教学计划是教师教学活动的重要组成部分,对于提高教学质量具有重要意义。教学计划的编制需要结合教师的创新思维和教学实践经验。
分数乘分数人教版教学设计(汇总20篇)篇一
教学目标:
1、通过比较、交流、整理等学习活动,理解百分数的意义,学会正确地读写百分数,感受百分数与分数之间的联系与区别。
2、通过解释百分数的实际意义,体会百分数与社会的密切联系和在生活中的广泛应用。
3、经历信息收集、交流和表达的过程,促进个性化的数学理解和表达。
4、学会在学习过程中积累个人的学习成果,初步建立自我评价与反思的意识。
教学难点:理解百分数的意义以及百分数与分数的联系和区别。
教学过程:
一、创设情境,感知意义。
1、谈话引入:下个月就要举行达标运动会了,同学们都在加紧锻炼、争取达标。体育老师对班上三个小组的同学进行了一次测试,采集了如下信息:
组别。
您现在正在阅读的《百分数》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!《百分数》教学设计3、观察上面的信息,百分数的分母都是多少,它有什么优点?分子可以是什么样的数?(使学生明确:百分数的分母都是100,所以便于比较大小;百分数的分子可以是整数,也可以是小数,可以小于、等于或大于100。)。
4、举例,你在生活中还见过哪些百分数?(根据学生回答出示实物,请学生说一说百分数的意义)。
5、老师也找了几个数,出示:
(1)一堆煤97/100吨,运走了它的75/100。
(2)23/100米相当于46/100米的50/100。
哪几个分数可以改写成百分数的形式,哪几个不能?为什么?
说一说百分数与分数有怎样的联系和区别。
[设计意图]这几个环节都是紧密围绕百分数的意义让学生解释、表达、交流,同时不露痕迹地练习了百分数的读法和写法。学生不仅获得了丰富的信息量,体会到百分数在生活中的广泛应用;而且初步学会对信息进行整理和分析,进一步认识了百分数的特点,加深理解了分数与百分数的联系和区别,可谓一举多得。
三、巩固应用,拓展延伸。
2、用百分数表示下面的成语。
百里挑一十拿九稳百发百中一箭双雕。
3、下面的说法对吗?
(1)分母是100的分数一定是百分数。
(2)百分数是分数的一种,所以3/4吨=75%吨。
(3)小明的身高是89/100米与小华身高是小明的89/100两个分数含义相同。
(4)一件衣服降价30%,意思是现价比原价少了百分之三十。
[设计意图]选取学生身边的素材和学生感兴趣的内容进行巩固练习,特别注意突出本节课的重点和难点,提高练习效率。
四、总结反思,升华提高。
分数乘分数人教版教学设计(汇总20篇)篇二
一、创设情境,导入新知。
谈话:同学们喜欢看篮球赛吗?说到篮球就会让我们想到一个人,你们知道是谁?
(姚明)这里有一项关于姚明的数据统计。
(出示)。
据统计:姚明在nba比赛中的罚球命中率一向很高,前两个赛季罚球命中率高达81%,但上赛季下降到了78.3%。
(出示课题:认识百分数)。
教师:关于百分数的知识,你想了解些什么?
学生说一说自己的看法。
二、例题教学,引出概念。
1、出示例题,引发探究。
例1:学校篮球队组织投篮练习,王老师对其中三名队员的投篮情况进行了统计分析。
教师:我们来看看比赛的数据显示。
(出示表格)。
姓名。
投篮次数投中次数。
李星明2516。
张小华2013。
吴力军3018。
学生独立思考,并在小组中交流想法。
组织学生在班级中进行讨论,学生可能会提出不同的比较方法,如:谁投中的次数多,谁的成绩就好一些;谁失球的次数最少,谁的成绩就好一些;算投中的次数占投篮次数的几分之几(投中的比率),再比较这几个分数,谁大就表示谁的成绩好一些。
引导学生比较这些方法,并明确最后一种方法是合理的,并在表格的右边增加“投篮的比率”一栏。
2、初步理解百分数的意义。
学生独立计算三名队员投中的比率。
指名报计算结果,教师完成统计表。(出示书上完整的表格)。
让学生说一说16/25、13/20、18/35分别表示哪个数量是哪个数量的几分之几。
提问:根据上面的计算结果,你能比较出谁投中的比率高一些?
学生自主探索比较的方法。
组织学生在班级中进行交流,学生的方法可以是把三个分数,先两个两个比较,再确定哪个分数最大,或者先把三个分数一次性通分,再比较大小,也可以把它们都改写成小数再比较大小。
谈话:为了便于统计和比较,通常把这些分数用分母是100的分数来表示。
学生按要求独立进行改写。
指名口答改写的结果,教师板演。
提问:64/100表示哪两个数量比较?表示哪个数量是哪个数量的百分之几?
再让学生说一说65/100、60/100的实际含义。
提问:现在能很快看出谁投中的比率高一些?
学生:张小华投中的比率高一些。
说明:像上面这样表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫做百分比或百分率。
提问:百分数怎样写,怎样读呢?
学生自学课本99页“试一试”上面的内容。
组织学生说一说读法和写法,教师进一步示范64%的读、写法。
提问:百分号相当于分数中的什么部分?用百分号形式写分数,什么变了?什么没变?
学生模仿读一读,写一写。
学生照样子表示出65/100、60/100,先写出来,再读一读。
提问:读百分数时要注意什么?
说明:百分数不读作“一百分之几”,而要读作“百分之几。”
提问:你能说说黑板上百分数是什么意思?(尽量引出投篮命中率为后面的“百分率”作铺垫)。
教师:请大家在规定的时间里写些自己喜欢的百分数,要求一个比一个写得好。记时开始。(停,时间不是很长)。
师:如果老师要求写十个,请用今天学到的知识描述一下你写了几个。
学生1:我写了5个,我完成了50%。
学生2:我写了7个,我完成了70%。
教师:如果不直接告诉别人,让别人猜猜你写了几个?
学生1:我还有70%没有完成;。
学生2:我写好的接近50%;。
学生3:……。
分数乘分数人教版教学设计(汇总20篇)篇三
本单元教学分数乘法,是在理解了分数的意义,掌握了分数加、减法计算的基础上编排的。能进一步理解分数的意义,为教学分数除法打下基础。教学内容以计算为主,包括分数与整数相乘、分数与分数相乘。教学要求是理解算理、掌握算法,能应用于分数连乘计算和解决实际问题中去;在探索算法、总结法则的过程中发展数学思考的能力。
教材在编排上有以下特点。
第一,以计算法则的教学为编排主线,把运算的意义、方法以及实际应用的教学有机结合在一起,优化了全单元的内容结构。
乘法运算的范围从整、小数扩大到分数,其意义、算法以及实际应用都有较大的发展。因此,分数乘法的意义、计算法则、解决实际问题是本单元的三个重要内容。教材以计算为主线,在研究算法的过程中体会运算意义,通过运算概念的完善、发展,进一步理解算法;在解决实际问题的背景中教学计算知识,应用学到的算法解决实际问题。意义、法则、应用三方面的有机结合,优化了知识结构,能充分发挥教学的功能和价值。如,例1从做绸花要用多少米绸带的实际问题引出分数乘整数的计算问题,把原来的乘法概念扩展到分数范围,激活已有的知识经验;应用同分母分数加法的知识,体会并得出分数乘整数的计算方法,既解决了做绸花的实际问题,又解决了新的计算课题。又如,例2为解决做绸花的实际问题列算式10×1/2和10×2/5,联系现实的数量关系体会这些算式的具体含义,得出“求一个数的几分之几是多少,可以用乘法计算”的结论,发展了乘法的意义。在计算两个乘法算式时,巩固了分数与整数相乘的算法。
第二,知识发展线索清晰,前后联系紧密,各道例题的教学任务明确。下图是本单元教材里的计算知识结构图。
先教学整数乘分数,后教学分数乘分数,符合简单到复杂的编排原则。而且,整数乘分数还能与整数乘法建立联系,应用整数乘法知识,为分数乘法的教学开好头。
整数乘分数先是求几个相同分数的和,再是求整数的几分之几是多少。前者在运算意义上与整数乘法一致,算法是例1的重点。正由于运算意义和整数乘法一致,可以把整数乘分数转化成同分母分数相同,体会并得出整数乘分数的计算法则。后者在运算意义上有很大的扩展,乘法不仅能求几个相同加数连加的和,还能求一个数的几分之几是多少,这是例2的教学重点。而例2的算法,在前面已经解决了。
分数乘分数先教学基础知识,再培养计算技能。例4和例5要把“求一个数的几分之几是多少”的认识迁移到分数乘分数,深入理解分数乘法的意义,还要解决分数乘分数的算法,并形成统摄分数乘整数、分数乘分数的计算法则。所以,这两道例题着重教学基础知识。例6教学分数连乘,巩固计算法则的同时,培养分子、分母交叉约分的技能。
第三,编排“倒数”知识,为分数除法作准备。分数除法经常要转化成分数乘法进行计算,转化需要倒数的知识。因此,本单元在分数乘法的教学基本完成以后,编排了有关倒数知识的一节教材和一个练习,为下一单元的教学提前作准备。
文档为doc格式。
分数乘分数人教版教学设计(汇总20篇)篇四
1.本单元的内容主要包括:分数乘法、分数乘法的简便运算和解决问题三部分。这些内容都是分数中的基础知识,不仅可以用来解决有关分数的生活实际问题,而且也是学习分数除法和百分数等知识的重要基础。
2.本单元是在学生学习了整数乘法、分数、小数的意义和性质的基础上进行教学的。因此不再单独教学分数乘法的意义,而是通过解决实际问题,结合分数与整数、分数、小数相乘的计算过程去理解分数乘法的意义。同时也不再呈现分数乘法的计算法则,简化了算理推导过程的叙述及解决问题思路的提示,通过直观操作、合作交流等手段,探索计算法则,寻找解题思路,自主构建新知识。
1.理解分数乘法的意义,掌握分数乘法的计算方法,并能正确、迅速地进行分数乘法的计算。
2.能进行分数乘加、乘减混合运算,能运用整数乘法运算定律进行分数乘法的简便计算。
3.会解答求一个数的几分之几是多少的实际问题,能在现实情境中体会分数乘法的实际意义。
(1)分数乘整数1课时。
(2)分数乘分数1课时。
(3)分数乘法的简便算法1课时。
(4)小数乘分数1课时。
(5)整数乘法运算定律推广到分数1课时。
(6)解决问题(1)1课时。
(7)解决问题(2)1课时。
(8)练习课1课时。
(9)整理和复习1课时。
(10)重点单元知识归纳与易错警示1课时。
本单元的教学中教师注意培养学生观察比较、分析归纳、动手操作能力;引导学生探究知识间的内在联系,激发学生学习兴趣;在理解算理的同时体会教学知识的魅力,领略数学的美。
1.分数乘整数。
分数乘分数人教版教学设计(汇总20篇)篇五
教学目标:
1、初步理解单位“1”和分数单位的含义,经历分数意义的概括过程,进一步理解分数的意义。
2.在理解分数意义的过程中,进一步培养分析、比较、综合、抽象与概括的能力。
3.在学习中感受分数与生活的联系,增强数学学习的信心。
教学重点与难点:
难点:理解单位“1”的含义。
教具准备:
课件,苹果,饼干一包。
学具准备:
课堂小卷,尺子,彩笔等。
教学过程:
一.情景导入。
课件出示自古至今几种不同的分数表示方法,通过教师的讲解,让学生了解分数的发展史。
师:你们知道这些不同的数学符号表示什么吗?教师介绍分数发展史。
这四种标记都是表示同一个数:1/2。
(设计意图:通过分数发展史的介绍,激发学生的学习兴趣,也让学生了解分数的发展历史,也为新知识的引入做了铺垫。)。
让学生举起手跟老师一起书写1/2。
提问:你知道1/2各部分的名称吗?教师板书。
分母表示什么?分子表示什么?
3、经历分数的形成过程。
师:把四个苹果平均分成两份,每份是几个苹果?(2个)把两个苹果平均分成两份,每份是几个?(1个)把一个苹果平均分成两份每份是几个苹果呢?(半个)。
师:半个能用整数来表示吗?学生:不能。
师:那可以怎么表示呢?(分数1/2个)。
师:谁能借助老师手中的实物(苹果)来表示分数1/2?
学生演示:把一个苹果平均分成两份,其中一份用分数表示是1/2。
教师总结:在生活中,进行测量、分物、或计算时往往得不到正好的整数,这时我们就要用分数来表示。
4、课件出示几组把一个物体平均分得到的分数,让学生感受是把什么平均分,近而引处“1”的概念。
课件出示一块饼干,一个正三角形,一条线段平均分,让学生在学生说出所得到的分数,在说分数的时候,一定要让学生说一说是怎样想的,并强调是把哪个整体平均分?把学生说出的分数按照分子是不是1进行分类板书。
5、把单位“1”由一个物体扩展到“几个物体”。
师,接下来,我想带领大家做个游戏。看课件。
露出的一个三角形用分数表示是1/4,请同学们猜一猜白纸遮上的部分是什么样子的呢?让学生在纸上画一画。
有两种画法:一个是一个图形。另一种是4个三角形。
强调;一个物体可以看作单位1,通过平均分得到分数,那4个三角形能不能也看作单位1呢?能!
师;为什么?让学生发言。
验证:分饼干的游戏。教师实物演示平均分饼干,让学生说一说把什么看做一个整体,也就是单位“1”。
师;生活中还有哪些物体可以看作单位“1”?学生回答。
课件出示练习题,学生看图填空。
师:几分之一表示什么?(板书)几分之几表示什么?
师:你认为他们谁重要?学生回答。
几分之几是由几个几分之一组成的,所以几分之一是构成分数的最基本的单位,叫做分数单位。举例。
三、课堂练习。
分数乘分数人教版教学设计(汇总20篇)篇六
1.使学生通过观察,初步理解简单的同分母分数加法的算理,并能正确计算.。
3.培养学生抽象概括与观察类推的能力.。
教学重点。
1.理解同分母分数加法的算理.。
2.会计算简单的同分母分数加法.。
教学难点。
理解同分母分数加法的算理.。
教学过程。
一、铺垫孕伏.。
复习旧知.。
(1)用分数表示图中涂色部分(投影)。
问:是几个?是几个?是几个?
(2)填空。
是4个是是个是个.。
(3)口算并说明计算理由.。
30+28056+6139+20。
二、探究新知.。
1.导入新授.。
这样的分数加法应该怎样计算呢?这节课我们就来学习简单的分数加法.。
(板书:简单的分数加法)。
2.教学例1.【演示课件简单的分数加、减法】。
(1)出示例1。
一张长方形纸,做纸花用去,做小旗用去,一共用去这张纸的`几分之几?
(2)分析数量关系,列出算式.。
教师板书:
教师提问:这道题应该怎样想呢?(演示动画分数加法例1)。
是2个,是1个,2个加上1个是3个,就是.因此。
(板书:)。
(3)计算并说出思考过程。
3.教学例2.【演示课件简单的分数加、减法】。
(1)(演示动画分数加法例2)。
提问:怎样列式?
(板书:)。
思考:得多少?你是怎么想的?
(2)教师出示图片,板书。
(3)再让学生说的思考过程.。
4.练习.。
(1)口答:
(2)计算并说思考过程.。
提问:1用分数怎样表示?(可表示为、、、)。
小结:可以根据我们的需要写成分子、分母相同的任意分数.。
三、随堂练习.。
1.填空。
(l)2个加上3个,是5个;就是。
(2)3个加上4个,是个,就是。
(3)2个加上7个是个,就是.。
2.判断正误,把不正确的改正过来.。
3.计算.。
4.一块皮子,做皮包用去这块皮子的,做皮鞋用去这块皮子的,一共用去这块皮子的几分之几?(列式计算,并说明理由.)。
四、课堂小结。
今天我们学习了同分母分数加法,你们发现了什么规律吗?
五、课后作业.。
分数乘分数人教版教学设计(汇总20篇)篇七
分数除以整数的计算方法:除以一个整数(零除外),等于乘这个整数的倒数。
(1)4/7÷2(2)4/7÷3。
=4/7×1/2。
=2/7。
教学反思:
《分数除法(一)》是学生初次接触分数除法,本节课是学生今后学习分数除法的基础,让学生理解分数除法的意义以及对算法的探索就显得格外重要。本节课我力求体现以下几点:
一、充分利用学生最佳的学习状态。
课堂上省去了旧知的复习,设计简单的知识情景,以最快的速度抓住学生有效学习时间,提高课堂有效性。
二、让学生在不同的活动中探索数学。
数学课不应只让学生单纯地模仿和记忆,应让学生在具体地操作、观察、实践中得出结论。因此,课堂上我让学生通过操作、观察,引导学生探索出分数除以整数的计算方法,让学生经历了知识形成的全过程。在这样的过程中,充分地发挥了教师的引导作用,注重的是学生能力的培养,注重的是教给学生学习的方法,而不是把知识单纯的传授给学生,做到既重结果,又重过程。
三、让学生在不同层次的练习中应用数学。
学数学的目的就是用数学。在新课结束后,我让学生在不同层次的练习中应用了所学知识,让学生充分感受到了数学源于生活,又寓于生活。
将本文的word文档下载到电脑,方便收藏和打印。
分数乘分数人教版教学设计(汇总20篇)篇八
上坝小学邵玉萍教学内容分析:
(一)》是第三单元第二课时的内容,是在学生学习了分数乘法、认识了倒数的基础上进行教学的,教材中呈现了两个问题,就是把4/7分别平均分成2份、3份,目的是让学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义解决有关分数除法的问题,从而理解分数除法的意义,并从中总结出分数除以整数的计算方法。教学目标:
1、在涂一涂、算一算等活动中,探索并理解分数除法的意义。
2、引导学生探索并掌握分数除以整数的计算方法,并能正确计算。
3、能够运用分数除以整数的方法解决简单的实际问题。教学重点:
引导学生探索并掌握分数除以整数的计算方法,并能正确计算。教学难点:
2、能够运用分数除以整数的方法解决简单的实际问题。
一、创设情境提出问题。
二、自主探究小组交流。
(教师指导学生自主探究,尝试解决以上两个问题,同桌之间交流想法)自主学习提示。
1.利用手中的的学习纸,涂一涂,算一算,尝试解决这两个问题。2.同桌之间说一说彼此的想法。
3.有困难的同学,可以借助课本第25页的提示,完成这两个问题。三交流释疑。
把一张纸的4/7平均分成2份,每份是这张纸的几分之几?请同学们拿出图。
(一)来涂一涂。
交流:为什么要这样涂,每份是这张纸的几分之几呢?还有不同的涂法吗?
能根据这个过程列出一个除法算式吗?这个除法算式和以前学的除法有什么不同?这就是这节课我们要学习的分数除法。(板书)。
2、初探算法。
把一张纸的4/7平均分成3份,每份是这张纸的几分之几?请大家在图。
(二)的上面涂一涂。交流:(展示学生不同的涂法)。
4/5÷3。
1/3÷5指生口算。
让学生观察每一组算式,说一说发现了什么?
根据这三组算式再结合上一道题,你认为分数除以整数可以怎样计算?(学生口述算法后)。
四、实践应用。
1、算一算。
9/10÷30。
15/16÷20。
14/15÷21。
8/9÷6。
5/6÷15。
2、填一填。
师:学会了知识就要灵活的运用,这道题你们能填上吗?学生独立在书上第26页填一填,想一想。集体订正。
3、解决问题。
师:为了使我们的校园更整洁,学校给我们各班划分了卫生区,这一周轮到第一组负责卫生区的卫生,老师想卫生区的四分之三平均分给四个人来负责,你们能算出每个人负责整个卫生区的几分之几吗?学生在练习本上列式解答。指生汇报完成情况。
五、课堂总结。
六、布置作业:22页练一练。
分数乘分数人教版教学设计(汇总20篇)篇九
教学内容:
百分数的意义和读写法(第十一册p77~78)。
教学目标:
1、通过比较、交流、整理等学习活动,理解百分数的意义,学会正确地读写百分数,感受百分数与分数之间的联系与区别。
2、通过解释百分数的实际意义,体会百分数与社会的密切联系和在生活中的广泛应用。
3、经历信息收集、交流和表达的过程,促进个性化的数学理解和表达。
4、学会在学习过程中积累个人的学习成果,初步建立自我评价与反思的意识。
教学重点:
百分数的意义。
教学难点:
理解百分数的意义以及百分数与分数的联系和区别。
教学过程:
一、创设情境,感知意义。
1、谈话引入:下个月就要举行达标运动会了,同学们都在加紧锻炼、争取达标。体育老师对班上三个小组的同学进行了一次测试,采集了如下信息:
组别。
全组人数。
达标人数。
第一小组。
10。
9
第二小组。
25。
23。
第三小组。
20。
19。
哪个组的达标情况更好呢?
单从全组人数或从达标人数上能不能判断哪个组的达标情况更好?引导学生思考达标人数与全组人数的关系,发现计算“达标人数占全组人数的百分之几”最合理。(将表格最后一栏补充完整)。
2、教师指出,像90/100、92/100、95/100这样的数就是百分数。
让学生再说一说这几个百分数的含义,并小结:这几个百分数都是(达标人数)与(全组人数)相比较的结果,表示(达标人数)是(全组人数)的百分之几。
百分数是表示几个数之间的关系,怎样的关系?揭示百分数的意义并板书:百分数表示一个数是另一个数的百分之几。
上面几个数还有一种表示方法,你知道吗?“%”叫百分号,百分数通常不写成分数形式,而是在原来的分子后面加上百分号来表示。
会读这几个百分数吗?板书:90%读作:百分之九十。
[设计意图]“达标运动会”是学生熟悉的情境,“怎样判断哪个组的达标情况更好”也容易激发学生解决现实问题的探究欲望。学生在比较过程中发现单从全组人数或达标人数上不能判断哪个组的达标情况更好,进而萌发寻求这两个数量之间的关系的思路。通过教师适当点拨,学生发现计算达标人数是全组人数的几分之几不容易看出结果,算出百分之几才便于比较。这样,不仅揭示了百分数的实质,而且使学生强烈感受到引入百分数的必要性,对百分数的意义和作用有了更深刻的体验。
二、交流信息,加深理解。
1、读一读下面含有百分数的信息。
(1)青岛啤酒厂七月份的啤酒产量是六月份的140%。
(2)我国耕地面积仅占全世界耕地面积的7.1%。
(3)一次性筷子是日本人发明的,日本的森林覆盖率高达65%,但他们一次性筷子全靠进口;我国的森林覆盖率不到14%,却是一次性筷子的出口大国。
(4)据了解,西欧某国家发射人造卫星的成功率为90%,我国发射人造卫星的成功率是100%。
(5)学生的近视率应引起高度重视。据统计,某市学生的近视情况如下:小学生18%,初中生49%,高中生64.2%。(附条形统计图)。
2、练习:在规定的时间内自由写百分数。老师喊“停”后,以10个为标准,你完成了任务的百分之几?(两人板演)。
3、观察上面的信息,百分数的分母都是多少,它有什么优点?分子可以是什么样的数?(使学生明确:百分数的分母都是100,所以便于比较大小;百分数的分子可以是整数,也可以是小数,可以小于、等于或大于100。)。
4、举例,你在生活中还见过哪些百分数?(根据学生回答出示实物,请学生说一说百分数的意义)。
5、老师也找了几个数,出示:
(1)一堆煤97/100吨,运走了它的75/100。
(2)23/100米相当于46/100米的50/100。
哪几个分数可以改写成百分数的形式,哪几个不能?为什么?
说一说百分数与分数有怎样的联系和区别。
[设计意图]这几个环节都是紧密围绕百分数的意义让学生解释、表达、交流,同时不露痕迹地练习了百分数的读法和写法。学生不仅获得了丰富的信息量,体会到百分数在生活中的广泛应用;而且初步学会对信息进行整理和分析,进一步认识了百分数的特点,加深理解了分数与百分数的联系和区别,可谓一举多得。
三、巩固应用,拓展延伸。
2、用百分数表示下面的成语。
百里挑一十拿九稳百发百中一箭双雕。
3、下面的说法对吗?
(1)分母是100的分数一定是百分数。
(2)百分数是分数的一种,所以3/4吨=75%吨。
(3)“小明的身高是89/100米”与“小华身高是小明的89/100”两个分数含义相同。
(4)一件衣服降价30%,意思是现价比原价少了百分之三十。
[设计意图]选取学生身边的素材和学生感兴趣的内容进行巩固练习,特别注意突出本节课的重点和难点,提高练习效率。
四、总结反思,升华提高。
[设计意图]加强学生的情感体验,使学生灵活运用所学的知识进行自我评价和反思,激励学生努力学好数学。同时有利于教师了解学生的学习状态和心理变化,及时调整教学策略,促进教与学的和谐发展。
分数乘分数人教版教学设计(汇总20篇)篇十
教学目标:
1.分数乘以整数的意义,掌握计算法则,正确计算分数乘以整数的算式题。
2.渗透事物是相互联系、相互转化的辩证唯物主义观点。教学重点:
教学难点:
分数乘以整数的计算法则的推导。
教具准备:
多媒体课件。
教学过程:
一:复习。
1.口算:
问:怎样计算?(分母不变分子相加)。
2.根据题意列出算式:
(1)5个12是多少?
(2)3个14是多少?
列式:
(1)12+12+12+12或12×5。
(2)14+14+14或14×3。
题中的两个式子哪个简便?(12×5,14×3)。
它们各表示什么意思呢?(5个12是多少?3个14是多少?)能用一句话概括这两个乘法算式的意义吗?(就是求几个相同加数和的简便运算。)。
这是整数乘法的意义,它对于分数乘法适用吗?
二:讲授新课。
1.出示课题明确学习目标。
2.出示自学题纲,让学生自学课本。
(1)分数乘以整数的意义是什么?与整数乘法的意义相同吗?
(2)分数乘以整数的计算方法是怎样的?它是怎样推导出来的?
(3)分数乘以整数的意义。
例1小新和爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共。
吃多少块?
(1)读题,找已知条件和问题。(第人吃块,3人一共吃多少块?)。
(2)分析,问:块是什么意思?(把一块蛋糕平均分成9分,
取其中2份。)。
听回答,老师边重复边电脑演示(三层复式演示)。
把一块蛋糕(出示一个圆)平均分成9份(覆盖平均分的9。
份),取其中2份(覆盖2份是红色的)。平均分成9份取其2份。
师:(结合图)说:“那块”是多大?(边说边演示)。
师:每人吃一块(出示一块),3人一共吃了多少块?(再翻出两个块的投影。)。
问:3个块是多少呢?(边说边翻投影)。
平均分9份,取6份。
(3)根据图意列出算式。
问:这个加法算式有什么特点?(三个加数相同。)。
问:还可以怎么列式?(×3)。
问:为什么?(三个加数相同)。
问:这个算式你们学过吗?它是什么数乘以什么数?(分数乘以整数。)。
×3的意义。(讨论)。
(分数乘以整数的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。×3就是求3个是多少。)。
(1)推导法则。
我们了解了分数乘以整数的意义,你想知道怎样计算吗?
a.导出计算方法。
你会计算吗?看哪些同学不用老师讲解就能依据转化思想把分数乘以整数这个新知识转为已经学过的旧知识来进行计算。(可以互相说互相看。)。
如果学生写出这个步骤时,老师继续追问。
问:这道只是3个可以这样写,如果是100个或更多个,那该怎么办呢?
引导学生讨论得出:
又可以转化成什么式子呢?因为分子2+2+2=2×3,分母9=9,所以,可以转化成。
只是为了说明算理,计算时省略不写。(边说边加上虚线框。
b.归纳法则。
通过以上几个式题的计算,想一想分数乘以整数怎样计算呢?师:比一比,看哪个组的同学总结的语言准确又简练。小组讨论,总结出法则。
分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。(板书)。
c.应用法则计算。
计算(做本上,投影反馈)。
(约分数位对齐)。
讨论,这两种方法哪种简单?为什么?
强调:能约分,要先约分;结果是假分数一定要化成整数或带分数。
(三)巩固练习。
投影出示练习题。
(四)回顾整理:
教师引导学生回顾本届所学的内容。
(五)布置作业。
自主练习的题目。
教学目的:
使学生理解分数乘以整数的`意义,在理解算理的基础上掌握分数乘以整数的计算法则,并能正确运用“先约分再相乘”的方法进行计算。
教学重点:
让学生理解算理,掌握计算法则。
教学过程。
一、复习。
1.5个12是多少?
用加法算:12+12+12+12+12。
用乘法算:12×5。
问:12×5算式的意义是什么?被乘数和乘数各表示什么?
2.计算:
问:这两个算式有什么特点?应该怎样计算?
教师总结:整数乘法的意义,就是求几个相同加数的和的简便运算。被乘数表示相同的加数,乘数表示相同的加数的个数。同分母分数加法计算法则是分子相加作分子,分母不变。通过将算式:改写成乘法算式,引出课题。
二、情境引入新课。
1.教师出示例题图示:
例题:人跑一步的距离相当于代数跳一下的。人跑三步的距离是代数跳一下的几分之几?
(1)首先让学生分析题意,试着描述场景图。
师:我们用线段帮助我们理解:画一条线段,表示袋鼠跳一下的距离。“人跑一步的距离相当于袋鼠跳一下的”,就要把袋鼠跳一下的距离即这一条线段看作单位“1”,把这条线段平均分成11份,其中的2份就表示人跑一步的距离。求“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个是多少?(教师在学生讨论的基础上将线段图逐步表示完整。)。
(3)如何解决这个问题?
学生独立思考,开展讨论与交流。(基础好的学生可以提出加法和乘法两种解决方法)教师引导学生思考与讨论如何计算。因为分数加法的计算学生已经掌握,重点讨论×3如何计算。
引导学生列出乘法算式。得出分数乘整数的计算方法:分母不变,分子与整数相乘的积作分子。
强调:分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数和的简便运算。
(4)让学生自主总结归纳出分数乘整数的计算方法,并用比较简洁的语言表达出来。
2、延伸强化。
教师出示例题2:,让学生先计算,再讨论。
问题:乘得的积是不是最简分数?应该怎么办?你是怎样约分的?有没有不同的方法?
教师总结:通过不同约分方法的比较,我们知道先约分再计算的方法比较简便。
1.读题,说说块是什么意思?
2.根据已有的知识经验,自己列式计算。
三、交流、质疑。
(一)学生汇报,并说一说你是怎样想的?
方法1:++===(块)。
方法2:×3=++====(块)。
(二)比较这两种方法,有什么联系和区别?
联系:两种方法的结果是一样的.。
区别:一种方法是加法,另一种方法是乘法.。
教师板书:++=×3。
(三)为什么可以用乘法计算?
加法表示3个相加,因为加数相同,写成乘法更简便.。
(四)×3表示什么?怎样计算?
表示3个的和是多少?
++====,用分子2乘3的积做分子,分母不变.。
(五)提示:为计算方便,能约分的要先约分,然后再乘.。
四、归纳、概括:
(一)结合=×3=和++=×3=,说一说一个分数乘整数表示什么?
求几个相同加数的和的简便运算.。
用分子和分母相乘的积做分子,分母不变。
五、巩固、发展。
(一)巩固意义。
1.改写算式。
+++=×()。
+++++++=()×()。
2.只列式不计算:3个是多少?5个是多少?
(二)巩固法则。
1.计算(说一说怎样算)。
×4×6×21×4×8。
思考:为什么先约分再相乘比较简便?
2.应用题。
(三)对比练习。
1.一条路,每天修千米,4天修多少千米?
2.一条路,每天修全路的,4天修全路的几分之几?
六、课后作业。
(一)的3倍是多少?的10倍是多少?
(二)一个正方形的边长是米,它的周长是多少米?
(三)一种大豆每千克约含油千克,100千克大豆约含油多少千克?1吨大豆呢?
七、板书设计。
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.。
例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?
用加法算:xx+xxx(块)。
用乘法算:x×3=++xxx(块)。
答:3人一共吃了块.。
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.。
分数乘分数人教版教学设计(汇总20篇)篇十一
掌握同分母分数的简单加、减计算方法。
(二)过程与方法。
通过直观操作,理解简单分数加、减法的算理,发展学生的思维能力。
(三)情感态度与价值观。
渗透数形结合的思想,进一步发展学生的数感。
教学重点:利用几何直观,使学生会计算简单的同分母分数加、减法。
教学难点:理解简单的同分母分数加、减法的算理。
(一)复习旧知,引入新课。
1.让学生任意说说想到的分数,师随机板书这些分数。
2.根据板书,让学生说一说这些分数里分别包含几个几分之一。
【设计意图】由学生之前已经学过有关分数的知识引入新课,不仅进行了有效的复习,而且由问题引发学生猜测推想,渗透新课所要运用的知识,为探究新知打下基础。
(二)动手操作,探索交流。
1.提出问题。
(1)课件出示分西瓜的情境图。
将一个西瓜平均分成8块,哥哥吃了2块,弟弟吃了1块。
(2)从上面的图中,你知道了什么?(引导学生用数学语言描述:哥哥吃了西瓜的,弟弟吃了)。
(3)根据这两个信息,你能提出什么数学问题?
(预设)问题1:哥哥和弟弟一共吃了这个西瓜的`几分之几?
问题2:哥哥比弟弟多吃了几分之几?
问题3:西瓜还剩下几分之几?
2.探究同分母分数的加法。
(1)教师有意识地选择第1个问题,要求学生列出算式。
(2)同桌讨论:+等于多少?
(3)操作验证答案。
如果出现这种答案,教师不忙于下结论,而再询问:有不同的答案吗?
如果出现这种答案,要追问:你是怎样想的?
集体验证:
方法2:是2个,2个加1个是3个,也就是。
……。
在学生交流的同时,教师用课件进行示范。
(4)引导辨析:+的结果为什么不是?
【设计意图】。
在教学同分母分数的加法时出现了两种思路,第一种思路停留在直观感知层面,第二种思路是根据分数的意义从抽象的加法关系进行分析的。显然,让学生的思维仅仅停留在直观感知的层面是不合理的,这时,要发挥好教师的引导作用,并给学生足够的时间去思考、比较,不要急于在此时的教学中就把学生的思路统一起来,可以在后面的练习中进一步引导学生对两种方法进行比较、优化。
2.探究同分母分数减法。
(1)观察课件:哥哥比弟弟多吃了几分之几?
(2)猜一猜:-等于多少?
(3)小组讨论:-等于多少?
(4)汇报算法,思路可能有:
方法1;把一个西瓜平均分成8份,其中的2份比1份多1份,也就是;。
方法2:2个减掉1个还剩1个,也就是;。
……。
教师结合学生的回答用课件演示计算的过程。
(5)讨论:爸爸吃了,同学们想想,他们一家人共吃了这个西瓜的几分之几?可以用几种不同的结果表示?(1,)。
【设计意图】。
通过“他们一家人共吃了这个西瓜的几分之几?”这一问题的讨论,既巩固练习了前面的分数加法,又为后面学生自学1减几分之几这一环节中对于“1”的理解做好了铺垫。
3.探究1减几分之几。
(1)自学第97页例3,把你不明白的问题记录下来。
(2)汇报交流时让学生说出怎样想的,是把“1”看作多少来减的?
(3)“1”还可以看成分母是几的分数?请写出几个。
(4)巩固练习(指名让学生板演)。
1-1-1-。
计算并思考,这几道题中的1分别应该看作多少来计算?
【设计意图】。
通过练习让学生明确:1在不同的算式中表示的分数不同,意义亦不同。
(三)课堂练习,巩固新知。
(1)完成第97页“做一做”第1、2、3题。
(2)完成练习二十一第1、2题。
【设计意图】。
检查教学效果,了解学生掌握知识的情况,从而对自己的教学活动进行相应的调整,以达到预期的教学目标,为组织后续教学打下基础。
(四)全课总结,升华新认识。
(1)通过这节课的学习,你有哪些收获?
(2)在计算同分母分数加减法时,你是怎样计算的?
分数乘分数人教版教学设计(汇总20篇)篇十二
1、使学生知道分数乘分数的计算法则也适用于整数和分数相乘,把分数乘法统一成一个法则。进一步巩固分数乘法的计算法则。
2、使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。
学习重点:理解并掌握分数与分数相乘的计算方法。
学习难点:分数与分数相乘计算方法的探索过程。
一、布置要求,引导预学。
1.复习迎新。
口头列式。
(1)80的是多少?(2)的是多少?
二、预习反馈,诊断查学。
课中进行预习反馈,教师根据学生的反映有针对性地调整教学。
三、目标引领,探究导学。
(一)、创设情境。
(二)、组织探究。
1、教学例4出现教材中的图形。
然后问:画斜线部分是12的几分之几?又是这个长方形的几分之几?
由此明确:12的14是18,12的34是38。
启发学生进一步思考:求12的14是多少,可以怎样列式?求12的34呢?
师问:你能列算式并看图填写出书中的结果吗?
打开书p45完成。
提示:根据填的结果各自想想怎样计算分数与分数相乘?
学生进行讨论得出:分数与分数相乘,分子相乘做分子,分母相乘做分母。
2、教学例5。
(2)验证比较。
3、归纳总结。
比较刚才计算的每个积的分子、分母与它的因数的分子分母,讨论有什么发现?得出分数乘分数的计算方法:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
(三)、练习。
1、完成p46的试一试。
同学们,下面着几道题你回计算吗?
出示:211×3=4×56=。
请同学们先完成p46的填空,提醒学生把整数看作分母是1的分数来计算。
讨论:分数与分数相乘的计算方法适用于分数和整数相乘吗?为什么?学生分组讨论。
明确:(1)整数可以看作分母是1的分数,所以分数与分数相乘的计算方法也适用于分数和整数相乘。
(2)实际计算时可以直接按以前学过的方法计算分数和整数相乘,而不必把整数改写成分母是1的分数,这样比较简便。
(3)也可以整数与分数直接进行约分后再计算。这样更简便。
教师进行示范如p46。
2、练习完成p46的练一练。
引导学生用直接约分的方法进行计算。
四、巩固练习,反馈练学。
1、做练习九的第1题先在图中画一画再列式计算。
2、做练习九的第3题说出错的原因。
3、做练习九的第4题看谁算的最快。
五、课堂总结,拓展思学。
全课小结通过这节课的学习,你有什么收获?还有什么疑惑?
教后记:
分数乘分数人教版教学设计(汇总20篇)篇十三
1、使学生知道分数乘分数的计算法则也适用于整数和分数相乘,把分数乘法统一成一个法则。进一步巩固分数乘法的计算法则。
2、使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。
教学过程。
一、创设情境。
二、组织探究。
1、教学例4出现教材中的图形。
然后问:画斜线部分是1/2的几分之几?又是这个长方形的几分之几?
由此明确:1/2的1/4是1/8,1/2的3/4是3/8。
启发学生进一步思考:求1/2的1/4是多少,可以怎样列式?
求1/2的3/4呢?
师问:你能列算式并看图填写出书中的结果吗?
打开书p45完成。
提示:根据填的结果各自想想怎样计算分数与分数相乘?
学生进行讨论得出:分数与分数相乘,分子相乘做分子,分母相乘做分母。
2、教学例5。
(1)让学生说说23×15和23×45分别表示23的几分之几?
你能用前面得出的结论计算这两道题吗?
学生试做。
订正完后问:你能用什么方法来验证你的计算结果呢?
(2)验证比较。
让学生在自己准备的长方形纸上先涂色表示23。
再画斜线表示23的15和23的45。
学生动手操作,教师巡视对学困生进行指导。
看看操作的结果与你计算的结果是否一致?
学生观察比较。
3、归纳总结。
比较刚才计算的每个积的分子、分母与它的因数的分子分母,讨论有什么发现?
得出分数乘分数的计算方法:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
三、练习。
1、完成p46的试一试。
提醒学生注意:计算分数与分数相乘时,能约分的要先约分在计算。
通过交流进一步明确计算分数与分数相乘的计算方法。
同学们,下面着几道题你回计算吗?
出示:2/11×3=。
4×5/6=。
请同学们先完成p46的填空,提醒学生把整数看作分母是1的分数来计算。
讨论:分数与分数相乘的计算方法适用于分数和整数相乘吗?为什么?
学生分组讨论。
(3)也可以整数与分数直接进行约分后再计算。这样更简便。
教师进行示范如p46。
2、练习。
完成p46的练一练。
引导学生用直接约分的方法进行计算。
五、综合练习。
1、做练习九的第1题。
先在图中画一画再列式计算。
2、做练习九的第3题。
说出错的原因。
3、做练习九的第4题。
看谁算的最快。
六、全课小结。
通过这节课的学习,你有什么收获?还有什么疑惑?
七、作业。
练习九的第2、5题。
教后记:本课的目的是使学生知道分数乘分数的计算法则也适用于整数和分数相乘,把分数乘法统一成一个法则,进一步巩固分数乘法的计算法则。基本达到教学要求。
分数乘分数人教版教学设计(汇总20篇)篇十四
《分数乘分数》的教学重点是巩固理解分数乘法的意义,探索分数乘分数的计算算理与法则。
在教学实践中继续采用“数形结合”的数学方法,帮助学生达成以上两个教学目标。对于今天的“探究活动”没有直接放手,这是因为学生对“求一个数的几分之几是多少”的分数乘法意义的理解还不够深刻,因此在整个的教学过程分为三个层次:
一、引导学生通过用图形表示分数的意义,再用算式表示图形,深化“求一个数的几分之几是多少”的分数乘法意义,感知分数乘分数的计算过程。
二、以1/5*1/4为例,让学生先解释算式的意义,然后用图形表示这个意义,最后再根据图形表示出算式的计算过程,这样做的目的是通过“以形论数”和“以数表形”的过程让学生巩固分数乘法的意义,体会分数乘分数的计算过程。
三、学生运用数形结合的方法独立完成教材中的“试一试”,进一步达成以上目标,并为总结分数乘分数的计算积累认知。可以说整体教学的效果还好。
通过今天的课,我对数形结合的思想有了更进一步的理解。由于分数乘法的意义和计算法则的道理比较抽象,学生理解起来不是很容易,所以利用图形使抽象的问题直观化,在本单元教学中就显得特别重要了。纵观教材,树形结合思想的渗透也有不同的层次,数形结合能帮助学生从具体问题中抽象出数学问题;在本学期的分数乘分数中是利用直观的几何图形,帮助学生理解分数乘分数的计算道理;接下来的分数乘法应用中,我们还将利用线段图帮助学生理解分数乘法应用的问题;使用的图形越来越简约体现了教材对数形结合思想渗透的一个过程。
数形结合的过程不是简单的抽象变为直观的过程,而是抽象变为直观之后,在从直观变为抽象的一个过程,也就是要将“以形论数”和“以数表形”两个方面有机的结合起来。只有完整的让学生经历数与形之间的“互动”,才能使他们感知“数形结合”,才能使他们能在解决问题时自觉地应用“数形结合”的方法。
分数乘分数人教版教学设计(汇总20篇)篇十五
人教版《义务教育课程标准实验教科书·数学》六年级上册第10页例3,第11页例4。
【理论依据】。
力。
【教材分析】。
《分数乘分数》属于数与代数领域,是六年级上册第二单元《分数乘法》的教学内容。本节课是本单元的第二节课,是学生在掌握分数与整数相乘的基础上进行的,由于分数乘分数的意义是分数乘整数意义的扩展,且计算算理较难理解,这部分内容是本节课教学的重点也是难点。教材第10页例3从实际问题引入,用工作粉刷墙壁的图创设问题情境,给出条件,提出问题。
从解决“几分之一与几分之一相乘”到“两。
个一般分数相乘”,力图让学生经历一个由浅入深、由易到难的探究过程。为突破重难点,教材用操作(涂色)的方法引导学生探索计算方法,让学生根据操作的过程与结果推导出计算方法,经历算理的推导过程。教材第11页例4从蜂鸟飞行的实际问题引入。通过计算,使学生明确分数乘分数计算也应该先约分再乘,这样计算比较简便,并掌握怎样先约分。教材接着提出“5分钟飞行多少千米?”的问题,这是分数乘整数的计算,前面已经学过,这里一方面把分数乘法的两种形式集中呈现,加强它们之间的对比与联系;另一方面提出分数和整数相乘怎样约分的问题,使学生知道分数的分母与整数可以直接约分。
【学生分析】。
(1)理解分数乘分数意义和算理。(3)掌握分数乘分数的计算方法。
(2)会用分数乘法的有关知识解决生活中的基本数学问题。
2、过程与方法。
3、情感、态度与价值。
(1)体验分数乘分数计算方法的探索性,经历知识生成的过程,激发学习数学的兴趣。
(2)体会数学知识间的内在联系,感受数学知识和方法的应用价值,提高学好数学的信心。
【教学重点】。
多媒体课件【学具准备】。
1张长10厘米,宽8厘米的长方形纸条。【教学过程】。
分数乘分数人教版教学设计(汇总20篇)篇十六
教科书第10~11页例3、例4。
1、通过操作活动使学生理解分数乘分数的算理,从而掌握计算方法。
2、发展学生的观察推理能力。
1、根据例题制作的挂图、投影片或多媒体课件。
2、每个学生准备一张长15cm、宽10cm的长方形纸。
一、创设情境引入新课。
教师谈话,以学校粉刷教室或家庭装修新房等学生身边的实例引入。
出示粉刷墙壁的画面,给出条件:每小时粉刷这面墙的1/5。
师:能提出什么问题?
学生提问题,教师板书。
以分数乘整数的问题作研究内容,如“4小时可以粉刷这面墙的几分之几?”
师:怎样列式?(板书1/5×4)。
师:列式的依据是什么?为什么用乘法?(工作效率×工作时间=工作总量)。
让学生计算,并说说怎样计算。
学生讨论汇报。(根据“4小时可以粉刷这面墙的几分之几”的列式类推出,或根据工作效率×工作时间=工作总量,可以列出1/5×1/4)。板书算式。
师:(结合板书讲解)我们已经知道求4小时粉刷这面墙的几分之几,就是求4个1/5是多少。求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。那么1/5×1/4如何计算呢?这就是我们今天学习的内容。
二、操作探究计算算理。
学生操作。
学生交流是怎样涂的?(用折或量、分的方法把纸平均分成5份,涂出其中的1份,如下图)。
小组汇报(把涂出的1/5部分再平均分成4份,涂出其中的1份)。
学生自己涂色。
师:从涂色的结果看,1/5的1/4占这张纸的几分之几?1/20。
学生讨论交流汇报。
(板书)。
三、迁移延伸,归纳法则。
提出问题:3/4小时粉刷这面墙的几分之几?
师:“3/4小时粉刷这面墙的几分之几?”是求什么?(1/5的3/4是多少?)。
小组讨论并操作:怎样列式?涂色表示15的34。怎样计算?
(板书)。
根据板书的两个计算算式讨论归纳计算方法。
通过学生讨论交流得到:分数乘分数,用分子乘分子,分母乘分母。
四、反馈提高,巩固计算。
出示例4,读题。
师:怎样列式?依据什么列式?
由学生讨论得到:根据“速度×时间=路程”,列出3/10×2/3。
让学生独立计算。通过请学生在黑板演算或用投影展示学生的演算过程及结果交流计算情况,强调能约分的要先约分再乘,这样可以使计算简便。并结合学生的演算情况说明约分的书写格式。
课堂总结:今天我们学习了什么?分数乘分数怎样计算?
学生独立完成“做一做”。
分数乘分数人教版教学设计(汇总20篇)篇十七
1.通过练习,使学生巩固对异分母分数加减法的理解,进一步提高计算能力,进一步增强数感。
2.通过练习练习,使学生能用分数加减法解决一些实际问题,进一步提高解决问题的能力,发展数学应用意识。
3.使学生在学习活动中进一步感受数学学习过程的探索性,获得成功的乐趣和体验。
难点重点:巩固对异分母分数加减法的理解,进一步提高计算能力
难点:综合运用知识解决问题
准备
挂图
环节过程
目标教师活动学生活动教学反思
2.指导完成练习十四第5题。
(1)学生完成后展示学生作业,交流计算结果。
(2)指导探索规律
教师指出:分母的最大公因数是1,分子都是1的分数相加,得数的分母是两个分母的积,分子是两个分子的和;分母的最大公因数是1,分子都是1的分数相减,得数的分母是两个分母的积,分子是两个分子的差。
(3)请学生举出几个类似的可以用这样的规律计算的算式。
学生独立完成左边两组题的计算。
学生进行观察,并在小组中说说自己的发现,再在全班进行汇报交流。
学生明确规律后根据规律直接写出右边两组题的结果。
学生举例,互相交流。
教学环节过程目标教师活动学生活动教学反思
综合练习
课堂总结
板书设计通过第6,7题的练习提高学生估计及对计算结果的把握能力,进一步增强数感。
通过练习,提高学生综合运用数学知识解决实际问题的能力。
通过观察实物图进行估计,再利用估计的数据解决相关问题,培养学生收集信息,选择信息去解决问题的能力。
通过课堂总结帮助学生对本节课要掌握的知识进行梳理。
1.完成练习十四第6题。
学生判断后教师组织汇报交流,让学生说说自己的想法。
教师帮助学生进行归纳:分数是否接近1/2,看分子是否接近分母的一半;分数是否接近0,看分子是否接近0;分数是否接近1看分子与分母是否很接近。
2.完成第7题。
教师组织汇报交流,追问:你是怎么想的?
让学生通过计算来验证自己的估算是否正确。
3.指导完成练习十四第8题。
(1)理解题意,明确两个量杯中各有多少毫升水。
(2)指导方法:400毫升和800毫升应该等于多少升呢?你是怎样想的?
4.指导完成练习十四第9题。
(1)理解题意。
(2)指导方法:估计一下每种蔬菜摆放的面积大约各占货架的几分之几?你是怎样想的?
(3)让学生独立完成(2)(3)题的计算,教师组织交流结果。
通过练习,你有什么收获?在解决问题时要注意什么?
作业:完成补充习题第41页
异分母分数加减法
1/2+1/3=(2+3)/(2×3)
1/2-1/3=(3-2)/(2×3)
接近0:1/10,2/25
接近1/2:4/7,9/20,7/15
接近1:8/9,11/13
学生在小组中进行判断,说说自己的想法。
学生在小组中先估计,然后汇报交流自己的想法。
学生独立完成计算,并与估算结果比较估算是否正确。
学生观察图片,先得出两个量杯中分别有2/5升,4/5升,再独立完成(1)(2)问题的解答。
学生在小组中进行讨论交流,指名上台指图说说自己的想法。
学生独立完成(2)(3)题的计算,并进行汇报。
学生自由发言。在分数大小比较的练习中可以渗透类似的题目,让学生用运用估算的方法比较大小,提高学生综合运用知识的能力。
教学环节过程目标教师活动学生活动教学反思
教学环节过程目标教师活动学生活动教学反思
教学环节过程目标教师活动学生活动教学反思
分数乘分数人教版教学设计(汇总20篇)篇十八
这是第二次以《分数的大小比较》来上教研课。
在上课之前,我翻开以前的教后记。看到了很多需要改进的地方。于是,在再次设计教学预案时,作了如下调整:
第一,删去了复习中的求最小公倍数,通分等练习,改为直接比较同分母和分子是1的分数的比较,并由此引入新课。
第二,例题中,理解题意,原来是分别说说3/5和4/9的意义。根据参考书的建议,直接改为两个问题,老师引导:(1)如果把这一本书的总页数看做单位“1”,那么小芳看了这本书的几分之几?小明呢?(2)所以,要比较两个人谁看的页数多,其实就只要比较什么?事实看来,这样课堂变得更加顺畅和合理。
第三,练习中关于11÷4和13÷10这一组题目,学生都用到了通分比较。在此基础上,我引导学生观察两个假分数,并把假分数化成带分数,这样直接就能比商的大小。通过增加了这一环节,帮助学生感悟到,在比较分数大小时除了通分,还可以根据分数的.特点具体选择合理的方法。同时,顺利过渡到了下面一题。
第四,直到昨晚,我在看“根据分数的意义直接比较大小时”总觉得有点疙瘩。后来,我把第一题1/2和1/3的比较改为1/5和1/4,这样在比较紧随其后的3/5和3/4时,就能沿用第一题的分数单位,从而学生也更加容易理解3个1/5和3个1/4,即3/5和3/4的比较。
第五,挑战题设计了三种方法,ppt中用触发器做了效果。可惜这一过程因为时间关系课堂上没有用武之地。
经过了以上改进之后,虽然我是第一个上的,但是,我明显感到课堂效果还是不错的。而且课堂上,我更加放得开了,不再拘泥于教案,不再让几个发言积极的同学唱主角,不再急着赶教案。
我觉得这一课上我比较满意的是:
第一,把教案放在心里。这次,讲台上只留一本书(其实,这书也是摆设,因为书中内容都已经在我心里),所有教学流程我已经清楚,也许有的引导语言不一定按照原教案的语言,但是,流程已经非常熟悉。
第二,我努力做到关注全体学生。这一课,学生的自主探究和练习时间充分,所以,也让我有了充分的时间走到学生中去巡视,去指导,去了解学生做的情况,从而可以让我调节接下来的组织过程。比如,在学生自主探究分数的大小比较方法时,我走到学生中去巡视,看到学生想到了不同的比较方法。本来,我在课件中用超链接来应对学生出现的各种答案,可是,我看到各种情况后,就直接挨着顺序有意识地点了其中几个学生来说出不同的方法,这样就可以让我不再使用超链接。再比如,这一课,我看到平时比较内向的学生成绩也并不理想的小鑫同学举手了,我就让他起来发言了。不出所料,他的发言内容是磕磕碰碰,甚至心急慌忙地出了错。不过我还是耐心地给了他机会让他把话说完,而他也最终自己调整状态,并自己改正了错误。我想这样的一次机会对谈鑫来说肯定是难忘的,对于我来说,其实也是一次大胆的尝试。因为,按照以前,为了一味追求课堂的流畅和正确率,我是肯定不会选择小鑫等这样一些同学的。但是,现在,我庆幸,我给小鑫也给自己创造了选择的机会。又如,学生练习交流完毕,我每次都关注到了没有做对的同学,让他们检查错误的原因并改正。学习,就是不断地尝试,不断地改正,不断地在错误中找到正确的方向。因为,这是我第二次上这一课,而且随着年龄的增长,我越来越不愿意为了所谓的流畅和好看而作秀,这让我有足够的底气和信心去关注班内各种学生的学习。
凡事都是相对而言的。正是因为我做了这样的选择。所以,回顾我的课堂,就没有了理想中的预期效果。比如,原本以为精简了练习,新授时又精练了过程,可以留出最后的时间和大家一起来探讨挑战题,而且挑战题我分别预设了三种不同的方法,这本来就是对应除了常用的通分比较以外可以有其他的方法,可是,只有说到第一种,而且第一种方法还最终因时间关系而只能草草结束。第二,因为课堂中有意识地让大多数同学有了锻炼的机会,让他们在其他老师听课时有展现自己的机会,又因为他们的发言没有预想的那么流利自如,所以,处于课堂等待的过程,就显得没有那么紧凑,这也直接导致最后课堂时间的仓促。
也许,这本身就是两难。这堂课上,关注个体和整体显然没有做到更合理和和谐。但是,今天这样的做法,也让我有了更大的信心,以后我会更加努力关注课堂上需要关注的学生,努力实实在在地提高课堂教学效率。
文档为doc格式。
分数乘分数人教版教学设计(汇总20篇)篇十九
1.使学生掌握分数乘以整数的意义、算理和法则。
2.培养学生的知识迁移能力。
学生对计算法则的掌握,以及在计算中能约分的要约分。
学生对算理掌握。
1、4个7连加是多少?怎样计算?
2、还可以怎样计算也得28呢?
3、如何列式?为什么这样列式?
4、学生小结整数乘法的`意义。
1、今天我们一起研究分数乘法中分数乘以整数这部分知识。
2、出示例1:一个修路队每天修路3/10千米。3天修多少千米?
3、学生读题,分析。
5、学生小结:分数乘法的意义(分×整)是什么?(相同加数和的简便运算)。
6、3/10×3如何计算?(学生讨论)3/10×3=3/10+3/10+3/10=3+3+3/10=3×3/10=9/10(千米)。
7、问:3×3/10是怎么来的?
8、谁能说说分数乘以整数是怎么算的?
9、小结法则:分数乘以整数,用分数的分子和整数相乘的积做分子,分母不变。
10、练习:说出3/17×5和4/15×6的意义并计算。
11、指书比较4/15×6还有更简便的方法吗?
12、小结:分数乘以整数时怎么算简便?
3/18×62/5×153/7×6。
你认为今天那些知识最让你感兴趣?
分数乘分数人教版教学设计(汇总20篇)篇二十
本节课的重点是理解一个数乘分数的意义,掌握一个数乘分数的计算法则,同样也是难点。我在教学中尝试着让学生通过折一折、画一画,以直观的方法让学生在理解分数乘分数的意义的过程中直接发现结果,然后根据折出来的结果探索计算法则,放弃了教材中两次折、画的方法。刚上完课,表面上感觉按部就搬完成了教学任务,可是总感觉缺少点什么,教学过程有点脱节。在评完课又听完其他老师的课后,有一种“柳暗花明又一村”的感觉。
1、敢于冲击教材。
一是改变了情景中的主人公,把教材中的王芳改成了老师,开门见山,直奔主题。这样更能激起学生质疑的兴趣;二是我放弃了教材中两次折、画的方法,给学生充分的探索空间,通过一次折纸理解了意义发现了计算结果,然后观察发现了计算方法。这样,为学生探索与交流保证了充足的时间。
2、关注动态生成。
在课的开始,我激活了教学内容,让学生在课的开始就面对“老师每小时织围巾1/4米”的信息,让学生提出问题,产生疑问,引起学生的认知冲突,产生解决问题的欲望,激发了学生解决问题的冲动。在学生形成的关于问题的多种原始想法中,我关注了动态的生成,抓住鲜活的生成资源,筛选出了关键的问题,使本节课的目标及教学重点成为学生的探讨焦点,体现了教与学的双主体地位。
3、敢于放手研讨。
为了突破本节课的教学难点,在课堂上我让学生折一折、画一画,以折纸涂色活动为主线,给学生提供了大量的动手操作的时间和观察交流,思考的空间,鼓励学生独立思考,从不同的角度去探究问题。折纸是为了理解意义。当学生由1/2×2的意义推测出1/4×1/2的意义是表示求1/4的1/2是多少时,我知道学生并不理解为什么这样说。正是通过折纸,学生理解了1/4的意义,1/2的意义,才能理解1/4×1/2的意义。因为学生只有理解了分数的意义,才能理解分数乘分数的意义。通过数形的结合,学生在理解意义的过程中感受计算分数乘分数时为什么是“分子乘分子,分母乘分母”的道理。学生经历了抽象---直观---抽象的探索过程。
4、合适的支点能贯通整个课堂。
这节课表面上感觉按部就搬完成了教学任务,可是总感觉缺少点什么,教学过程有点脱节。听了同事的数学课,我茅塞顿开!
在折一折的过程中,我直接让学生折1/4×1/2,虽然经过全班同学的努力,在少数同学的带动下折出了1/4×1/2表示1/4的1/2,可是有的迁强。听了刘虹老师的课我终于明白为什么我的课堂脱节,是因为我丢掉了课本提供的支点:先折1/4×2。因为学生由整数的意义得出"1/4×1/2表示1/4的1/2是多少"那只是推测,并不知道为什么,只有体会出1/4×2描2个1/4,才能知道半(1/2)个1/4描1/4的一半,这样才真正明白为什么说1/4×1/2表示1/4的1/2是多少",所以说,折1/4×2是成功完成1/4×1/2的支点,很重要。
5、学具的准备是无声的引导。
要为学生准备充足的学具。只有让学生准备好学具了,学生才可以探索得更深入,更全面。比如:如果只给学生准备一张纸,那么学生是不是也就只会折纸,如果再为学生准备尺子和笔,那学生是不是也就想到通过画图的方法来进行探索和研究,再为学生准备彩笔,学生是不是也就能向导通过画、涂的方法来研究。总之学具准备的充分,学生探索的才更自由,更全面。
而我只让学生准备了两张纸和两只彩笔,拘限了学生思维的发展,致使学生只用了折纸感受意义,理解计算方法。限制了学生解决问题的策略多样化。