内容,认识新知识,学会新方法。
二、学习新知。
(1)出示例9,了解题意。
启发:观察正方形纸片的边长和长方形的长、宽,哪种纸片能把长方形正好铺满,哪种不能正好铺满?先在小组讨论,说说你的理由。
交流:哪种纸片能把长方形正好铺满,哪种不能?你是怎样想的?
结合交流进行演示,引导观察用正方形纸片铺的结果,理解边长6是长方形两边12和18的因数,能正好铺满;(板书:126=2186=3)边长4是12的因数,但不是18的因数,就不能正好铺满。(板书:124=3184=4......2)。
(2)启发:想一想,还有哪些边长是整厘米数的正方形,也能把这个长方形正好铺满?为什么?先独立思考,再和同桌说一说,并说说你的理由。
最大公因数教学设计(模板20篇)篇十七
理解两个数的公因数和最大公因数的意义。
通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。
理解公因数和最大公因数的意义。
一、预习砺能。
1、提问:什么是因数?怎样找一个数的所有因素?
2、写出16和12的所有因数。
提问:从16和12的所有因素中你发现了什么?
二、导学砺能。
1.出示例1。
(2)、以小组为单位,探究如何拼剪正方形。
(3)、多媒体演示剪小正方形的过程,进一步验证学生动手操作的情况。
(4)、通过交流,得出结论:要使所剪成大小相等的正方形且没有剩余,正方形的边长必须既是30的因数,又是12的因数。
2、教学公因数和最大公因数。老师用多媒体课件演示集合图。
1,2,3,6是12和30公有的因数,叫做它们的公因数。其中,6是最大的'一个公因数,叫做它们的最大公因数。
3、引导学生用短除法找两个数的最大公因数。
三、巩固砺能。
1、达标练习。
完成教材第12页“试一试”。学生完成后归纳出规律。
2、总结评价。
通过本节课的学习,我们主要认识了公因数、最大公因数的意义.公因数和最大公因数在现实生活中有着广泛的应用,我们初步了解了它的应用价值。
最大公因数教学设计(模板20篇)篇十八
一、说教材:
教材的地位及其作用。
学习本课之前,本册教材已经安排了认识因数和找一个数的所有因数,这些内容与本节课紧密相联,是学习本课的铺垫和基础。同时,找最大公因数又是约分的基础,而约分又是分数四则运算的重要基础,因此,理解和掌握最大公因数就显得尤为重要。由此可见,本课在分数运算中起着承前启后、举足轻重的作用。
教材编写者编写本节课时,贯彻数学课程标准(版)的理念,非常注意促使学生经历观察、操作、比较、讨论、归纳等学习活动,在“找最大公因数”的过程中发展抽象概括的能力,培养学生的实践能力和创新意识,帮助学生实现可持续发展发挥。
这里分析本节课在教材中的地位和作用,同时也是我们确定教学目标和教学重点的一项重要依据。
学情分析:
学习本课之前,五年级学生已经认识了倍数和因数,能找出100以内某个自然数的所有因数;积累了一定的观察、操作、归纳等数学活动经验,具备了初步的抽象概括能力。但是,这个年龄阶段的学生处于从具体的形象思维向抽象逻辑思维过渡的阶段,他们的数学学习一个重要特点是:探索发现和抽象概括的过程中需要具体的、形象的数学例证作支撑;同时他们在进行数学概括时往往不够完整,在数学表达上往往不够严谨,这些都需要精心的引导。
以上学情,是我们确定教学目标和教学重点、难点以及确定教法、学法的一项重要依据。
教学目标:
1、在解决问题的过程中理解公因数和最大公因数的意义,探索找公因数的方法,会正确找出两个数的公因数与最大公因数。
2、渗透集合思想,体验解决问题策略的多样性。
3、培养学生分析、归纳等思维能力,激发学生自主学习、积极探索的热情,培养合作交流的良好习惯。
教学重、难点:
教学重点:能理解公因数和最大公因数的意义,探索找公因数的方法。
教学难点:能正确找出两个数的公因数与最大公因数。
教材处理:
教材首先呈现了找公因数的一般方法:先用想乘法算式的方式分别找12和18的因数,再让学生将这些因数填入两个相交的集合圈中,引导学生重点思考的问题是:两个集合相交的部分填哪些因数?在此基础上,引出公因数与最大公因数的概念。教材用集合的方式呈现思路,让学生经历知识的形成过程,引发学生的数学思考。
教材在练一练中,呈现了两组找因数、公因数和最大公因数的练习,一组是8和16,另一组是5和7。第一组是两个数存在倍数关系找最大公因数;第二组是找互质数的最大公因数。我在教学这两种特殊情况时,给出更多的数字,安排了三对数,第一组4和8,16和32,6和24,每对都存在倍数关系,先让学生找一找公因数和最大公因数,然后观察最大公因数,发现每组的最大公因规律。第二组安排了三对数3和7,8和9,15和16,都存在互质的关系,也先让学生找一找公因数和最大公因数,然后观察、发现每组的最大公因数都是1,然后现去想一想,每组数都有些什么特点,从而概括这两种特殊情况组找最大公因数的方法。
二、说方法。
教法、学法选择:
依据《数学课程标准(版)》,数学教学活动要注重把四基目标有机结合,整体实现;要重视学生在学习活动中的主体地位,我对本节课主要选用了探究性学习方式。同样的,依据《数学课程标准(2011版)》,为了使学生主体地位和教师的主导作用达到和谐统一,我还选用了启发式的教学方式。
教学手段:
我使用了现代信息技术,以手段多样化,促进学生的探索研究。主要使用了四种教学手段:
1、学具操作:合理的使用学具能促进学生的亲身经历与体验,帮助学习建立数学建模。
2、白板运用:恰当的演示,给课堂带来清晰的层次感,体现教师的主导作用和引导方式。强大的.电子白板可以更好的辅助教师和学生之间的互动。
4、课堂板书:必要的板书有利于实现学生的思维与教学过程同步,有助于学生更好地把握教学内容的脉络。
三、说过程。
一、复习导入。(复习找因数的方法)。
回忆旧知识,又是为向新知识的延升做好铺垫。
让学生找出12的所有因数。并说说是怎样找的?找因数的时候需要注意些什么?
(白板上出示1、2、3、4、5、6、7、8、9、10、12、15、18、20数字和集合圈1)。
让学生将12的因数拖入集合圈中,回忆找因数的方法。怎么找因数才能又快又有顺序?
用乘法算式,有序、不易遗漏。
二、探究。
再找一找18的所有因数,并出示集合圈2,让学生将18的所有因数拖入集合圈2中。
9、18。
移动集合圈。展示交集动态的过程。
师:左边的集合圈填的是什么?(12的因数)右边的集合圈填的是什么?(18的因数)中间的圈里是?(即是12的因数也是18的因数)。
那我们可以给他取个名字?(公因数)。
我们可以将4放到中间的集合圈中吗?为什么?
根据学生的回答,小结:即是12的因数也是18的因数,我们就称他为12和18的公因数。
巩固练习。
你学会了找两个数的公因数了吗?试一试吧。
找6和9的公因数找30和45的公因数。
如果请你找出12和18的最大公因数,你会觉得是哪一个数字呢?
巩固练习。
我们学会了找最大公因数,那同学们能找出这三组数的最小公因数吗?你有什么发现?
1、4和816和326和24。
2、3和78和915和16。
做完后分小组相互交流,从中你能发现些什么?
每组的两个数有些什么特点,和他们的最大公因数有什么关系?是不是有这些特点的两个数,它们的最大公因数都有这些规律呢?分小组验证。
反馈得出结论:两个数是倍数关系的,较大的数是两个数的最大公因数。
两个数只有公因数1时,他们的最大公因数为1。
三、练习反馈:
四、归纳总结。
1、这节课我们学到了那些知识?
2、我们是运用什么方法获得这些知识的?
(不但让学生谈知识技能方面的收获,还着重让学生谈谈了学习方法、情感态度方面的收获,再一次激起良好的情绪体验。)。
最大公因数教学设计(模板20篇)篇十九
1.在用小正方形拼长方形的活动中,体会找一个数的因数的方法,提高有序思考问题的能力。
2.在1—100的自然数中,能运用多种方法,正确写出指定自然数的所有因数。
3、经历探索找一个数的因数的活动过程,培养有条理思考的习惯和能力,发展初步的推理能力。
教学重点。
在用小正方形拼长方形的活动中体会找一个数的因数的方法。教学难点:
提高学生有序思考的能力。
教具和学具:12个1平方厘米的小正方形。
教学过程。
(一)创设情境,激情导入师:同学们喜欢做拼图游戏吗?
请拿出准备好的正方形,在你们的小组里用你们准备的12个小正方形拼成长方形,看谁拼出的长方形种类多。也可以使用自己喜欢的方式拼摆或涂画的方式独立操作,边摆边做好记录。
(二)合作交流,探索新知活动一:合作探究。
1、学生:用12个小正方形自由拼(画)长方形。
师:刚才老师在观察同学们操作时,都有自己的拼法,下面把我们的学习成果交流一下,看看其他同学的成果,总结一下能拼出几种长方形?2、引导学生合作交流中总结出找一个数的因数的基本方法。
师:你是怎样拼的,说说好吗?可能的拼法有:
1:横着摆了12个小正方形。2:横着摆6个,摆了2排。3:横着摆4个,摆了3排。
4:我还多摆了一种,横着摆三个,摆了4排。5:竖着摆12个。
6:横着摆2个,竖着摆6个。师:你能把这些摆法用算式写出来吗?
依学生汇报板书:1×12=122×6=1212×1=126×2=123×4=124×3=12师:请同学们观察一下,哪两道算式的因数一样?学生观察算式,找出因数一样的算式。1:3×4=12和4×3=12的因数一样。2:1×12=12和12×1=12的因数一样。3:2×6=12和6×2=12的因数一样。
师:那么,这6个算式最少能用几种算式表示出来?
师:同学们观察一下,12的因数有哪几个?(学生说出12的因数有:
1、12、
2、
6、
引导学生说出:用乘法思路想,看哪两个数相乘得12,然后一对一对找出来。
3、引导得出“有序思考”的方法。
根据学生发言小结:找一个数的因数,要用“有序思考”的方法,即用乘法依次一对一对地找,这样有顺序的给一个数找因数,好处就是不重复也不遗漏。师:请同学们按顺序说出12的因数。
板书:12的所有因数有:
1、
2、
3、
4、
6、12。三:练习师辅导书本9.1,2,3题。四:布置作业。
最大公因数教学设计(模板20篇)篇二十
学生的方法可能有:
a、找对应因数。
b、从18的因数中找27的因数。
或者从27的因数中找18的因数。
c、排序法。
d、短除法。
e、分解法。
总之:不论采用哪种方法,我们都要:先找出它们的因数,
再找出它们独有的和公有的因数,然后找出在公有的因数中,谁最大?
4、总结;这节课,我们学了什么?
(整个议一议环节,体现了生生互动、师生互动。体现了以学定教。)。
(五)练一练:
(为了检测学生的学习情况,我进行了分层训练。第一层:基本性练习。第二层:综合性练习。第三层:发展性练习。实现层层深入,由浅入深。使学生深刻体会到数学来源于生活,并为生活服务的道理。)。
(出示课件)第一层:基本性练习。
1、把下面的数填到合适的位置。
1,2,3,4,6,9,12,18,
12的因数:
18的因数:
12和18的公因数:
2、填一填:
8的因数:
16的因数:
8和16的公因数: