教学工作计划应注重培养学生的综合素质和能力,促进其全面发展。这是一份经过实践验证的教学工作计划,供大家参考和借鉴。
人教版七年级数学教案版(实用14篇)篇一
1知识与技能:
使学生理解和掌握整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。
2过程与方法:
通过观察、操作、讨论的活动,使学生经历探究口算方法的全过程。
3情感态度与价值观:
让学生感受数学与生活的联系,培养学生用数学知识解决简单实际问题的能力。
教学重难点。
1教学重点:
掌握用整十数除的口算方法。
2教学难点:
理解用整十数除的口算算理。
教学工具。
多媒体设备。
教学过程。
1复习引入。
口算。
20×3=7×50=6×3=。
20×5=4×9=8×60=。
24÷6=8÷2=12÷3=。
42÷6=90÷3=3000÷5=。
2新知探究。
1.教学例1。
有80面彩旗,每班分20面,可以分给几个班?
(1)提出问题,寻找解决问题的方法。
师:从中你能获取什么数学信息?
师:怎样解决这个问题?
(2)列式80÷20。
(3)学生独立探索口算的方法。
师:怎样算80÷20呢,请同学们先自己想一想、算一算,再说给同桌听一听。
学生汇报:
预设学生可能会有以下两种口算方法:
a.因为20×4=80,所以80÷20=4这是想乘算除。
b.因为8÷2=4,所以80÷20=4这是根据计数单位的组成。
为什么可以不看这个“0”?(80÷20可以想“8个十里面有几个二十?”)。
这样我们就把除数是整十数的转化为我们已经学过的表内除法。
(4)师小结:
同学们有的用乘法算除法的,也有用表内除法来想的,都很好,那么你喜欢哪种方法呢?
把你喜欢的方法说给同桌听。
(5)检查正误。
师:我们分的结果对不对?请同学们看屏幕(课件演示分的结果)。
(6)用刚学会的方法再次口算,并与同桌交流你的想法。
40÷2020÷1060÷3090÷30。
(7)探究估算的方法。
出示:83÷20≈80÷19≈。
师:你能知道题目要求我们做什么吗?你怎么知道的?你是怎样计算的?和同学们交流一下。
生:求83除以20、80除以19大约得多少,从题目中的约等号看出不用精确计算。
师:谁想把你的方法跟大家说一说。
预设:83接近于80,80除以20等于4,所以83除以20约等于4。
19接近于20,80除以20等于4,所以80除以19约等于4。
2.教学例2。
(1)创设情境引出问题。
师:谁会解决这个问题?
150÷50。
(2)小组讨论口算方法。
(3)你是怎么这样快就算出的呢?
a.因为15÷5=3,所以150÷50=3。
b.因为3个50是150,所以150÷50=3。
这一题跟刚才分彩旗的口算方法有不同吗?
都是运用想乘算除和表内除法这两种方法来口算的。
师:在解决分彩旗和刚才的问题中,我们共同探讨了除法的口算方法,(板题:口算除法)口算时,可以用自己喜欢的方法来口算。
口算练习:150÷30240÷80300÷50540÷90。
3.估算。
(1)探计估算的方法。
师:你能知道题目要求我们做什么吗?
你能估吗?请先估算,再把你的估算方法与同伴交流,看看能否互相借鉴。
(2)谁想把你的方法跟大家说一说。
(3)总结方法:把被除数和除数都看作与原数比较接近的整十数再用口算方法算。
(4)判断估算是否正确:122÷60=2349÷50≈8为什么不正确?
3巩固提升。
1.独立口算。
观察每道题,怎样很快说出下面除法算式的商?
如果估算的话把谁估成多少。
2.算一算、说一说。
(1)除数不变,被除数乘几,商也乘几。
(2)被除数不变,除数乘几,商反而除以几。
3.解决问题。
(1)一共要寄240本书,每包40本。要捆多少包?
你能找到什么条件、问题。你会解决吗?
240÷40=6(包)。
答:要捆6包。
(2)这个小朋友也是一个爱看书的好孩子,她在看一本故事书。
出示条件:一共有120个小故事,每天看1个故事。
问题:看完这本书大约需要几个月?
问:要求看完这本书大约需要几个月?必须要知道哪些条件,你会求吗?
120÷30=4(个)。
答:看完这本书大约需要4个月。
课后小结。
这节课你有什么收获?还有什么问题?
本节课学习了整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。
板书。
口算除法。
有80面彩旗,每班分20面,可以分给几个班?
80÷20=。
文档为doc格式。
人教版七年级数学教案版(实用14篇)篇二
1.单项式:只含有数和字母的乘积的代数式叫做单项式.单独的一个数或一个字母也是单项式.它的本质特征在于:
(1)不含加减运算;。
(2)可以含乘、除、乘方运算,但分母中不能含有字母.
2.单项式的次数、系数:一个单项式中,所有字母的指数和叫做这个单项式的次数.单项式中的数字因数叫做这个单项式的系数.
3.多项式:几个单项式的和叫做多项式.多项式中,每个单项式叫做多项式的项,其中不含字母的项叫常数项.一个多项式中,次数最高的项的次数,叫做这个多项式的次数.
4.整式:单项和多项式统称整式.
人教版七年级数学教案版(实用14篇)篇三
1、通过丰富的实例,学生进一步认识点、线、面、体的几何特征,感受它们之间的关系。
2、培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想。
3、养成学生积极主动的学习态度和自主学习的方式。
重点:认识点、线、面、体的几何特征,感受它们之间的关系。
难点:在实际背景中体会点的含义。
圆柱、圆锥、正方体、长方体、球、棱柱、棱锥模型。
观察、讨论.让学生共同体会“点动成线、线动成面、面动成体。
让学生举出更多的“点动成线、线动成面、面动成体”的例子。
小组合作学习,学生利用学具完成教科书第114页练习(动手转一转)。
设计意图:教师利用多媒体动态演示,让学生主动参与学习活动,观察感受,经历体验图形的变化过程,通过合作学习,感悟知识的生成、变化、发展,激发学生的联想与再创造能力。学生自己动手实践操作,加深学生印象,化解难度。
教师展示图片(建筑或生活的实物等),让学生找找生活中的平面、曲面、直线、点等。
让学生找出生活中更多的包含平面、曲面、直线、曲线、点的例子。
1、课本112页观察,并回答它的问题。
引导学生观察后得出结论:面与面相交得到线,线与线相交得到点。
2、113页练习(提供实物,议一议,动手摸一摸),思考以下问题:
让学生自己体会并小组讨论得出点、线、面、体之间的关系。
2、阅读教科书第119页的实验与探究,并思考有关问题。
人教版七年级数学教案版(实用14篇)篇四
借助“线段图”分析复杂的行程问题中的数量关系,从而建立方程解决实际问题,发展分析问题,解决问题的能力,进一步体会方程模型的作用。
重点、难点。
1.重点:列一元一次方程解决有关行程问题。
2.难点:间接设未知数。
教学过程。
一、复习。
1.列一元一次方程解应用题的一般步骤和方法是什么?
2.行程问题中的基本数量关系是什么?
路程=速度×时间速度=路程/时间。
二、新授。
画“线段图”分析,若直接设元,设小张家到火车站的路程为x千米。
1.坐公共汽车行了多少路程?乘的士行了多少路程?
2.乘公共汽车用了多少时间,乘出租车用了多少时间?
3.如果都乘公共汽车到火车站要多少时间?
4,等量关系是什么?
如果设乘公共汽车行了x千米,则出租车行驶了2x千米。小张家到火车站的路程为3x千米,那么也可列出方程。
可设公共汽车从小张家到火车站要x小时。
设未知数的方法不同,所列方程的复杂程度一般也不同,因此在设未知数时要有所选择。
三、巩固练习。
教科书第17页练习1、2。
四、小结。
有关行程问题的应用题常见的一个数量关系:路程=速度×时间,以及由此导出的其他关系。如何选择设未知数使方程较为简单呢?关键是找出较简捷地反映题目全部含义的等量关系,根据这个等量关系确定怎样设未知数。
四、作业。
教科书习题6.3.2,第1至5题。
人教版七年级数学教案版(实用14篇)篇五
3,体验数形结合的思想。
教学难点归纳相反数在数轴上表示的点的特征。
知识重点相反数的概念。
教学过程(师生活动)设计理念。
设置情境。
引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类。
4,-2,-5,+2。
允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。
(引导学生观察与原点的距离)。
思考结论:教科书第13页的思考。
再换2个类似的数试一试。
培养学生的观察与归纳能力,渗透数形思想。
深化主题提炼定义给出相反数的定义。
学生思考讨论交流,教师归纳总结。
规律:一般地,数a的相反数可以表示为-a。
思考:数轴上表示相反数的两个点和原点有什么关系?
练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特征做准备。
深化相反数的概念;“零的相反数是零”是相反数定义的一部分。
强化互为相反数的数在数轴上表示的点的几何意义。
给出规律。
解决问题问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?
学生交流。
分别表示+5和-5的相反数是-5和+5。
练一练:教科书第14页第二个练习利用相反数的概念得出求一个数的相反数的方法。
小结与作业。
课堂小结1,相反数的定义。
2,互为相反数的数在数轴上表示的点的特征。
3,怎样求一个数的相反数?怎样表示一个数的相反数?
本课作业1,必做题教科书第18页习题1.2第3题。
2,选做题教师自行安排。
本课教育评注(课堂设计理念,实际教学效果及改进设想)。
1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想.
2,教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法.
3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地.
人教版七年级数学教案版(实用14篇)篇六
概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.
(二)内容解析。
现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助.
基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.
二、目标和目标解析。
(一)教学目标。
1.理解不等式的概念。
2.理解不等式的解与解集的意义,理解它们的区别与联系。
3.了解解不等式的概念。
4.用数轴来表示简单不等式的解集。
(二)目标解析。
1.达成目标1的标志是:能正确区别不等式、等式以及代数式.
2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.
3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.
4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.
三、教学问题诊断分析。
本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度.
因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集.
四、教学支持条件分析。
利用多媒体直观演示课前引入问题,激发学生的学习兴趣.
五、教学过程设计。
(一)动画演示情景激趣。
设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣.
(二)立足实际引出新知。
小组讨论,合作交流,然后小组反馈交流结果.
最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)。
人教版七年级数学教案版(实用14篇)篇七
(4)设n是一个数,则它的相反数是________.
(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款元。
2.请学生说出所列代数式的意义。
(设计意图:让学生会用单项式表示现实生活中的数量关系,进一步感悟用字母表示数的简洁、方便,使用的广泛性。)。
3.请学生观察所列代数式包含哪些运算,有何共同运算特征。
(由小组讨论后,经小组推荐人员回答)。
(设计意图:教师提出问题,激发学生学习的欲望、学习的积极性、主动性,以此为载体感悟单项式的特征,为归纳单项式概念作好准备)。
二、新授内容。
1、单项式。
通过上述特征的描述,从而概括单项式的概念,:
单项式:即由_____与______的乘积组成的代数式称为单项式。
补充:单独_________或___________也是单项式,如a,5。
2.练习:判断下列各代数式哪些是单项式?
(1);(2)abc;(3)b2;(4)-5ab2;(5)y+x;(6)-xy2;(7)-5。
解:是单项式的有(填序号):________________________。
人教版七年级数学教案版(实用14篇)篇八
教师在备课时,应充分估计学生在学习时可能提出的问题,确定好重点,难点,疑点,和关键。根据学生的实际改变原先的教学计划和方法,满腔热忱地启发学生的思维,针对疑点积极引导。
非常高兴,能有机会和同学们共同学习
昨天,老师在七年级三班上课时,把他们分成七个小组,每个小组回答问题的情况以抢答赛的形式记分。你们看(出示投影)这是七年级三班七个小组回答问题的表现情况。答对一题得一分,记作+1分;答错一题扣一分,记作1分。第几组最棒?老师还没来得及计算出每个小组的最后得分,咱们班哪位同学能帮老师算出最后结果?(学生在教师引导下回答)
我们已得出了每个小组的最后分数,那么哪个小组是优胜小组?(第一小组),回去以后,老师就把小奖品发给他们,相信他们一定会很高兴。
同学们,这节课你们愿不愿意也分成几个小组,看一看那个小组的同学表现得最出色?(原意)那么老师就按座次给同学们分组,每一竖排为一组。老师把组号写在黑板上,以便记分。
希望各组同学积极思考、踊跃发言。同学们有没有信心得到老师的小奖品?(有)同学们加油!
我们已得到了这7个小组的最后得分,那位同学能试着用算式表示?(学生在教师指导下列算式)
以上这些算是都是什么运算?(加法),两个加数都是什么数?(有理数),这就是我们这节课要学习的有理数的加法(板书课题)。
刚才老师说要给七年级三班的优胜组发奖品,老师手里有12本作业本,优胜组共6人,老师将送出的作业本数占总数的几分之几?(二分之一)分数最低的一组共7人,他们每人交给老师一个作业本,占总数的几分之几?(十二分之七)如果,老师得到的作业本记为正数,送出的作业本记为负数,则老师手里的作业本增加或减少几分之几?同学们能列出算式吗?(学生列式)对于这个算式,同学们还能轻易的感知出结果吗?(不能)
对于有理数的加法,有的同学们能直接感知得到结果,有的靠感知是不够的,这就需要我们共同探索规律!(出示投影),观察这7个算式,每一个算式都是怎样的两个有理数相加?(引导学生回答)你们还能举出不同以上情况的算式吗?(不能),这说明这几个算式概括了有理数加法的不同情况。
前两个算式的加数在符号上有什么共同点?(相同),那么我们就可以说这是什么样的两数相加?(同号两数相加)同学们还能观察出那几个算式可归为一类吗?(3、4、5、异号两数相加,6、7一个数同0相加)
同学们已把这7个算式分成了三种情况,下面我们分别探讨规律。
(2) 异号两数相加,其和有何规律呢?大家观察这三个式子回答问题。(引导学生分成两类,容易得到绝对值相同情况的结论。再引导学生观察绝对值不相同的情况,回答问题)哪位同学能概括一下这个规律?(引导学生得出)
(3) 一个数同0相加,其和有什么规律呢?(易得出结论)
同学们经过积极思考,探索出了解决有理数加法的规律,顾一下(出哪位同学能带领大家共同回顾一下?(出示投影,学生大声朗读)我们把这个规律称为有理数的加法法则。
同学们都很聪明,积极参与探索规律,每个组都有不错的成绩。个别落后的组不要气馁,继续努力,下面老师就给大家一个得分的机会,看哪一组能[出题制胜]!(出示)
(活动过程1后评价、加分;教师以其中一题为例,讲解题格式及过程;活动过程2后:让每组第三排同学评价加分)
同学们已经基本掌握了有理数的加法法则,并会运用它,但七年级三班有几位同学对这一内容掌握的不是太好,以致在作业中出了毛病,他们为此很苦恼。希望咱们同学能帮帮他们,看哪位同学能像妙手回春的神医华佗一样药到病 除!(师生共同治病)
看来同学们对有理数的加法已经掌握得很好了,大家还记得前面那个难倒我们的有理数的加法题呢?那位同学能解决这个问题呢?(学生口述 师板书)。在大家的努力下,我们终于攻破了这个难关。
通过这节课的学习,大家有什么收获?(学生回答)同学们都有很多收获,老师认为收获最多的是优胜组的同学,因为他们能得到老师的小奖品,大家赶紧看看那一组获胜?欢迎优胜组上台领奖,大家掌声鼓励!
同学们,希望你们在未来的学习和生活中都能积极进取,获得一个又一个的胜利。
人教版七年级数学教案版(实用14篇)篇九
比较正数和负数的大小。
1、借助数轴初步学会比较正数、0和负数之间的大小。
2、初步体会数轴上数的顺序,完成对数的结构的初步构建。
负数与负数的比较。
一、复习:
1、读数,指出哪些是正数,哪些是负数?
—85。6+0。9—+0—82。
2、如果+20%表示增加20%,那么—6%表示。
二、新授:
(一)教学例3:
1、怎样在数轴上表示数?(1、2、3、4、5、6、7)。
2、出示例3:
(1)提问你能在一条直线上表示他们运动后的情况吗?
(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。
(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。
(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。
(6)引导学生观察:
a、从0起往右依次是?从0起往左依次是?你发现什么规律?
(7)练习:做一做的第1、2题。
(二)教学例4:
1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
2、学生交流比较的方法。
3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。
4、再让学生进行比较,利用学生的具体比较来说明“—8在—6的左边,所以—8〈—6”
5、再通过让另一学生比较“8〉6,但是—8〈—6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。
6、总结:负数比0小,所有的负数都在0的'左边,也就是负数都比0小,而正数比0大,负数比正数小。
7、练习:做一做第3题。
三、巩固练习。
1、练习一第4、5题。
2、练习一第6题。
3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是摄氏度。
四、全课总结。
(1)在数轴上,从左到右的顺序就是数从小到大的顺序。
(2)负数比0小,正数比0大,负数比正数小。
第二课教学反思:
许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。
例3——两个不同层面的拓展:
1、在数轴上表示数要求的拓展。
数轴除了可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1。5。建议此处教师补充要求学生表示出“+1。5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1。5和—1。5绝对值相等。同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。
2、渗透负数加减法。
教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。
例4——薄书读厚、厚书读薄。
薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)。
例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘了三种不同类型,一一请学生介绍比较方法,将薄书读厚。
将厚书读薄——无论哪种类型,比较方法万变不离其宗。
无论哪种比较方法,最终都可回归到“数轴上左边的数比右边的数小。”即使有学生在比较—8和—6大小时是用“86,所以—8—6”来阐述其原因,其实也与数轴相关。因为当绝对值越大时,表示离原点的距离越远,那么在数轴上表示的点也就在原点左边越远,数也就越小。所以,抓住精髓就能以不变应万变。
在此,我还补充了—3/7和—2/5比较大小的练习,提升学生灵活应用知识解决实际问题的能力。
人教版七年级数学教案版(实用14篇)篇十
2?培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。
重点和难点:正确地求出代数式的值。
一、从学生原有的认识结构提出问题。
1?用代数式表示:(投影)。
(1)a与b的和的平方;(2)a,b两数的平方和;。
(3)a与b的和的50%?
2?用语言叙述代数式2n+10的意义?
3?对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影)。
若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?
二、师生共同研究代数式的值的意义。
2?结合上述例题,提出如下几个问题:
(1)求代数式2x+10的值,必须给出什么条件?
(2)代数式的值是由什么值的确定而确定的?
(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?
下面教师结合例题来引导学生归纳,概括出上述问题的答案?(教师板书例题时,应注意格式规范化)。
例1当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值?
解:当x=7,y=4,z=0时,
x(2x-y+3z)=7×(2×7-4+3×0)。
=7×(14-4)。
=70?
注意:如果代数式中省略乘号,代入后需添上乘号。
人教版七年级数学教案版(实用14篇)篇十一
平行公理及推论
(二)难点
平行线概念的理解
(三)解决办法
通过引导学生尝试发现新知、练习巩固的方法来解决
投影仪、三角板、自制胶片
1通过投影片和适当问题创设情境,引入新课
2通过教师引导,学生积极思维,进行反馈练习,完成新授
3学生自己完成本课小结
(-)明确目标
(二)整体感知
(三)教学过程
创设情境,引出课题
学生齐声答:不是
师:因此,平面内的两条直线除了相交以外,还有不相交的情形,这就是我们本节所要研究的内容(板书课题)
[板书]24平行线及平行公理
探究新知,讲授新课
师:在我们生活的周围,平面内不相交的情形还有许多,你能举例说明吗?
学生:窗户相对的棱,桌面的对边,书的对边……
师:我们把它们向两方无限延伸,得到的直线总也不会相交我们把这样的直线叫做平行线
[板书]在同一平面内,不相交的两条直线叫做平行线
教师出示投影片(课本第74页图2?17)
师:请同学们观察,长方体的棱与无论怎样延长,它们会不会相交?
学生:不会相交
师:那么它们是平行线吗?
学生:不是
师:也就是说平行线的定义必须有怎样的'前提条件?
学生:在同一平面内
师:谁能说为什么要有这个前提条件?
学生:因为空间里,不相交的直线不一定平行
教师在黑板上给出课本第73页图2
学生:两种相交和平行
由此师生共同小结:在同一平面内,两条直线的位置关系只有相交、平行两种
尝试反馈,巩固练习(出示投影)
1判断正误
(1)两条不相交的直线叫做平行线()
(2)有且只有一个公共点的两直线是相交直线()
(3)在同一平面内,不相交的两条直线一定平行()
(4)一个平面内的两条直线,必把这个平面分为四部分()
2下列说法中正确的是()
a在同一平面内,两条直线的位置关系有相交、垂直、平行三种
b在同一平面内,不垂直的两直线必平行
c在同一平面内,不平行的两直线必垂直
d在同一平面内,不相交的两直线一定不垂直
学生活动:学生回答,并简要说明理由
师:我们很容易画出两条相交直线,而对于平行线的画法,我们在小学就学过用直尺和三角板画,下面清同学在练习本上完成下面题目(投影显示)
已知直线和外一点,过点画直线
师:请根据语句,自己画出已知图形
学生活动:学生在练习本上画出图形
师:下面请你们按要求画出直线
注意:(1)在推动三角尺时,直尺不要动;
(2)画平行线必须用直尺三角板,不能徒手画
尝试反馈,巩固练习(出示投影)
1画线段,画任意射线,在上取、、三点,使,连结,用三角板画,,分别交于、,量出、、的长(精确到)
2读下列语句,并画图形
(1)点是直线外的一点,直线经过点,且与直线平行
(2)直线、是相交直线,点是直线、外的一点,直线经过点与直线平行与直线相交于
(3)过点画,交的延长线于
学生活动:学生思考并回答,能画,而且只能画一条
师:我们把这个结论叫平行公理,教师板书
【板书】平行公理:经过直线外一点,有且只有一条直线与这条直线平行
学生:思考后,立即回答,能画无数条
师:请同学们在练习本上完成
(出示投影)
已知直线,分别画直线、,使,
学生活动:学生在练习本上完成
师:请同学们观察,直线、能不能相交?
学生活动:观察,回答:不相交,也就是说
师:为什么呢?同桌可以讨论
学生活动:学生积极讨论,各抒己见
学生活动:教师让学生积极发表意见,然后给出正确的引导
师:我们观察图形,如果直线与相交,设交点为,那么会产生什么问题呢?请同学们讨论
学生活动:学生在教师的启发引导下思考、讨论,得出结论
[板书]如果两条直线都和第三条直线平行,那么这两条直线也互相平行
学生活动:学生思考,回答:不对,给出反例图形,
例如:如图1所示,射线与就不相交,也不平行
师:同学们想一想,当我们说两条射线或线段平行时,实际上是什么平行才可以呢?
生:它们所在的直线平行
尝试反馈,巩固练习(投影)
人教版七年级数学教案版(实用14篇)篇十二
1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;
3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。
正确分析实际问题中的不等关系,列出不等式组。
建立不等式组解实际问题的数学模型。
出示教科书第145页例2(略)
问:(1)你是怎样理解“不能完成任务”的数量含义的?
(2)你是怎样理解“提前完成任务”的数量含义的?
(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?
师生一起讨论解决例2.
1、教科书146页“归纳”(略).
2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?
在讨论或议论的基础上老师揭示:
步法一致(设、列、解、答);本质有区别.(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表。
人教版七年级数学教案版(实用14篇)篇十三
师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).
问题2:在生活中,仅有整数和分数够用了吗?
请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。
(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)。
学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有-的新数。
人教版七年级数学教案版(实用14篇)篇十四
用数学语言概括运算性质、
(三)解决办法
增强对三种运算性质的理解,并运用对比的方法强化训练以达到准确地区分、
一课时、
投影仪或电脑、自制胶片、
3、通过举例来说明积的乘方性质应如何正确使用,师生共练以达到熟练掌握、
4、多种题型的设计,让学生能从不同的角度全面准确地理解和运用该性质、
(一)明确目标
本节课重点学习积的乘方的运算性质及其较灵活地运用、
(二)整体感知
(三)教学过程
1、创设情境,复习导入
前面我们学习了同底数幂的乘法、幂的乘方这两个寨的运算性质,请同学们通过完成一组练习,来回顾一下这两个性质:
填空: