教学工作计划的制定过程中,教师应与同事进行交流和讨论,互相借鉴和提供建议,共同提高教学水平。以下是小编为大家整理的教学工作计划范文,供大家参考和借鉴。
一元一次不等式组教案设计(优秀22篇)篇一
1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;。
3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。
教学难点。
正确分析实际问题中的不等关系,列出不等式组。
知识重点。
建立不等式组解实际问题的数学模型。
探究实际问题。
出示教科书第145页例2(略)。
问:(1)你是怎样理解“不能完成任务”的数量含义的?
(2)你是怎样理解“提前完成任务”的数量含义的?
(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?
师生一起讨论解决例2.
归纳小结。
1、教科书146页“归纳”(略).
2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?
在讨论或议论的基础上老师揭示:
步法一致(设、列、解、答);本质有区别.(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表。
一元一次不等式组教案设计(优秀22篇)篇二
学习目标:
1、进一步经历运用方程解决实际问题的过程。
2、提高学生找等量关系列方程的能力。
3、培养学生的抽象、概括、分析和解决问题的能力。
4、学会用数学的眼光去看待、分析现实生活中的情景。
重点:
1、如何从实际问题中寻找等量关系建立方程,解决问题后如何验证它的合理性。
2、解决打折销售中的有关利润、成本价、卖价之间的相关的现实问题。
难点:
如何从实际问题中寻找等量关系建立方程。
学习指导:
一、知识准备。
1、通过社会调查,亲历打折销售这一现实情境,了解打折销售中的成本价、卖价和利润之间的关系。进而能根据现实情境提出数学问题。
2、谈一谈:
请举例说明打折、利润、利润率、提价及削价的含义分别是什么?
3、算一算:
(1)原价100元的商品,打8折后价格为元;
(2)原价100元的商品,提价40%后的价格为元;
(3)进价100元的商品,以150元卖出,利润是元。
二、学习新课。
一)思考:
1、把下面的“折扣”数改写成百分数。九折八八折七五折。
2、你是怎样理解某种商品打“八折”出售的?
二)问题:
1、说说“打折销售”中自己有过的亲身经历。
2、假设你是一个商店老板,你的追求是什么?
3、你是怎样理解商品的利润?
三)新知探讨。
1、你认为商品的标价、折数与商品的卖价之间有怎样的关系?
2、结合实际,说说你从打折销售中可以获得哪些数学问题?
(1)某商店出售一种录音机,原价430元,现在打九折出售,比原价便宜多少钱?
(2)一种画册原价每本16元,现在按每本11。2元出售。这种画册按原价打了几折?
如果设每件服装的成本价为x元,根据题意,
(1)每件服装的标价为:()。
(2)每件服装的实际售价为:()。
(3)每件服装的利润为:()。
(4)列出方程,并解答:
四)回顾与反思。
一元一次不等式组教案设计(优秀22篇)篇三
3.3解一元一次方程(二)―――去括号与去分母(第1课时)教学目标:(1)知识目标:在具体情境中体会去括号的必要性,能运用运算律去括号。(2)能力目标:探索总结去括号法则,并能利用法则解决简单的问题。重点:去括号法则及其运用。难点:括号前面是“―”号,去括号时,应如何处理。教学过程:(一)创设情景,导入新课问题某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电15万度。这个工厂去年上半年每月平均用电多少度?(三)典例教学例1.解方程3x-7(x-1)=3-2(x+3)例2.一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时.已知水流的`速度是3千米/小时,求船在静水中的平均速度.例3.某车间22名生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母.为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?(四)课堂练习1.(1)4x+3(2x-3)=12-(x+4)(2)2.同步p79自我尝试(五)课堂小结去括号法则(六)作业p102习题3.3第2题,同步学习p80开放性作业教后思:
一元一次不等式组教案设计(优秀22篇)篇四
3.使学生初步养成正确思考问题的良好习惯.
教学重点和难点。
课堂教学过程设计。
一、从学生原有的认知结构提出问题。
为了回答上述这几个问题,我们来看下面这个例题.
例1某数的3倍减2等于某数与4的和,求某数.
(首先,用算术方法解,由学生回答,教师板书)。
解法1:(4+2)÷(3-1)=3.
答:某数为3.
(其次,用代数方法来解,教师引导,学生口述完成)。
解法2:设某数为x,则有3x-2=x+4.
解之,得x=3.
答:某数为3.
纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.
我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.
本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.
师生共同分析:
1.本题中给出的已知量和未知量各是什么?
2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)。
上述分析过程可列表如下:
解:设原来有x千克面粉,那么运出了15%x千克,由题意,得。
x-15%x=42500,
所以x=50000.
答:原来有50000千克面粉.
(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)。
教师应指出:
(2)例2的解方程过程较为简捷,同学应注意模仿.
依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:
(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);。
(4)求出所列方程的解;。
(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.
一元一次不等式组教案设计(优秀22篇)篇五
科学合理的教学方法能使教学效果事半功倍,达到教与学的和谐完美统一。
基于此,我准备采用的教法讲授法、讨论法。德国教育学家第斯多慧:差的教师只会奉送真理,好的教师则交给学生如何发现真理,老师的教是为了不教,这才是教学的最高境界,所以我采用的学法是练习法、自主合作法。
六、说教学过程。
在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。
(一)新课导入。
首先是导入环节,我采用复习旧知的导入方法。我会让学生回忆不等式的概念以及一元一次方程的概念,明确指出今天学习的内容是《一元一次不等式》。
这样的设计既可以考查学生对之前知识的掌握情况,还能够为今天学习一元一次方程的概念打下基础。而且开门见山的导入方式能够快速地进入主题。
(二)新知探索。
接下来是新知探索环节,首先我请学生类比不等式以及一元一次方程的概念,给一元一次不等式下定义。
能够总结出:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。
接下来让学生回忆上节课学习的不等式x-726如何解决的,通过学生回忆总结可以得到:通过“不等式的两边都加7,不等号的方向不变”而得到的。
接下来提问学生有没有更加简便的方法解不等式?让学生类比解一元一次方程的步骤进行解题。可以得到相当于可以用“移项”,来解决。
在这个过程中,强调每一个步骤,在第二题最后一步,强调当不等式的两边同时乘以(或除以)同一个负数时,不等号的方向改变。
从而我们归纳:解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为xa的形式。
《数学课程标准》指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”。根据这一教学理念,在本环节中,我组织学生进行了自主探究活动,让学生在保持高度学习热情和探究欲望的活动过程中,始终以愉悦的心情,亲身经历和体验知识的形成过程。培养学生的探究能力、分析思维能力,激发他们的创新意识、参与意识。
(三)课堂练习。
之所以这样设计是因为练习是掌握知识、形成技能、发展思维的重要手段,针对本课的教学重点和难点,上述练习,目的是让学生进一步巩固对新知的理解。可以深化教学内容,培养思维的灵活性。
(四)小结作业。
最后一个环节为小结作业环节,关于课堂小结,我打算让学生自己来总结今天的收获。
这样既发挥了学生的主体性,又可以提高学生的总结概括能力,让我在第一时间得到学习反馈,及时加以疏导。
通过这样的方式能够为本节课学习的知识进行进一步的巩固。
七、说板书设计。
我的板书设计遵循简洁明了突出重点的意图,这是我的板书设计:
一元一次不等式组教案设计(优秀22篇)篇六
(一)知识与能力目标:(课件第2张)
1.体会解不等式的步骤,体会比较、转化的作用。
2.学生理解、巩固一元一次不等式的解法.
3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。
4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。
(二)过程与方法目标:
1.介绍一元一次不等式的概念。
2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。
3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。
4.学生将文字表达转化为数学语言,从而解决实际问题。
5.练习巩固,将本节和上节内容联系起来。
(三)情感、态度与价值目标:(课件第3张)
1.在教学过程中,学生体会数学中的比较和转化思想。
2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。
3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。
4.通过本节的学习,学生体会不等式解集的奇异的数学美。
1.掌握一元一次不等式的解法。
2.掌握解一元一次不等式的`阶梯步骤,并能准确求出解集。
3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。
教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。
(一)、复习:
教学环节
教 师 活 动
学 生 活 动
设 计 意 图
一元一次不等式组教案设计(优秀22篇)篇七
本节课的内容,是人教版七年级下册第九章第二节“实际问题与一元一次不等式”。它是在学习不等式的概念、性质及其解法和运用一元一次方程(或方程组)解决实际问题等知识的基础上,利用不等式解决实际问题。这既是对已学知识的运用和深化,又为今后在解决实际问题中提供另一种有效的解决途径。通过实际问题的探究,让学生学会列一元一次不等式,解决具有不等关系的实际问题。经历由实际问题转化为数学问题的过程,掌握利用一元一次不等式解决问题的基本过程。促进学生的数学思维意识,从而使学生乐于接触社会环境中的数学信息,愿意谈论某些数学话题,能够在数学活动中发挥积极作用。同时向学生渗透由特殊到一般、类比、建模和分类考虑问题的思想方法。不等式与现实生活中联系非常紧密,解决好这类应用题,有助于学生在以后的日常生活中自主灵活应用所学知识解决实际问题。
七2班班现有56名同学,部分学生基础较差,拔尖学生少,尤其个别学生底子太薄,学生学习较为被动,预习工作做得不够认真,同时学生学习数学的积极性不高,基本能力较差,解决问题的能力不强,知识掌握不够扎实,运用不够灵活。从学生学习的心理基础和认知特点来说:学生已经在前一阶段学习的学习中已经具备了实际问题建立一元一次方程和解一元一次方程的一般步骤的基础,能进行数学建模和简单的解释应用。虽然初一学生对消费问题比较热心,但由于年纪太小,缺少生活经验,由于本节问题的背景和表达都比较贴近实际,其中有些数量关系比较隐蔽,可能会产生一定的障碍。
一元一次不等式的应用,是中学数学的重要内容,和一元一次方程应用相似,对培养学生分析问题、解决问题的能力,体会数学的价值都有较大的意义.对实际生活中的不等量关系、数量大小比较等知识,学生在小学阶段已经有所了解.但用不等式表示,并对不等式的.相关性质进行探究,对学生是新的内容。这些问题能培养学生思维的深刻性和灵活性,优化学生的思维品质。分组活动,先独立思考,再组内交流,然后各组汇报讨论结果,可极大调动学生的创造积极性,应把握学生的创新潜能,使不同层次的学生都能得到发展。在实施教学时,要根据课程改革的基本理念和教材特点组织教学.结合具体内容,让学生经历知识的形成与应用过程。
知识目标:能进一步熟练的解一元一次不等式,会从实际问题中抽象出数学模型,会用一元一次不等式解决简单的实际问题。
能力目标:通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型。
情感目标:在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的习惯;学会在解决问题时,与其他同学交流,培养互相合作精神。
关键:突出建模思想,刻画出数量关系,从实际中抽象出数量关系。注意问题中隐含的不等量关系,列代数式得到不等式,转化为纯数学问题求解。
创设情境,研究新知。
(出示一个解不等式的问题,为后面新知作铺垫)。
一元一次不等式组教案设计(优秀22篇)篇八
教学设计思想:
本节知识是探究如何用一元一次方程解决实际问题。在前面我们结合实际问题,讨论了如何分析数量关系、利用相等关系列方程以及如何解方程,在此基础上我们才可以进一步探究用一元一次方程解决实际问题。在课堂中教师出示例题,启发学生思考,师生共同探讨,学生找等量关系,列出方程,教师出示巩固性练习,学生解答,达到巩固所学知识的目的。
教学目标:
1.知识与技能。
利用相等关系建立数学模型列方程;。
2.过程与方法。
会用方程解决简单的实际问题,认识到建立方程模型的重要性;。
在建立方程解决实际问题时,我们体会到设未知数的意义。
3.情感、态度与价值观。
体会数学建模与实际的相互密切联系,加强数学建模思想。
教学重点:解决相关问题时,利用相等关系列方程。
教学难点:解决相关问题时,利用相等关系列方程。
重难点突破:关键是弄清问题背景,分析清楚有关数量关系,特别是找出可以作为列方程依据的主要相等关系。
教学方法:采用直观分析法、引导发现法及尝试指导法充分发挥学生的主体作用,使学生在轻松愉快的气氛中掌握知识。
课时安排:1课时。
教具准备:投影仪。
教学过程:
一、创设情境。
师:通过前几节课的学习,同学们回忆一下,列方程解应用题的第一步是什么?
生:分析题意,设未知数。
师:很好。我们以前学的应用题大多是求一个未知量,因而设一个未知数我们今天要学的内容需要求两个未知量,这又如何解决呢?通过今天的学习,这些问题将得到很好的答案。
[教法说法]:此节内容与前边内容联系不大,所以开门见山直接提出问题,同时也引起学生的注意和好奇,使学生带着问题进入今天的学习,激发了学生的求知欲。
一元一次不等式组教案设计(优秀22篇)篇九
我们这堂课主要有五个特色:
1、学而时习之。
2、新课当旧课上。
3、重视引导学生再创造,再发现。
4、突出学习和强度,角度和反思。
5、创设情景,让学生主动积极参与。
一、学而时习之。
二、新课当旧课上。
三、重视引导学生再创造、再发现。
b组训练题较a组灵活,适用于学有余力的学生。
第(4)题,学生要考虑两种情况;目的是通过分类讨论的思想,培养学生思维的严密性。
四、突出学习的速度、角度、强度和反思。
例如:课前训练一和作业中对新旧知识的系统复习,通过多次巩固达到强化训练的目的。
另外,我们设计了强化a组题,在学生完成a组训练题后,可以自由选择是进入强化a组题还是进入b组训练题中这部分的设计主要是让学生养成客观的自我评价,和为在a组训练中未能形成基本技能的学生再次创造一个条件和空间,务求使学生掌握基础知识,再次有机会形成基本技能,充分体现学习强度和分层教学。
五、创设情境,让学生主动积极参与。
一元一次不等式组教案设计(优秀22篇)篇十
在上课之前,老师请大家来帮一个忙,帮老师来解决一道难题:老师有一个熟人姓王,他有一个哥哥和一个弟弟,哥哥的年龄是20岁,小王的年龄的2倍加上他弟弟年龄的5倍等于97.现在小王要老师猜猜他和他弟弟的年龄各是多少?俗话说三个臭皮匠,可抵一个诸葛亮,现在我们全班同学可抵得上很多诸葛亮,所以老师相信大家一定有办法的.
(一)提出问题,引发讨论
当一个未知数同时满足几个不等关系时,我们就按这些关系分别列几个不等式,这样就得到不等式组,用不等式组解决实际问题时,其公共解是否一定为实际问题的解呢?请举例说明.
(二)导入知识,解释疑难
1.教材内容讲解
2.探究活动
1. 应用不等式组解决实际问题的步骤:1.审清题意;2.设未知数,根据所设未知数列出不等式组;3.解不等式组;4.由不等式组的解确立实际问题的解;5.作答.(与列方程组解应用题进行比较)
2.双基练习
1.已知方程组 有正整数解,则k的取值范围是_________.
2.若不等式组 无解,求a的取值范围.
3.当2(m-3) 时,求关于x的不等式 x-m的解集.
某商场为了促销,开展对顾客赠送礼品活动,准备了若干件礼品送给顾客,在一次活动中,如果每人送5件,则还余8件,如果每人送7件,则最后一人还不足3件.设该商场准备了m件礼品,有x名顾客获赠,请回答下列问题:
(1)用含x的代数式表示m.
(2)求出该次活动中获赠顾客人数及所准备的礼品数
一元一次不等式组教案设计(优秀22篇)篇十一
认识一元一次不等式,会解简单的一元一次不等式;类比一元一次方程的步骤,总结归纳解一元一次不等式的基本步骤。
【过程与方法】。
通过对比解一元一次方程的步骤,学生自己总结归纳一元一次不等式步骤的过程,提高归纳能力,并学会类比的学习方法。
【情感态度与价值观】。
感受数学知识之间的联系,提高对数学学习的兴趣。
二、教学重难点。
【重点】。
掌握一元一次不等式的概念,会解一元一次不等式并能够在数轴上表示出来。
【难点】。
三、教学过程。
(一)引入新课。
(二)探索新知。
学生类比不等式以及一元一次方程的概念,能够总结出:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。
让学生回忆上节课学习的不等式x-726如何解决的,并提问学生有没有更加简便的方法解不等式?让学生类比解一元一次方程的步骤进行解题。
给出不等式2(1+x)3;。
强调每一个步骤,在第二题最后一步,强调当不等式的两边同时乘以(或除以)同一个负数时,不等号的方向改变。
归纳:解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为xa的形式。
(三)课堂练习。
问题:解不等式,并在数轴上表示数集:5x+154x-1。
师生活动:学生独立思考完成,教师可适当指导,帮助学生理解不等式中的变形步骤。
(四)小结作业。
小结采用发散性问题:你今天有什么收获?
一元一次不等式组教案设计(优秀22篇)篇十二
问题1:结合函数y=2x-5的图象,观察图象回答下列问题:
(1)x取何值时,2x-5=0?
(2)x取哪些值时,2x-50?
(3)x取哪些值时,2x-50?
(4)x取哪些值时,2x-53?
你是怎样求解的?与同伴交流。
让每个学生都投入到探究中来养成自主学习习惯。
小组合作互学。
巡回每个小组之间,鼓励学生用不同方法进行尝试,寻找最佳方案。答疑展示中存在的问题。
一元一次不等式组教案设计(优秀22篇)篇十三
2、如果累计购物超过50元但不超过100元,则在乙商场购物花费小。
3、如果累计购物超过100元,又有三种情况:
(1)什么情况下,在甲商场购物花费小?
(2)什么情况下,在乙商场购物花费小?
(3)什么情况下,在两家商场购物花费相同?
握学生的创新潜能,使不同层次的学生都能得到发展。
这些问题能培养学生思维的深刻性和灵活性,优化学生的思维品质。
引导学生用数学眼光去观察周围的生活现象,思考能否用数学知识、方法、观点和思想去。
一元一次不等式组教案设计(优秀22篇)篇十四
问题3.兄弟俩赛跑,哥哥先让弟弟跑9m,然后自己才开始跑,已知弟弟每秒跑3m,哥哥每秒跑4m,列出函数关系式,画出函数图象,观察图象回答下列问题:
(1)何时哥哥分追上弟弟?
(2)何时弟弟跑在哥哥前面?
(3)何时哥哥跑在弟弟前面?
(4)谁先跑过20m?谁先跑过100m?
你是怎样求解的?与同伴交流。
问题4:已知y1=-x+3,y2=3x-4,当x取何值时,y1>y2?你是怎样做的?与同伴交流.
让学生体会数形结合的魅力所在。理解函数和不等式的联系。
精讲点拨。
在共同探究的过程中加强理解,体会数学在生活中的重大应用,进行能力提升。
提高学生应用数学知识解决实际问题的能力。
达标检测。
展示检测内容。
积极完成导学案上的检测内容,相互点评。
反馈学生学习效果。
知识与收获。
引导学生归纳探究内容。
学生回顾总结学习收获,交流学习心得。
学会归纳与总结。
布置作业。
教材p51.习题2.6知识技能1;问题解决2,3.
板书设计。
一元一次不等式组教案设计(优秀22篇)篇十五
教学目标:
(知识与技能,过程与方法,情感态度价值观)。
(一)教学知识点。
2.会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较.
(二)能力训练要求。
1.通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识.
2.训练大家能利用数学知识去解决实际问题的能力.
(三)情感与价值观要求。
体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用.
教学重点。
一元一次不等式组教案设计(优秀22篇)篇十六
二、重点难点分析。
本节教学的重点是掌握解一元一次不等式的步骤.难点是必须切实注意遇到要在不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向.掌握一元一次不等式的解法是进一步学习一元一次方程组的解法以及一元二次不等式的解法的重要基础.
相同点:二者都是只含有一个未知数,未知数的次数都是1,左、右两边都是整式.。
不同点:一元一次不等式表示不等关系,一元一次方程表示相等关系.。
(3)同方程类似,我们把或叫做一元一次不等式的标准形式.。
一元一次不等式组教案设计(优秀22篇)篇十七
课后随笔学完了不等式的性质,紧接着就是实际问题与一元一次不等式,浏览了一遍实际问题与一元一次不等式这一节后,总觉得很别扭,编者意图是本节重点讨论两方面的问题:
(1)如何根据实际问题列不等式,这是贯穿全章的中心问题。
(2)如何解不等式?这节重点比较解一元一次不等式与解一元一次方程的一般步骤。
可是,学生学完了不等式的性质,只会根据不等式的性质解最简单的不等式,如6x5x+4,-2x6等等,一些复杂的不等式还不会解,因此,有必要根据不等式的性质得出移项法则,有分母的不等式利用、去括号、移项。合并同类项、系数化为一去解,就像解一元一次方程方程一样,我对教材进行了调整,先学怎样解不等式,再学列一元一次不等式解应用题,这样既降低了难度,又分散了难点,由于和一元一次方程对比着学,学生更容易接受,其实,最关键的一点是系数化为一这步,当不等式两边乘(或除)同一个负数时,不等号的方向要改变,要变成,要变成,其余和解一元一次方程一样。
一元一次不等式组教案设计(优秀22篇)篇十八
一、教学目标:
1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。
2、通过观察,归纳的概念。
3、积累活动经验。
二、重点和难点。
归纳的概念。
感受方程作为刻画现实世界有效模型的意义。
三、教学过程。
1、课前训练一。
(1)如果||=9,则=;如果2=9,则=。
(2)在数轴上距离原点4个单位长度的数为。
(3)下列关于相反数的说法不正确的是()。
a、两个相反数只有符号不同,并且它们到原点的距离相等。
b、互为相反数的两个数的绝对值相等。
c、0的相反数是0。
d、互为相反数的两个数的和为0(字母表示为、互为相反数则)。
e、有理数的相反数一定比0小。
(4)乘积为1的两个数互为倒数,如:
(5)如果,则()。
a、,互为倒数b、,互为相反数c、,都是0d、,至少有一个为0。
(6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过周后树苗长高到1米,依题意得方程()。
a、b、c、d、00。
2、由课本p149卡通图画引入新课。
3、分组讨论p149两个练习。
4、p150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:()。
课本的宽为3厘米,长比宽多4厘米,则课本的面积为平方厘米。
解:设每个练习本要元,则每个笔记本要元,依题意可列得方程:
6、归纳方程、的概念。
7、随堂练习po151。
8、达标测试。
(1)下列式子中,属于方程的是()。
a、b、c、d、
(2)下列方程中,属于的是()。
a、b、c、d、
解:设甲队胜了场,则平了场,依题意可列得方程:
解得=。
答:甲队胜了场,平了场。
(4)根据条件“一个数比它的一半大2”可列得方程为。
(5)根据条件“某数的与2的差等于最大的一位数”可列得方程为。
p151习题5.1。
一元一次不等式组教案设计(优秀22篇)篇十九
3.使学生初步养成正确思考问题的良好习惯。
和难点。
课堂设计。
一、从学生原有的认知结构提出问题。
为了回答上述这几个问题,我们来看下面这个例题。
例1某数的3倍减2等于某数与4的和,求某数。
(首先,用算术方法解,由学生回答,教师板书)。
解法1:(4+2)÷(3-1)=3.
答:某数为3.
(其次,用代数方法来解,教师引导,学生口述完成)。
解法2:设某数为x,则有3x-2=x+4.
解之,得x=3.
答:某数为3.
纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们运用一元一次方程解应用题的目的之一。
我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系。因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程。
本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤。
二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤。
师生共同分析:
1.本题中给出的已知量和未知量各是什么?
2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)。
上述分析过程可列表如下:
x-15%x=42500,
所以x=50000.
答:原来有50000千克面粉。
(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)。
(2)例2的解方程过程较为简捷,同学应注意模仿。
依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:
(2)根据题意找出能够表示应用题全部含义的一个相等关系。(这是关键一步);
(4)求出所列方程的解;
(5)检验后明确地、完整地写出答案。这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义。
(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨。解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误。并严格规范书写格式)。
解:设第一小组有x个学生,依题意,得。
3x+9=5x-(5-4),
解这个方程:2x=10,
所以x=5.
其苹果数为3×5+9=24.
答:第一小组有5名同学,共摘苹果24个。
学生板演后,引导学生探讨此题是否可有其他解法,并列出方程。
(设第一小组共摘了x个苹果,则依题意,得)。
三、课堂练习。
2.我国城乡居民1988年末的储蓄存款达到3802亿元,比1978年末的储蓄存款的18倍还多4亿元。求1978年末的储蓄存款。
3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数。
四、师生共同小结。
首先,让学生回答如下问题:
1.本节课了哪些内容?
3.在运用上述方法和步骤时应注意什么?
依据学生的回答情况,教师总结如下:
(2)以上步骤同学应在理解的基础上记忆。
五、作业。
1.买3千克苹果,付出10元,找回3角4分。问每千克苹果多少钱?
2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?
一元一次不等式组教案设计(优秀22篇)篇二十
作与交流,涌现出多样化的解题思路。教师及时予以引导、归纳和总结,让学生感知不等式的建模。
完整的解题过程的展现,有利于培养学生有条理地思考和表达的习惯。
问题1:这个问题比较复杂。你该从何入手考虑它呢?
分组活动。先独立思考,再组内交流,然后各组汇报讨论结果。
一元一次不等式组教案设计(优秀22篇)篇二十一
自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答.
教学过程。
创设情境,导入课题,展示教学目标。
2.展示学习目标:
(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。
积极思考,尝试回答问题,导出本节课题。
阅读学习目标,明确探究方向。
从生活实例出发,引起学生的好奇心,激发学生学习兴趣。
学生自主研学。
指出探究方向,巡回指导学生,答疑解惑。
一元一次不等式组教案设计(优秀22篇)篇二十二
设购买x台电脑,如果到甲商场购买更优惠。
问题2:如何解这个不等式?
去括号,得。
去括号,得:6000+4500x-450044800x。
移项且合并,得:-300x1500。
不等式两边同除以-300,得:x5。
答:购买5台以上电脑时,甲商场更优惠。