教案是教师根据教学大纲和教学计划,对学生进行教学活动进行具体设计的编写材料。教学过程中,我们要注重学生综合能力的培养,提高他们的实践能力和创新能力。以下是一些五年级教案范文,供大家学习参考。
五年级数学教案找次品(模板14篇)篇一
利用天平,结合观察、猜测、图示、推理等活动,理解“找次品”问题的基本原理,发现解决这类问题的最优策略。
(二)过程与方法。
以“找次品”活动为载体,经历由多样到优化的思维过程,培养学生的优化意识。
(三)情感态度和价值观。
感受数学在日常生活中的广泛应用,发展学生的应用意识和解决实际问题的能力。
五年级数学教案找次品(模板14篇)篇二
“找次品”的教学,旨在通过“找次品”渗透优化思想,引导学生充分感受到数学与日常生活的密切联系。通过本节课的教学培养学生用数学的能力。提高学生数学思维能力和解决问题的能力。本节课以“找次品”的一系列操作活动为载体,让学生通过动手操作、观察等方式感受生活中解决问题方法的多样性,在此基础上,通过归纳、推理的方法体会运用最优化策略解决问题的有效性,感受数学的魅力。
五年级数学教案找次品(模板14篇)篇三
1、让学生通过找次品的操作活动和分析、归纳的理性思考,发现解决这类问题的最佳策略-把待测物品平均分3组。
2、以“找次品”活动为载体,让学生通过观察、猜测、试验、推理等方式感受解决问题策略的多样性及运用优化的方法解决问题的有效性。
3、让学生体会用缩小范围逐步逼近的方法来解决问题的数学思想,培养学生思考问题的严密性和口头语言表达的逻辑性。
五年级数学教案找次品(模板14篇)篇四
《找次品》是人教版数学五年级下册第七单元数学广角的内容。现实生活生产中的“次品”有许多种不同的情况,有的是外观与合格品不同,有的是所用材料不符合标准等。这节课的学习中要找的次品是外观与合格品完全相同,只是质量有所差异,且事先已经知道次品比合格品轻(或重),另外在所有待测物品中只有唯一的一个次品。
“找次品”的教学,旨在通过“找次品”渗透优化思想,让学生充分感受到数学与日常生活的密切联系。优化是一种重要的数学思想方法,运用它可有效地分析和解决问题。本节课从3个、5个、9个待测产品中找出一个次品,以操作活动为载体,让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,初步体会运用优化策略解决问题的有效性,感受数学的魅力,培养观察、分析、推理以及解决问题的能力。
五年级数学教案找次品(模板14篇)篇五
1、通过比较、猜测、验证等活动,探索解决问题的策略,渗透优化思想,感受解决问题策略的多样性,培养观察、分析、推理的能力。2、学习用图形,符号等直观方式清晰、简明的表示数学思维的过程,培养逻辑思维的能力。
五年级数学教案找次品(模板14篇)篇六
汇报:
(1)先拿两瓶放在天平两端,如果天平平衡,说明这两瓶都是合格的,再拿两瓶放在天平两端,如果天平还是平衡,说明这两瓶还是合格的,那剩下的一瓶就是不合格的。
(2)先拿两瓶放在天平两端,如果天平两端平衡,说明这两瓶都是合格的,再拿两瓶放在天平两端,如果天平不平衡,说明上扬的一端就是不合格的。
(3)先把5瓶分成2瓶一组,在天平两端各放两瓶,如果天平平衡,说明这四瓶都是合格的,那剩下的一瓶就是不合格的。
(4)先把5瓶分成2瓶一组,在天平两端各放两瓶,如果天平不平衡,说明上扬的一端就是不合格的,把上扬的那一端的两瓶再放在天平两端,天平上扬的一端就是不合格的。
五年级数学教案找次品(模板14篇)篇七
本节课内容的活动性和操作性比较强,大都可以采取学生动手实践、小组讨论、探究的方式教学。实际教学时,可先多给学生一些时间,让他们充分地操作、试验、讨论、研究,找到解决问题的多种策略。在活动中出现的一些共性的问题,教师可集中解决,如有的学生在称的次数少于至少能保证找出次品的次数时,就找出了次品,这时教师应提醒学生把所有的可能性都考虑进去。活动完成后,教师可要求学生分组汇报结果,并在黑板或屏幕上一一展示,让学生感受到同一问题却有多种解决方案,同时也为后面寻求最优的解决策略打下了研究、分析的基础。
组织学生进行实验操作活动,仅仅是本单元教学内容的基础或前奏,教学的重点在于活动后的猜测、归纳、推理活动,由此促进学生养成勤于思考、勇于探索的精神。操作活动中,学生往往会得出多种解题策略。教学时,老师应引导学生从这些纷繁复杂的方法中,从简化解题过程的角度,找出最优的解决策略。实际教学时,教师可先让学生观察各种解决策略,引导学生发现把待测物品平均分成3份称的方法最好,在此基础上,就可让学生进行猜测:这种方法在待测物品的数量更大时是否也成立呢从而可引发学生进一步进行归纳、推理等数学思考活动。教师可引导学生逐步脱离具体的实物操作,转而采用列表、画图等方式进行较为抽象的分析,实现从具体到抽象的过渡。
五年级数学教案找次品(模板14篇)篇八
请生试着自己画图分一分,然后汇报。(让生明确:10个球至少需要称3次,因为无论怎么分,至少有一份超过3个球。)。
师将结果填入记录表。
师:2次最多可以在几个球中找出次品?(9个。)为什么?(利用板书中的枝状图让学生明白每份最多3个,3个3就是9。)。
2.3次最多能在多少个球中找出次品?
师:3次最多可以在多少个球中找出次品呢?(引导生发现每份最多放9个,3份就是3个9,即3×3×3=27个。)。
师:28个球至少几次可以找出次品?
3.4次最多能在多少个球中找出次品?
(引导学生说出每份最多27个,3份就是3个27,即3×3×3×3=81,最多81个。呼应前面的小比尔盖茨的问题。)。
4.观察记录表,发现规律。
师:以此类推,测量的次数增加,可保证在更多的球中找出一个次品来。
五年级数学教案找次品(模板14篇)篇九
1、通过用天平称,猜测,画图推理等活动,学习找次品的方法,体会解决问题的策略的多样性。
2、通过讨论、探究、逻辑推理等活动,寻找找次品的优化方法,解决身边的数学问题,感受数学在日常生活中的广泛运用,初步培养学生的运用意识和解决实际问题的能力。
五年级数学教案找次品(模板14篇)篇十
了解天平的工作原理后,会正确使用天平解决问题。
二、新课讲授。
1.提出问题。
(2)独立思考。老师鼓励学生大胆假想,积极发言。
2.自主探索。
(1)引导学生探索利用天平找次品的方法,大家猜猜,怎样利用天平找出零件里的次品?
(2)先独立思考,再小组交流。
(3)全班汇报。
利用推理:把9个零件分成3份,每份分别是3个,3个,3个。天平两边各放3个,天平平衡,则次品在另3个零件中,再从3个中拿出2个,在天平两端各放1个,天平平衡,剩下一个零件是次品;如果第一次称量中,天平不平衡,次品零件在重的3个当中,拿出其中两个,在天平两端各放一个。如果平衡,则剩下一个是次品,如果不平衡,则重的那个是次品。
(4)你还有什么其他方法吗?
三、课堂作业。
1.完成教材112页做一做。
学生在小组中讨论交流,共同完成。
2.完成教材第113~114页练习二十七的第2~6题。
四、课堂小结。
这节课我们学习了稍复杂的找次品问题,你收获是什么?
五、课后作业。
完成练习册中本课时练习。
板书设计:
稍复杂的找次品问题。
五年级数学教案找次品(模板14篇)篇十一
1、通过比较、猜测、验证等活动,探索解决问题的策略,渗透优化思想,感受解决问题策略的多样性,培养观察、分析、推理的能力。2、学习用图形,符号等直观方式清晰、简明的表示数学思维的过程,培养逻辑思维的能力。
体会解决问题策略的多样性及优思想教学难点:
师:上课之前老师想先考考大家的眼力,看看谁的眼力最棒?
师:请不同。
生:(回答)。
师:咦,怎么回事?
生:不好确定。.。.。.
师:刚才这位同学分析的很对,从外观上看,它们一模一样,可实际上其中有一瓶少了3片,在生产生活当中我们把这种不合格的产品称为“次品“,那当遇见次品时需要把它找出来吗?生:需要。
师:大家的声音里感觉少点什么,请看大屏幕。
(播放航天飞机事故图片)。
师:看完后你想说点什么?
生:次品的危害很大。.。.。.
师:再问大家一次,当有次品的时候要不要把它找出来?
生:要。
师:从同学们的回答声中老师感受到大家的社会责任感,今天我们就一起来研究《找次品》(板书)。
(宣布上课)。
师:大家请看课题,你希望从这节课的学习中了解到什么?
生:找次品的方法,如何最快找到次品。
师:那我们带着这样的学习目标咱们开始今天的学习,
一、探究新知。
(一)探究2和3。
师:这两瓶钙片,谁有办法找出其中的次品?
生:掂一掂,数一数。
生:可以用天平。
师:天平咱们在以前的学习中已经接触过了,天平长什么样?谁能用身体模仿一下?
生:用身体模仿。
生:天平两端各放1瓶,哪边轻就是次品。
师:你把钙片分成了几份?
生:两份。
师:天平这时候会出现什么情况呢?
生:(用身体表现出倾斜)。
师:次品在哪里?指一指。
师:如果次品多了几片呢?
生:哪边重就是次品。
师:需要称几次?
生:1次。
师:看来从两瓶里找次品,只需要称1次就一定能找到。
如果是3瓶呢?请看屏幕,需要称几次?
师:猜一下?
生:2次,1次?
师:独立思考一会,然后跟大家说说你称的方法,你分成了几组?需要称几次?
生:分成了三份,天平两端各放一瓶,
如果天平平衡,那么剩下的就是次品,(指一指)如果天平不平衡,那么上升的就是次品,(抖一抖)。
需要称一次。
师:称1次可能会出现几种情况?
生:两种,平衡或不平衡。
师:不论天平平衡或不平衡,只需称1次就能找出次品。
师:称1次能保证找到次品吗?
生:能。.。.。.
师:大家观察次品的位置,你发现了什么?
师:就是说次品不在天平上就在。
生:天平外。
师:那么次品一定是我们用天平称出来的吗?
生:不是。
师:多好的方法,咱们用数学的方式记录下来,同学们呢仔细看,对照流程图再把方法说一说。
(二)探究8。
师:咱们用天平称的方法一次就从三个产品中找到了次品,那数量增加到8个呢?请看屏幕。
-
师:通过读题你知道了什么?
生:次品重一些,下降的就是次品。
师:问题是什么呢?
生:至少称几次能保证能找出次品?
师:这句话是什么意思?
生:保证找出次品的最少次数。
师:大家先猜一猜,从8个当中找次品,需要几次?
生:3、4、
师:到底需要多少次呢?看到桌子上的教具了么?我们实验一下不就知道了么?
师:请看提示(学生小组合作)。
师:我们一起来看看你们找到的方法,谁先来展示?(站在侧面,让大家看到你的想法)。
生:小组一我们分成了8份,1,1,1,1,1,1,1,1,。需要4次。
师:看到他的方法,你想说点什么?
师:刚才这位同学的称法中,有可能一次就找到次品,还要不要继续称下去?
生:要,因为称一次就找到次品的概率不大,太幸运了,这种方式不能保证找出次品。
师:当我们选择一种方法分析问题时,对可能出现的结果要全面考虑,做最坏打算,只有这样才能保证找到次品(板书:保证)。
有没有更少的称法?
生:小组二,我们分成了2,2,2,2共4份。需要3次。
生:小组三4,4两份,需要3次生:小组四3,3,2,3份,需要2次。
师:还有更少的方案吗?
生:没有了。
师:观察一下,最佳方案是?
生:第四种。
师:那到底怎么分,既能找出次品,用天平称的次数又最少呢?
生:回答。.。.。.
师:再看最佳方案,三份的个数不同,难道跟分成三份有关??
师:是不是和分成三组有关系呢?
(三)探究9。
师:咱们再找个数字分成三份试试怎么样?
小组交流学习并汇报。
生:我这种称法是把球分成了(4、4、1)这样的3份来称,需要称3次才能找出次品。天平的两边各放4个,如果天平平衡,天平外的那个球就是次品;如果天平不平衡,接下来就在天平下沉一边的4个里面找,4个就还要称2次,共3次。
生2:我这种称法是把球分成了(3、3、3)这样的3份来称,只需要称2次就能找出次品。天平的两边各放3个,不管天平平衡与不平衡,接下来都在3个里面找,3个就还要称1次,共2次生3:我这种称法是把球分成了2、2、5这样的3份来称,需要称3次才能找出次品。天平的两边各放2个,如果天平平衡,接下来就在剩下的5个里面找,还要称2次,共3次。学生边汇报教师边填表。
师:观察这三种方法,你发现了什么?
师:哪种方法更快?
生:第二种。
师:这就是9个里找次品的最佳方案,
(四)对比分析,总结规律。
师:我们把三种最佳方案整理到屏幕上,大家观察,他们有什么共同点?
生:分成三份,平均分。
师:共同点都是分成三份,8能平均分吗?不能平均分时又是怎么分的?
生:尽量平均分,差距最小是1.
师:你们太了不起了,通过刚才的实验、讨论、交流,不仅解决了问题,而且发现了找次品分组的秘密和规律。那就是:分成三份,尽量平均分。
师:同学们,我们通过大胆猜测,实践验证,细心推理,对比归纳,找到了找次品的规律-----分成3份,尽量平均分。
原来数学这么有趣,在短短时间里就得出了找次品的规律,你们太了不起了,掌声送给自己。
四、巩固练习验证规律。
你们有信心用刚才发现的规律去解决一些问题吗?
1、探究10和11验证规律。
2、有27瓶水其中一瓶是盐水,比其他的水重一些,至少称几次。
能保证找出这瓶盐水?
学生独立思考完成,汇报。
五、课堂总结,内化新知。
这节课你收获了什么?
五年级数学教案找次品(模板14篇)篇十二
1.知识和技能:通过观察、猜测、操作、画图、推理与合作交流验证等学习方法,探究找次品的策略,能够借助抽象记法对“找次品”问题进行分析,归纳出解决这类问题的最优策略,经历由多样化到优化的思维过程。
2.过程与方法:经历用天平测次品的过程,体验实验探究、发现运用的学习方法。
3.情感态度与价值观:在学习活动中,体会数学的优化思想,感受数学知识的魅力,激发学习探究的欲望,培养学生的逻辑思维能力。
五年级数学教案找次品(模板14篇)篇十三
通过身边生活实例,为学生创设问题情景,让数学问题生活化,一上课就吸引住学生的注意力,调动他们的探究兴趣,为后面的教学做好铺垫,使学生进入最佳的学习状态。设计这一环节,还是应该联系生活实际,这样可以更加激起孩子们学习的兴趣,让学生充分感受到数学与日常生活的密切联系。能使学生肯动脑、想参与、乐学习。
(二)难点转化、降低教学起点。
按照例题,本课例1是从5瓶钙片中找到次品,而我却让孩子们先从3个药瓶中找出次品,这样就降低了教学起点,孩子很容易的从3个中找到次品。那么在后面的5个、9个中找次品就容易多了。不会产生挫败感,增加成功的体验,使本课更容易进行。
(三)层层推进、符合小学生的认知规律。
本课我让孩子们从3个中找出次品这比较简单,然后加深到从5个、9个中找次品,并且在9个中找次品的过程中渗入优化思想,让孩子们寻找优化策略,接下来让学生再用12进行验证,加深了学生的体验。整个教学过程注重让学生经历了探索知识的过程,使他们知道这些知识是如何被发现的,结论是如何获得的。在此过程中知识层层推进,步步加深,让孩子的推理能力慢慢地达到一定的高度,思维也不至于感到困难。
(四)、知识拓展、巩固提高。
当学生通过例2发现把待测物品平均分成3份称的方法最好后,以此为基础让学生进行猜测:这种方法在待测物品的数字更大的时候是否也成立呢?引发学生进行进一步的验证、归纳、推理等数学思考活动,逐步脱离具体的实物操作,采用文字分析方式进行较为抽象的分析,实现从特殊到一般、从具体到抽象的过渡。这部分在集体备课后我进行了调整,将以前不能平均分成三份的教学挪到了下一课时。本节重点砸实,能平均分成三份的,怎样找出次品。总结出规律后,进行了相应的练习。增加了课后“你知道吗”中一部分内容。学生充分练习后已经能很熟练的运用最优方法解决问题、发现规律。通过今天教学实际来看,效果更好一些。
在教学过程中,充分的运用了研究性学习的教学方法,不把现成的答案或结论告诉给学生,而是试图创设出问题情境,引发学生认知上的矛盾、冲突,激起学生探求知识经验和事理的欲望,继而调用已有的知识经验和生活积累,提出解决问题的猜想和策略,并通过观察、实验、操作、讨论、思索等多种活动进行研究检验。在研究性数学学习中,知识不再是被学生消极接受的,而是学生自身积极地、主动地去探求获取的。学生在教育教学中是发现者、研究者,充分体现学生的主体地位。
不足之处:
1、由于时间关系,在研究从9个和12个中找次品时,学生小组交流的时间不够充分,汇报时有些方法没有反馈。
2、板书设计不好设计、很抽象,不容易使孩子们理解,因此我在设计板书时,进行了简化。用下划线来代表天平,上面的两个数字代表托盘两边的物品数量,这样就更形象一些,让孩子们也更容易理解一些。但分析天平两边出现的两种情况,不很清楚、易懂。究竟什么方法更利于学生理解,还值得探讨。
3、学生对实验过称的表达能力还有待提高,一些学生说不明白,甚至所说的别人听不懂。
五年级数学教案找次品(模板14篇)篇十四
1、通过观察、猜测、实验、推理等活动,体会解决这类问题策略的多样性及运用优化的方法解决问题的有效性。
2、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
3、培养学生的合作意识和探究兴趣。
让学生经历观察、猜测、实验、推理的活动过程,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
:观察归纳“找次品”这类问题的最优策略。
【课件播放有关次品的视频】。
师:看了刚才那段视频,你们有什么想说的?
生自由回答。
师:生活中经常会有一些产品与合格产品不一样。有的是外观瑕疵,有的是成分不过关,还有的是产品的质量与正常的不同……我们把这些不合格的产品称为“次品”。(板贴:次品。)。
师:次品虽小,危害却大。今天咱们就一起去找轻重不合格的次品。(板贴:找。)。
师:要找轻重不合格的次品,我们要用到什么工具?(天平)。
1、有关比尔·盖茨与81个玻璃球的问题。
让生自由猜测称的次数。
师:同学们猜的结果不一样,可能是数量太大了。数学中有种方法叫做“化繁为简”,让我们从数量较小的来研究吧!
2、研究2个球。
【课件演示:把2个球放在天平上】。
师:如果次品比正常的球稍轻呢?
3、讨论3个球的问题。
生叙述称球的过程。
【课件再次演示过程,并板书枝状图。】。
师:次品可能是这三个“1”中的任意一个,但无论哪一个是次品,都只需要一次就可以保证找出次品了。
师将探究结果填入记录表中。
4、研究4个球的问题。
师:如果再增加一个球,4个球,一次可以保证找出次品吗?
生自由回答。
师:咱们还是动手去探究吧。
生分组探究后,上实物展台汇报,师根据生的汇报板书枝状图,同时帮助生在此环节理解“至少”和“保证”的含义。
师小结:4个球,有两种不同的测量方法,但测量的结果都是一样的,至少需要2次才能保证找出次品。
把结果记录在表格中。
师:如果只测量一次,最多可以保证在几个球中找出次品?
5、讨论9个球。
师:如果球的个数再多一些,例如9个,至少需要几次才能保证找出次品呢?
生在实物展台上汇报9个球的测量方法,师板书在黑板上。
生可能出现的方法如下。
引导学生观察、比较板书,哪种方法符合题意?
师:为什么把9个球分成(3,3,3)只要2次就可以找出次品?
引导学生发现:第一种方法每份分出的数量是3,次品一定在某一份的3个球里,不管是哪一份,3个球只需要一次就只可以找出次品来,所以9个球只需要2次;但第二种分法有2份分出的数量是4,4个球需要2次才能找出次品,9个球就需要3次才能保证找出次品。
引导学生发现:每份分出的数量不能超过3。
6.5~8个球的研究。
请生自由画图分析,然后汇报。(重点是8个球。)。
将研究结果填入表格中。
1.10个球的研究。
师:10个球,称2次还能保证找出次品吗?
请生试着自己画图分一分,然后汇报。(让生明确:10个球至少需要称3次,因为无论怎么分,至少有一份超过3个球。)。
师将结果填入记录表。
师:2次最多可以在几个球中找出次品?(9个。)为什么?(利用板书中的枝状图让学生明白每份最多3个,3个3就是9。)。
2.3次最多能在多少个球中找出次品?
师:3次最多可以在多少个球中找出次品呢?(引导生发现每份最多放9个,3份就是3个9,即3×3×3=27个。)。
师:28个球至少几次可以找出次品?
3.4次最多能在多少个球中找出次品?
(引导学生说出每份最多27个,3份就是3个27,即3×3×3×3=81,最多81个。呼应前面的小比尔盖茨的问题。)。
4、观察记录表,发现规律。
师:以此类推,测量的次数增加,可保证在更多的球中找出一个次品来。
师:今天这节课你们有什么收获?还有什么问题吗?
师:我们为什么要探究找次品?
师:我们所探究出的找次品的方法其实和以前所探究的烙饼问题、田忌赛马问题等一样,就是一个最优化的方法。生活中解决问题的方法很多,如果你发现了解决问题的最佳策略,那么解决问题时一定能够事半功倍!