教学计划应有明确的教学目标和评价标准,便于教师和学生的实际操作和检验。掌握一些教学计划的编写技巧,对于提高教学效果和提升教学能力都非常有帮助。
小学数学平均数教学设计范文(18篇)篇一
教学内容:苏教版课程标准实验教科书三年级(下册)第92~94页。
教学目标:
1.经历用平均数刻画一组数据特征的过程,体会平均数的意义,掌握求简单平均数的方法。
2.经历移多补少、先合后分、估算等多样化算法的讨论,会利用图形直观估计平均数,能选择灵活的方法解决平均数问题。
3.体会平均数在现实生活中的广泛应用,激发参与热情,增强应用数学的意识。
教学重点:体会平均数的意义,掌握求平均数的方法。
教学难点:理解平均数的意义。
教学具准备:多媒体课件 小黑板 棋子。
一、设疑引欲,激趣导入。
同学们,有几个小朋友,你们看他们在干什么?
四个男生和四个女生比赛套圈,每人套15个,我们给他们当裁判,好吗?
让我们看看他们分别投了多少个。
(课件出示两组套中的成绩统计图)。
二、激起矛盾,提出问题。
1、瞧,又来了一个女生!她也想参加女生队进行比赛。行不行?
同座位交流一下,讨论一下。
三、合作探索,解决问题。
1、学生交流。
我们可以分别求出男生和女生平均每人套中的个数。
2、自主探索平均数的意义和计算方法。
a:求男生平均每人套中的个数。
(1)移多补少。
谁能上来动动小手,让男生套中的个数变得同样多?为什么要这样移动?
把移动多的补给少的,我们把这种方法叫做“移多补少”法。
现在我们可以看出平均每个男生套中多少个吗?
(2)先合并再均分。
现在还有办法让男生套中的个数变得同样多吗?(师合并所有的个数)。
老师先怎样?又怎样?这种方法叫做先合并再均分。
你能用算式将先合并再均分的过程表示出来吗?
指名列式计算:5+9+8+6=28(个) 28÷4=7(个)。
这里的28指的是什么?为什么要除以4?
(3)通过移多补少、先合并再均分的方法我们知道了男生平均每人投中了7个,这个7就是男生投中个数的平均数,也就是我们今天要学的内容。(板书课题)。
(4)理解平均数的范围。
a、平均数是7,是不是代表所有男生实际套中的个数都是7?
b、男生中哪些人套中的个数比平均数多?哪些人套中的个数比平均数少?
c、提问:平均数会比这里最大的数大吗?会比最小的数小吗?
d、小结:平均数是通过把多的部分移给少的部分,使大家都相等而得到的数,所以平均数在最大数与最小数之间。
b:求女生平均每人套中的个数。
(1)请你估计一下,女生平均每人套中多少个?
(2)算一算 。
移多补少。
(课件演示)。
先求和再平均分:11+4+8+2+5=30(个) 30÷5=6(个)。
这里30指的是什么?为什么这里用总数除以的是5而不是4?
现在你知道谁套得更准一些吗?
小结:通过比较,我们发现在这次比赛中,男生套中圈的平均数是7,女生是6,所以男生套得准一些。
四、巩固深化,拓展应用。
1、出示想想做做1。
看到大家学得这么认真,我决定来个小测验,记住,既要动手又要动脑呀。
谁来说一说,你是怎样想的、怎样做的。(通过动手动脑再次验证、巩固求平均数的方法。要给学生充分的操作时间,发挥学生的聪明才智。)。
2、出示想想做做2。
求三条丝带的平均长度(请同学们在下面做)。
3、出示想想做做3。
老师口渴了,我们去逛逛水果店好不好?找到了一些信息。(课件出示统计图)。
1)哪一天卖出的苹果同样多?哪一天卖出的橘子同样多?
2)平均每天卖出苹果和橘子各多少箱?(指名上来做,其他的同学认真观察,思考他们做的对不对。)。
3)你还能提出什么问题?
4、出示想想做做4。
下面我们来看看篮球场上的运动员们都在干什么?他们给大家带来了什么样的问题呢?(课件出示题目)。
学生回答的过程中,说明为什么?
明确:平均身高并不能代表其中的每一个人的身高,当中有的比平均身高高,有的比平均身高矮。
五、全课总结。
这节课你有什么收获?
小学数学平均数教学设计范文(18篇)篇二
教学目标:
(一)知识与技能。
理解平均数的意义,初步学会简单的求平均数的方法。
(二)过程与方法。
学生经历用平均数知识解决简单生活问题的过程,积累分析和处理数据方法,发展统计观念。初步感知“移多补少”“对应”等数学思想。
(三)情感态度和价值观。
感受平均数在生活中的应用价值,体验学习数学解决实际问题的乐趣。
教学重点:
掌握求平均数的方法,“移多补少”“先合并再平分”的实际意义和应用。
教学难点:理解平均数在统计学上的意义,灵活运用平均数的相关知识解决简单的实际问题。
教学准备:多媒体课件。
教学过程:
一、创设情境、生成问题。
师:生活中有很多地方用到平均数,(播放例子)那什么是平均数呢?怎样求平均数呢?今天我们就来探索平均数的奥秘。(板书:平均数)。
二、探索交流,解决问题。
1、平均数的意义和求法。
师:读情境图,从图中知道了什么?你能根据统计图提出什么问题?(学生独立完成,小组交流,全班汇报)。
生1:从情景图中可以读出小红、小兰、小亮、小明分别收集了14、12、11和15个塑料瓶。
生2:所解答的问题是平均每人收集了多少个。
师:你能解释“平均每人收集了多少个”的意思吗?(小组交流,全班汇报)。
生:“平均每人收集了多少个”意思是把收集到的这些塑料瓶按照人数进行平均分配。也就是把收集瓶子数量较多的转移给数量较少的,最后达成每人收集的个数同样多。
师:你能理解“同样多”是什么意思吗?
生:每人收集的个数一样。
师:那有什么方法能使每人收集的个数一样呢?
生:像这样,通过把多的矿泉水瓶移出来,补给少的,使得每个人的矿泉水瓶数量同样多。师:这种方法叫“移多补少”,得到的这个相等的数叫做这几个数的.平均数。
师:还有其他方法能知道平均数吗?
生:观察上图发现,还可以先求出塑料瓶的总数量,然后进行平均分配,可以求出平均每人收集的塑料瓶的个数。
师:请用算式表示出来。
生:(14+12+11+15)÷4。
=52÷4。
=13(个)。
答:平均每人收集了13个。
师:刚才我们通过移多补少和计算,求出平均每人收集了13个矿泉水瓶,它是不是每个人真正收集的矿泉水瓶数量?引导学生体会13不是每个人真正收集的矿泉水瓶数量,而是4个人的总体水平。
小结:平均收集13个矿泉水瓶,不是每个人真正收集的数量,是一个“虚拟”的数,反映了这组收集矿泉水瓶数的情况。
刚刚我们初步学会了平均数的计算方法,接下来老师碰到了一个问题,你能帮我解决吗?
2、进一步强调平均数的意义和计算方法。(出示教材第91页情境图和统计表)。
师:读图表,你能找出哪些数学信息?(学生独立完成,小组交流,全班汇报)。
生1:已知第4小组男生队和女生队踢毽比赛成绩表。
生2:所求的问题是男、女两队,哪个队成绩好?(学生独立完成,小组交流,全班汇报)。
师:怎样列式解答呢?(学生独立完成,小组交流,全班汇报)。
生:男生队平均每人踢毽个数女生队平均每人踢毽个数。
(19+15+16+20+15)÷5(18+20+19+19)÷4。
=85÷5=76÷4。
=17(个)=19(个)。
1719。
答:女生队的成绩好些。
生:如果比较两队的总成绩,有失公平,因为两队的人数不同,所以比较两队的平均成绩比较公平些。
师:对!在人数不等的情况下,用平均数表示各队的成绩更公平更好一些。
师:那么问题来了,你觉得这个平均数会比原来的数的最大数大吗?会比最小的数小吗?
三、巩固应用,内化提高。
在生活中我们也会遇到很多用到平均数的地方。接下来老师来考考你们学习的如何。
四、作业。
1、做一做第1题。
2、判断题。
(2)学校排球队队员的平均身高是160厘米,有的队员身高会超过160厘米,有的队员身高不到160厘米。()。
(3)小明所在的1班学生平均身高1、4米,小强所在的2班平均身高1、5米。小明一定比小强矮。()。
3、做一做第2题。
五、回顾整理反思提升。
师:通过本课学习,你有哪些收获?
将本文的word文档下载到电脑,方便收藏和打印。
小学数学平均数教学设计范文(18篇)篇三
【教学目标】。
1.在具体问题情境中,感受求平均数是解决一些实际问题的需要,通过操作和思考体会平均数的意义,学会并能灵活运用方法求简单数据的平均数(结果是整数)。
2.能运用平均数的知识解释简单的生活现象,解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。
一、游戏激趣,提出问题。
师:同学们喜欢游戏吗?那我们来玩一个记忆挑战的游戏!比赛规定:1:每三秒呈现10个数字,看看每次可以记住几个数字:2:三秒过后,校对并记录下来。
师:我们班谁的记忆力最厉害,请他到前面记录。全班帮他校对怎么样?不要提醒哦,游戏继续进行。
全班收集数据、记录在表格里。游戏结束。师:你们有什么想说的吗?生:评价。
师:那知道他能记住几个数字吗?
二、互动交流,探求新知。
问题1:他能记住几个数字呢?(两人一组开始讨论1分钟)。
生汇报交流结果。
师:你的意思是算出记住个数的平均数,就能判断他们记住数字的水平。问题2:那怎么能求出记住数字的平均数呢?同桌合作交流完成:
1:利用作业纸用箭头在图上移一移,也可以动笔算一算,求出淘气记住数字个数的平均数。
小学数学平均数教学设计范文(18篇)篇四
大家都听过小猫钓鱼的故事吧?今天老师也要讲一段小猫钓鱼的故事。
1、在一个天气晴朗的午后,大虎、二虎和小虎三位猫兄弟到河边钓鱼。两个小时以后他们每人数了数自己的鱼,大虎钓到7条鱼,二虎也钓到6条鱼,只有小虎才钓到2条鱼,你能用圆形代替鱼,摆出他们钓鱼的条数吗?(竖排或横排摆都可以)。
3、怎样才能让每个人的鱼同样多呢?用圆片摆一摆再在小组内说说你的方法。
方法二:大虎拿出两条鱼给小虎,二虎拿出1条鱼给小虎,这样每个人都有5条鱼,这种方法叫做移多补少。
5条是大虎钓鱼的条数吗?是二虎和三虎钓鱼的`条数吗?我们给他起个名字,5条就是大虎、二虎、小虎钓鱼的平均数,我们可以说他们平均每人钓了5条鱼。
1、大虎、二虎、小虎在回家的路上遇到花花姐妹,原来她们也去钓鱼了,花花姐妹可是钓鱼的高手。大虎:“你们平均每个人钓了多少条鱼?”
2、这是花花姐妹钓鱼的条数,你估计一下花花姐妹平均每人大约钓到多少条鱼?
3、你能算出花花姐妹到底平均每人钓了多少条鱼呢?
1、森领卡拉ok大赛就要开始了,许多小动物都赶着去观看比赛呢!
3、你知道谁是这次比赛的冠军吗,想一想、算一算,然后在小组里说说你的理由。
4、黄鹂是4位评委打出的分数,而百灵鸟是3位评委打出的分数,因为评委的人数不同,所以算总分是不公平的,这个时候只有算平均分才公平。在现实生活中你知道哪些比赛是取平均分来决定比赛成绩的。
看完卡拉ok比赛,三位猫兄弟觉得天气太热,就派大虎到小熊冷饮店买冰糕。咦!小熊遇到什么难题了?(小熊:星期四该进多少雪糕呢?)。
这是小熊冷饮店本周前三天卖出冰糕的情况,小熊星期四该进多少箱冰糕合适呢?
小学数学平均数教学设计范文(18篇)篇五
人教版小学数学教材第90~91页的例1、例2及相关内容。
1.使学生理解平均数的含义,初步学会计算简单的平均数的方法。
2.感知平均数的范围。
3.培养应用所学知识合理、灵活解决简单的实际问题的能力。
理解平均数的意义,掌握求平均数的方法。
理解平均数在统计学上的'意义。
1.教师:多媒体课件;
2.学生:收集自己的身高
教学过程:
生(预测):比较总分,看看哪个小组的总分高。
生(预测):这样不公平,我们小组三个人,他们小组四个人。
生(预测):应该比较平均成绩。
师:对,应该比较他们两个小组的平均成绩。在我们数学的统计中,平均成绩也有一个名字,它叫做平均数。
平均数教案
课件出示自学小贴士,学生独立完成
1.自己想办法找出这几位同学收集的废旧饮料瓶的平均数,你有几种方法来解决。
2.这个平均数表示什么?它是不是实际每个人收集废旧饮料瓶的数量?
3.平均数与这组数相比,你有什么发现?
独立完成后组内做好分工,在组内交流,看谁说得好,看谁听得认真!
1.小组交流
师:已经计算出来的同学,小组可以在小组里面交流一下你的方法,比一比看哪个小组做的又对又快!
小学数学平均数教学设计范文(18篇)篇六
1、体会平均数可以反映一组数据的总体情况和区别不同组数据的总体情况这一统计学上的意义。
2、使学生认识统计与生活的联系,发展学生的实践能力。
3、巩固求平均数的计算方法。
一、复习。
2、学生动手解决,并交流解决的方法。
二、创设问题情景,引导探究。
(1)组织交流解决的方法。
(2)小结:象这种情况下,每组的人数不一样,不能直接拿总数来比较,而是要求出每组同学的平均数来比较。
2、出示情景图,告诉同学穿兰色衣服的是开心队,穿黄色衣服的是欢乐队,引导学生观察后猜一猜:你认为哪一队的身高高?并说说理由。
3、出示统计表,组织学生收集有关数据,根据统计表估一估,欢乐队和开心队的平均身高分别是多少?并说说估的方法。
5、组织交流计算的方法与结果。
6、组织讨论:从刚才的这件事,你有什么发现,并小结:平均数能较好地反映一组数据的总体情况。
三、拓展与应用。
说说生活中还有哪些事要通过求平均数来解决一些问题。
四、小结:通过本节课的学习,你有什么收获,有什么问题需要帮助的吗?
五、作业练习十一4、5。
教学反思:
小学数学平均数教学设计范文(18篇)篇七
教学内容:
练习十一1—3题,教材42页例1。
教学目标:
1、掌握平均数的意义和求平均数的方法。
2、知道移多补少求平均数的方法。
3、会根据数据列出算式求平均数。
教学重点:
掌握求平均数的方法。
教学难点:
正确计算平均数。
教具准备:
课件,小黑板,统计表。
教学流程:
一、导入。
拿8枝铅笔,指4名同学,要平均分怎样分?
每人2枝,每人手中一样多,叫平均分。2是平均数。
二、学习交流。
1、出示例1、小红、小兰、小亮、小明收集矿泉水瓶统计图。
(1)从图中,你知道了什么信息?
(2)他们四人怎样分才能一样多?
(3)平均分后是多少个?
2、课件展示统计图的变化过程。
(1)指名展示。
(2)这种方法叫什么?
点拨:移多补少。
3、要求平均数,还可以怎样想?
(1)要把4人收集的矿泉水瓶平均分成4份,必须先求出什么?
14+12+11+15=。
(2)平均分成4份,怎么办?
52÷4=。
4、归纳。
要求平均数,可以先求出()数,再平均分几份。
5、算一算你们小组的平均身高,交流展示求平均数的方法和过程。
6、算出各小组的平均体重,说说你们是怎么算的?
三、交流展示。
展示自己的学习成果,说清求平均数的方法和过程。
四、达标测评。
1、练习十一第2题。
(1)什么是最高温度?什么是最低温度。
(2)你知道了哪些信息?
(3)填写统计表:本周温度记录。
(4)计算出一周平均最高温度和最低温度。
(5)说说你是怎么算的?
2、测量小组跳远成绩,求平均数。
五、总结。
通过这节课的学习活动,你有什么收获?
小学数学平均数教学设计范文(18篇)篇八
教学目标:
1、使学生经历探索小数加减法计算方法的过程,体会小数加减法与整数加减法在算理上的联系,初步掌握小数加减法的计算方法。
2、使学生进一步增强运用已有知识和经验探索并解决新问题的意识,不断体验成功的乐趣。
教学重点、难点:
掌握小数加减法的计算方法。
教学方法与手段:
使学生经历探索小数加减法计算方法的过程,体会小数加减法与整数加减法在算理上的联系,探索小数加减法的计算方法。
教具学具:多媒体光盘。
教学过程:教师活动。
学生活动。
设计意图。
一、导入。
1、出示例1的情境图。
谈话:这是同学们在文具商店购物的画面。你能从中了解到哪些信息?
学生交流后提问:根据这些信息,你能提出一些用加减法计算的问题吗?
根据学生的回答,相机板书下面的问题及相应的算式:
(1)小明和小丽一共用了多少元?
(2)小明比小丽多用多少元?
(3)小明和小芳一共用了多少元?
(4)小芳比小明少用多少元?
(5)三个人一共用多少元?
2、揭示课题。
谈话:怎样计算小数加减法呢?这就是我们今天要研究的问题。(板书课题:小数加法和减法)。
二、探究。
1、教学例1的第(1)问。
谈话:你能用竖式计算“4.75+3.4”吗?先试一试,再和小组内的同学交流。
讨论:你是怎样计算的?又是怎样想的?
围绕学生采用的算法进行比较,要求学生具体地解释思考过程。
小结:用竖式计算小数加法时,要把两个加数的小数点对齐,然后把相同数位上的数分别相加。
2、教学例1的第(2)问。
小结:通过刚才的学习,你知道了什么?
3、教学“试一试”。
谈话:这里还有两道题,你能用刚才学到的计算方法自己算出结果吗?
学生计算后,再要求说一说是怎样算、怎样想的。然后提出把计算结果化简的要求,让学生说一说化简的结果和依据。
4、总结和归纳。
学生活动,教师参与学生的活动。然后组织机交流。
三、练习。
1、完成“练一练”第1题。
学生独立完成后,让学生说一说计算中需要注意的地方。
2、完成“练一练”第2题。
先让学生通过独立思考找出每道题中的错误,再分别改正,并组织交流。
3、完成练习八第1题。
4、完成练习八第2题。
根据学生完成的情况适当加以点评。
5、完成练习八第3题。
让学生独立列式计算;。
根据题中的数量关系,还可以自己补充问题:问学生你还想到了什么?
四、总结。
通过今天的学习,你知道了什么?有哪些收获?你认为自己今天学得怎么样?
五、延伸。
同学们在开始上课的时候,提出了许多用小数加减法解决的问题,这些问题都很有价值。其中,有些问题我们已经解决,剩下的问题下节课在继续研究。
六、课堂作业。
《补充习题》p。
学生回答。
学生根据条件提出相应的数学问题。
学生口答算式。
学生思考、交流后回答:算式中都用小数。
学生用竖式计算,并在小组内交流。(同时指名板演)。
学生说出自己的想法。
同学间交流自己想法。
学生独立计算,指名板演。
学生交流后明确学生独立计算,并说说自己的想法。
同学们自己想一想,再和小组内的同学交流。
引导学生归纳:小数加减法和整数加减法都要把相同计数单位上的数分别相加、减,都要从低位算起。计算小数加减法时,需要把小数点对齐后再算,最后在得数里对齐横线上的小数点,点上小数点。
学生各自在书上填出得数,并回答。
学生独立完成,
结合线段图学生说说对前3个问题的理解。
学生交流。
问题的提出来自学生本身的思索,这让学生更有兴趣去探索、尝试。
围绕学生采用的算法进行比较,要求学生具体地比较“数位对齐”、“相同数位对齐”和“小数点对齐”,最终让学生明白“小数点对齐”也就是“相同数位对齐”。
这一环节让学生自己尝试解决。教师鼓励分小组相互交流,然后全班交流,进而探讨小数加、减法的基本算理。这样学生在轻松愉悦的氛围中既掌握了知识,同时也培养学生自主探索的精神,引导学生学会学习。
联系以前学过的整数加、减法,沟通新旧知识间的联系,使学生对小数加、减法的笔算方法形成比较完整的认识。
通过一系列的练习,既巩固了本课的相关知识点,又提高了学生灵活计算的能力。
4.75+3.4=8.15(元)4.75-3.4=1.35(元)。
4.754.75。
-3.4-3.4。
8.151.35。
小学数学平均数教学设计范文(18篇)篇九
教学内容:
义务教育课程标准实验教科书人教版二年级上册第八单元排列与组合。
教学目标:
1、通过观察、猜测、操作等活动,找出最简单的事物的排列数和组合数。
2、经历探索简单事物排列与组合规律的过程。
3、培养学生有序地全面地思考问题的意识。
4、感受数学与生活的紧密联系,培养学生学习数学的兴趣和用数学方法解决问题的意识。
教学重点:经历探索简单事物排列与组合规律的过程。
教学难点:初步理解简单事物排列与组合的不同。
教具准备:每组三张数字卡片、人民币学具。
教学设计:
一、情境创设,激发兴趣。
学生汇报(黑板演示)(2分)。
(2)(黑板出示:用数字卡片1、2、3可以摆成几个不同的两位数呢?)。
师:哦刚才用几摆的呢?轻轻地闭上眼睛,张开双眼看一看,用数字卡片1、2、3可以摆成几个不同的两位数呢?)。
师:想一想,和同桌说一说,拿出数字卡片,一人摆卡片,一人做好记录。
学生活动,教师巡视,汇报结果。
1、你们小组排出了哪些数?2、怎样排的?指名学生一边操作一边汇报。其他学生一起说数。
3、检查一下,有没有重复的?还有吗?(有没有漏掉的)。
4、谁发现了他们小组排数的规律?(可以让排数的学生说,也可以指名其他同学说。)。
5、看来呀,每个组的方法虽然不完全一样,但都只能排出这6个数。6、教师小结:大家都采用各种方法摆出了6个不同的两位数。真了不起啊!
看来要想既不重复也不漏掉,就必须要按照一定的顺序和规律进行。
像这道题:先把数字1放在十位,再把数字2和3分别放在个位,分别组成12和13,我接着把数字2放在十位,数字1和3分别放在个位,又分别组成了21和23,最后把数字3放在十位,数字1和2分别放在个位,分别组成了31和32,这样就不会漏也不会重复了。(8分)。
随机练习:听明白吗?那么你能试着说几个数吗?
3.感知组合(5分)。
师:咱们合作的真是太愉快!让老师握握你的小手吧!
三个小朋友,每两个人只能握一次手,一共要握几次手呢?
师:一人做裁判,小组的其他三个同学握一握,试一试,到底几次?
学生汇报表演。他们握手,咱们一起来数吧!(注意握过小朋友一边休息)。
师问:a和b握手了吗?b和a握手了吗?这算一次还是两次呀?
对比:三个小朋友握手只有三次,那刚才三个数去摆了六个数,是怎么回事呢?
小结:看来,两个人相互握手,只能算一次。刚才排数,交换数的位置,就变成另一个数了。孩子们,你们真了不起。
三、应用拓展,深化探究(15分)。
1、搭配衣服。
(课件出示)有几种搭配的选择呢?
师:谁愿意起来告诉我们大家究竟有几种不同的穿法呢?
(1):一件上衣可以配两条不同的裤子,这样有2种,另一件上衣又可以配两条不同的裤子,又有两种,这样一共有4种。
(2):上衣1号和裤子1号,上衣1号和裤子2号,上衣2号和裤子1号,上衣2号和裤子1号。
师:运动员们穿上你们搭配的漂亮衣服,非常高兴,邀请大家去观看比赛。
2、乒乓球比赛。
师:三人参加乒乓球比赛,如果两个人打一场比赛,那三个人要打几场比赛呢?
师:运动员的参赛激情很高,如果有4个人参加比赛,那又要打几场呢?
3、买奖品。
比赛结束了,老师想给他们买些作业本,买一个作业本可以怎样付钱?
四、总结延伸,畅谈感受(5分)。
师:刚才,我们一起去玩游戏,也观看了精彩的比赛,你有什么收获吗?(学生谈收获)。
师:原来生活有这么多数学问题,只要同学们细心观察,就能发现更多有趣的数学问题。
小学数学平均数教学设计范文(18篇)篇十
2、能力目标:理解平均数在统计上的意义。
3、情感目标:体会数学与生活的密切联系,培养学生的实践能力。
重点:理解平均数的含义。
难点:初步学会简单的求平均数的方法。
多媒体课件。
一、创设情境,提出问题。
上周的作业,有三位同学做得最好,今天老师带来些铅笔想奖励给他们。大家看统计图,哪三位做得最好,分别获得了几支铅笔?(叶雨7支、叶茹5支、李新3支)(课件展示)。
师:你们觉得这样分公平吗?怎样才能公平?
学生讨论,指名汇报。
(把叶雨的7支拿2支给李新,这样每人都是5支。课件展示)。
很好。谁能给这种方法取个名字?(“移多补少法”。板书)。
(先把三个人的铅笔全合起来有15支,再平均分给这3个人,这样每个人都是5支。)。
这种方法也很好!我们也给它取个名字。(“先合再分”板书)。
刚才我们用不同的方法,都能使这三个人铅笔的支数从不等变成相等,都是5。
教师指出:这里的“5”就是“7、5、3”这三个数的平均数。板书课题:平均数。
通过刚才的学习,同学们能简单的说一说什么是平均数吗?(学生思考或者讨论,教师在听取汇报后总结。)。
几个大小不等的数,通过移多补少或者先合再分的方法,使它们成为几个相等的数,这个相等的数就是这几个数的平均数。
师:说到平均数,同学们能联想到我们以前学的哪个数学概念。(平均分)是呀,平均数是5,那么他们每人的铅笔支数应该都是5,是这样吗?(质疑,区分平均数和平均分)。
师:难道,老师真的不公正吗?他们的铅笔到底要不要重新平均分配呢?告诉你们,不能。这样做是因为叶雨书写最干净,而且明显进步,而李新最近书写有些下降了。同学们觉得老师做得公平吗?刚才的平均数只是一个反映今天奖品发放总体情况的数,不是真的把奖品平均分了。
同学们在生活中还听到过哪些平均数?说一说。(见课件)。
看来平均数的用处还真大,同学们要好好学习哟!
二、寻找方法,解决问题。
同学们,上个月我们班每个同学都通过自己的努力,获得了很多小红星。我们来看一下第一小组和第二小组的统计结果。
第一小组上月获小红星个数统计表。
单位:个。
叶茹李新吴玉刘超。
14111013。
第二小组上月获小红星个数统计表。
单位:个。
叶雨付涛张新江南夏丽。
15128119。
其中,叶雨的个数最多,我宣布第二小组为优胜组,你们同意吗?
生1:不同意,她一个人怎能代表全组,就算叶雨最多,可是张新才8个。
师:那你们说怎么比呢?
生2:可以把每个组的个数加起来,看哪个组的个数最多,哪个组就好。
生3:可第一小组比第二小组少了一个人呀!怎么能比?
同学们认为怎样比最合适呢?(平均数)。
对,把几个大小不等的数,通过移多补少或者先合再分的方法,使它们成为几个相等的数,也就是把两个小组的平均数分别求出来再比较。(大家领悟到比较平均数最公平,从而认识平均数在统计中的用处。)。
下面,我们就各显神通,先求出第一小组的平均数吧!
小组讨论、汇报。
(将叶茹多的两个分给吴玉,刘超多的一个分给李新,这样,她们每个人都得到了12个,也就是第一小组的平均数是12个。)。
不错,方法很简洁,他用的什么方法?有不同的方法吗?
(先求出四个人的总个数,再求出平均每人的个数。)。
他用的方法就是——先合再分法。
看来,大家都非常聪明,第二小组的平均个数会求吗?
你们觉得这时我们求平均数用哪种方法比较合适?为什么?
学生在练习本上计算,指名板演,集体订正。
为什么这里求得的总数除以的是5而不是4?
(先合再分法)。
小结:求平均数的方法很多,要根据实际情况来定。人数少,差距小,用移多补少法比较简单;人数多,差距大,用先合再分的方法比较简单。
我们看,第一小组的平均数是12,可是14、11、13、10这几个数里,没有一个是12的,它们有的比12大,有的比12小;第二小组的平均数是11,可是15、12、8、11、9这几个数里面也只有一个11,并不是每一个数都是11,它们有的比11大,有的比11小。所以说平均数反映的是一组数据的总体情况。
小学数学平均数教学设计范文(18篇)篇十一
教学目标:
1、学生在联系生活实际和动手操作的过程中认识梯形,发现梯形的基本特征,认识梯形的高。
2、学生在活动中进一步积累认识图形的学习经验,学会用不同方法做出一个梯形,会在方格纸上画梯形,能正确判断一个平面图形是不是梯形,能测量或画出梯形的高。
3、学生感受图形与生活的联系,感受平面图形的学习价值,进一步发展对“空间与图形”的学习兴趣。
教学重点:
经历梯形的认识过程,了解梯形的特征。
教学难点:
建立厅性的高的概念,画梯形的高。
教学准备:
配套教材、直尺、三角尺等。
教学流程:
一、生活导入。
1、出示例1的图片,你能在这些生活场景中找到以前学过的平面图形吗?
(重点可让学生上台指一指梯形)。
2、你能说说生活中还有哪些地方能看到梯形吗?
3、今天我们继续研究梯形。你还记得我们昨天是怎样研究平行四边形的吗?
根据学生回忆板书:
(1)探究特点。
(2)认识高、底。
(3)多种练习。
有了这些研究平行四边形的经验,你想自己来进行研究活动吗?在小组里讨论一下,你们准备开展哪些活动来完成(1)和(2)。
老师的友情提醒:研究梯形时注意和平行四边形的联系与区别,将使你事半功倍。
二、小组活动。
(一)探究特点。
1、展示小组内制作的梯形,介绍使用的材料和方法。
2、归纳梯形的特点:梯形只有一组对边平行。
(二)认识高、底。
1、介绍小组内的研究成果。
2、在此基础上指导看书自学:
量出互相平行的一组对边间的距离,这就是梯形的高。这样的高有多少条?为什么?与平行四边形不同的是,梯形各部分有自己的名称。说说什么是上底、下底、腰、等腰梯形。
3、试一试:指一指高垂直于哪条边,量出每个梯形的上底、下底和高各是多少厘米。
4、说明:第二个梯形是直角梯形。在直角梯形中有几个直角?
三、练习提高。
想想做做1-5。
四、课堂总结。
通过这节课你有什么收获?还有哪些疑问?同桌间说说看。
小学数学平均数教学设计范文(18篇)篇十二
教学内容:
人教版《义务教育课程标准实验教科书 数学》三年级(下册)统计中求平均数例1。
教学目标:
1.在具体问题情境中,感受求平均数的需要,通过操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数)。
2.能运用平均数的知识解释简单的生活现象,解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。
3.进一步增强与同伴交流的意识与能力,体验运用知识解决问题的乐趣,建立学好数学的信心。
教学重点、难点:
平均数的意义及求平均数的方法。
教学过程:
一、情境导入。
阳光体育运动启动后男生和女生举行了一场趣味投篮比赛,想知道他们的得分情况吗?
课件出示统计图。
(1)看到统计图,你知道了什么?(板书每组每人得分)。
(2)金灿灿的奖杯在那儿等着呢,请你来当裁判,这金灿灿的奖杯该被哪组捧走呢?
学生说出自己的裁判理由,其他同学可以发表自己的意见,也可以反驳他人的观点。
当学生讨论、交流出需要求出每组平均每人得多少分时,师板书出“平均”。
(3)刚才同学们通过讨论,认为用平均数来比较那个对的实力强一些比较公平,那什么是平均数呢?(指名学生回答)。
师:那么什么是平均数呢?下面老师给大家做个小实验。
二、在操作中体验平均数的涵义。
1.课件演示:出示一个玻璃水槽,里面用三块挡水板平均分成四个部分,形成四个水柱高低不同的水柱。
师:四根水柱的高度一样吗?(指名回答)。
2.师继续演示:如果拿开挡水板,会发生什么?(课件演示)。
师:现在高度一样了吗?(指名回答)。
师:这个一样的高度就是原来四个高度的什么数?(指名回答)。
师:刚才老师是怎样使他们变得一样高的呢?(拿开挡水板,水会从高处流向低处)(指名回答)。
师:你的意思是把多的一一部分给少的,使大家变得一样多。这种方法我们把它们叫做“移多补少”(板书)。
师:在移多补少的过程中,水的总量有没有变?(指名回答)。
师:下面我们就用移多补少的方法来求出男女队投篮比赛中各自的平均数。
3.请同学们拿出你手中的小圆片代替投中的个数在小组内进行移多补少的操作。
(1)。第一组和第二组操作男生队,第三组和第四组操作女生队,摆完后在小组内交流操作过程。
(2)指名汇报交流。
4.教师用课件演示投篮的移多补少过程。
5.课件出示小练习。
5.演示后小结:(课件出示)像这样,几个不相同的数,在总数不变的前提下,可以通过移多补少是他们变得相等,这个相等的数就是这几个数的平均数。(学生齐读)。
师:理解了平均数的含义,那么平均数有什么特征呢?同学们想不想做个小游戏?
三、游戏中感悟平均数的特征。
1、出示:各装有3根小棒的红蓝两个纸袋(红带内平均每根长14厘米,蓝袋内平均每根长10厘米)课件出示两个纸袋。
师:下面我们来做个游戏,请几位同学上来,每位同学从两代中各抽出一根来比一比。(请三位同学上讲台操作)。
先让学生在小组里讨论,然后全班交流。(平均数大一些,并不是说每一根都长一些。平均长14厘米,不一定每一根都是14厘米,也有可能比14厘米短的,也有可能比14厘米长的。平均长10厘米的小棒,有可能正好是10厘米,也有可能比10厘米短,还有可能比10厘米长。)。
4、师:(课件演示)平均数和原来那些数相比,处在什么位置?(处在中间的位置,比最大的数要小,比最小的数要大。)(课件出示平均数的特点)。
师:我们感悟了平均数的特点,敢不敢挑战一下?
5、挑战练习——明辨是非。
四、探索中建构平均数的算法。
1、师:前面我们用移多补少的方法求的男女队各自的平均数,知道了女队的实力强一些。如果现在要进行班与班之间的对抗赛,那么要计算什么的平均数呢?(要计算班级的平均数)。
2、师:一个班有六十来名学生,如果还用移多补少的办法来获得平均数,你感觉怎么样?(指名交流)。
3、师:是啊,移多补少的方法对数据较小或数据个数比较少时,还是挺管用的。但是当一组数据比较大,数据的个数有比较多的时候,这种方法就有局限性了。看来,我们需要探索一种更加通用的计算方法。
4、以小组为单位,让学生讨论计算方法:(1)平均分是怎样分的?平均分需要知道哪两个条件?(师举例:有12块糖平均分给3个小朋友,每个小朋友分几块?)。
(2)哪个条件已经知道了?哪个条件还没知道?
(3)怎样求平均数?(师举例,3个小朋友一共有12块糖,平均每个孩子分几块?
(4))推出求平均数的公式。
五、学习例1,巩固公式计算法。
1、出示主题图,先用移多补少的方法获得平均数。(课件演示)。
2、让学生试着用公式计算例题中的平均数。
3、集体订正讲解。
六、生活中的平均数。(课件出示)。
七、巩固练习。
1、算出三条彩带的平均长度。
2、算一算你们小组的平均体重。
七、课堂小结。
小学数学平均数教学设计范文(18篇)篇十三
生:(齐)喜欢!
师:如果张老师告诉大家,我最喜欢并且最拿手的体育运动是篮球,你们相信吗?
生:不相信。篮球运动员通常都很强壮,就像姚明和乔丹那样。张老师,您也太瘦了点。
生:(齐)想!
生:我不同意。万一他后面两次投中的多了,那我不就危险啦!
生:我会同意的。做老师的应该大度一点。
师:呵呵,还真和我想到一块儿去了。不过,小强后两次的投篮成绩很有趣。
(师出示小强的后两次投篮成绩:5个,5个。生会心地笑了)
生:5。
师:为什么?
生:他每次都投中5个,用5来表示他1分钟投中的个数最合适了。
师:说得有理!接着该小林出场了。小林1分钟又会投中几个呢?我们也一起来看看吧。
(师出示小林第一次投中的个数:3个)
师:如果你是小林,会就这样结束吗?
生:不会!我也会要求再投两次的。
师:为什么?
生:这也太少了,肯定是发挥失常。
生:(齐)不同。
生:我觉得可以用5来表示,因为他最多,二次投中了5个。
师:也就是说,如果也用5来表示,对小强来说
生:(齐)不公平!
师:该用哪个数来表示呢?
生:可以用4来表示,因为3、4、5三个数,4正好在中间,最能代表他的成绩。
师:不过,小林一定会想,我毕竟还有一次投中5个,比4个多1呀。
生:(齐)那他还有一次投中3个,比4个少1呀。
师:哦,一次比4多1,一次比4少1
生:那么,把5里面多的1个送给3,这样不就都是4个了吗?
(师结合学生的交流,呈现移多补少的过程,如图1)
生:(齐)4个。
师:能代表小林1分钟投篮的一般水平吗?
生:(齐)能!
师:轮到小刚出场了。(出示图2)小刚也投了三次,成绩同样各不相同。这一回,又该用几来代表他1分钟投篮的一般水平呢?同学们先独立思考,然后在小组里交流自己的想法。
生:我觉得可以用4来代表他1分钟的投篮水平。他第二次投中7个,可以移1个给第一次,再移2个给第三次,这样每一次看起来好像都投中了4个。所以用4来代表比较合适。
(结合学生交流,师再次呈现移多补少过程,如图3)
师:还有别的方法吗?
生:我们先把小刚三次投中的个数相加,得到12个,再用12除以3等于4个。所以,我们也觉得用4来表示小刚1分钟投篮的水平比较合适。
[师板书:3+7+2=12(个),123=4(个)]
生:能!都是4个。
师:能不能代表小刚1分钟投篮的一般水平?
生:能!
生:使原来几个不相同的数变得同样多。
师:数学上,我们把通过移多补少后得到的同样多的这个数,就叫做原来这几个数的平均数。(板书课题:平均数)比如,在这里(出示图1),我们就说4是3、4、5这三个数的平均数。那么,在这里(出示图3),哪个数是哪几个数的平均数呢?在小组里说说你的想法。
生:在这里,4是3、7、2这三个数的平均数。
师:不过,这里的平均数4能代表小刚第一次投中的个数吗?
生:不能!
师:能代表小刚第二次、第三次投中的个数吗?
生:也不能!
生:这里的4代表的是小刚三次投篮的平均水平。
生:是小刚1分钟投篮的一般水平。
(师板书:一般水平)
(师呈现前三次投篮成绩:4个、6个、5个,如图4)
师:猜猜看,三位同学看到我前三次的投篮成绩,可能会怎么想?
生:他们可能会想:完了完了,肯定输了。
师:从哪儿看出来的?
生:你们看,光前三次,张老师平均1分钟就投中了5个,和小强并列第一。更何况,张老师还有一次没投呢。
生:我觉得不一定。万一张老师最后一次发挥失常,一个都没投中,或只投中一两个,张老师也可能会输。
生:万一张老师最后一次发挥超常,投中10个或更多,那岂不赢定了?
师:情况究竟会怎么样呢?还是让我们赶紧看看第四次投篮的.成绩吧。
(师出示图5)
师:凭直觉,张老师最终是赢了还是输了?
生:输了。因为你最后一次只投中1个,也太少了。
师:不计算,你能大概估计一下,张老师最后的平均成绩可能是几个吗?
生:大约是4个。
生:我也觉得是4个。
生:不可能,因为只有一次投中6个,又不是次次都投中6个。
生:前三次的平均成绩只有5个,而最后一次只投中1个,平均成绩只会比5个少,不可能是6个。
生:再说,6个是最多的一次,它还要移一些补给少的。所以不可能是6个。
师:那你们为什么不估计平均成绩是1个呢?最后一次只投中1个呀!
生:也不可能。这次尽管只投中1个,但其他几次都比1个多,移一些补给它后,就不止1个了。
生:小一些。
生:还要比最小的数大一些。
生:应该在最大数和最小数之间。
师:是不是这样呢?赶紧想办法算算看吧。
[生列式计算,并交流计算过程:4+6+5+1=16(个),164=4(个)]
师:和刚才估计的结果比较一下,怎么样?
生:的确在最大数和最小数之间。
师:现在看来,这场投篮比赛是我输了。你们觉得问题主要出在哪儿?
生:最后一次投得太少了。
生:如果最后一次多投几个,或许你就会赢了。
师:试想一下:如果张老师最后一次投中5个,甚至更多一些,比如9个,比赛结果又会如何呢?同学们可以通过观察来估一估,也可以动笔算一算,然后在小组里交流你的想法。
(生估计或计算,随后交流结果)
生:如果最后一次投中5个,那么只要把第二次多投的1个移给第一次,很容易看出,张老师1分钟平均能投中5个。
师:你是通过移多补少得出结论的。还有不同的方法吗?
生:我是列式计算的。4+6+5+5=20(个),204=5(个)。
生:我还有补充!其实不用算也能知道是5个。大家想呀,原来第四次只投中1个,现在投中了5个,多出4个。平均分到每一次上,每一次正好能分到1个,结果自然就是5个了。
师:那么,最后一次如果从原来的1个变成9个,平均数又会增加多少呢?
生:应该增加2。因为9比1多8,多出的8个再平均分到四次上,每一次只增加了2个。所以平均数应增加2个。
生:我是列式计算的,4+6+5+9=24(个),244=6(个)。结果也是6个。
师:现在,请大家观察下面的三幅图,你有什么发现?把你的想法在小组里说一说。
(师出示图6、图7、图8,三图并排呈现)
(生独立思考后,先组内交流想法,再全班交流)
生:我发现,每一幅图中,前三次成绩不变,而最后一次成绩各不相同。
师:最后的平均数
生:也不同。
师:看来,要使平均数发生变化,只需要改变其中的几个数?
生:一个数。
师:瞧,前三个数始终不变,但最后一个数从1变到5再变到9,平均数
生:也跟着发生了变化。
生:我发现平均数总是比最大的数小,比最小的数大。
师:能解释一下为什么吗?
生:很简单。多的要移一些补给少的,最后的平均数当然要比最大的小,比最小的大了。
师:其实,这是平均数的又一个重要特点。利用这一特点,我们还可以大概地估计出一组数据的平均数。
生:我还发现,总数每增加4,平均数并不增加4,而是只增加1。
师:那么,要是这里的每一个数都增加4,平均数又会增加多少呢?还会是1吗?
生:不会,应该增加4。
生:想!
生:超过的部分和不到的部分一样多,都是3个。
师:会不会只是一种巧合呢?让我们赶紧再来看看另两幅图(指图7、图8)吧?
生:(观察片刻)也是这样的。
师:这儿还有几幅图,(出示图1和图3)情况怎么样呢?
生:超过的部分和不到的部分还是同样多。
师:奇怪,为什么每一幅图中,超出平均数的部分和不到平均数的部分都一样多呢?
生:如果不一样多,超过的部分移下来后,就不可能把不到的部分正好填满。这样就得不到平均数了。
生:就像山峰和山谷一样。把山峰切下来,填到山谷里,正好可以填平。如果山峰比山谷大,或者山峰比山谷小,都不可能正好填平。
师:多生动的比方呀!其实,像这样超出平均数的部分和不到平均数的部分一样多,这是平均的第三个重要特点。把握了这一特点,我们可以巧妙地解决相关的实际问题。
(师出示如下三张纸条,如图9)
生:我觉得不对。因为第二张纸条比10厘米只长了2厘米,而另两张纸条比10厘米一共短了5厘米,不相等。所以,它们的平均长度不可能是10厘米。
师:照你看来,它们的平均长度会比10厘米长还是短?
生:应该短一些。
生:大约是9厘米。
生:我觉得是8厘米。
生:不可能是8厘米。因为7比8小了1,而12比8大了4。
师:它们的平均长度到底是多少,还是赶紧口算一下吧。
生:有可能。
师:不对呀!不是说队员的平均身高是160厘米吗?
生:平均身高160厘米,并不表示每个人的身高都是160厘米。万一李强是队里最矮的一个,当然有可能是155厘米了。
生:平均身高160厘米,表示的是篮球队员身高的一般水平,并不代表队里每个人的身高。李强有可能比平均身高矮,比如155厘米,当然也可能比平均身高高,比如170 厘米。
师:说得好!为了使同学们对这一问题有更深刻的了解,我还给大家带来了一幅图。(出示中国男子篮球队队员的合影,图略)画面中的人,相信大家一定不陌生。
生:姚明!
生:不可能。
生:姚明的身高就不止2米。
生:姚明的身高是226厘米。
师:看来,还真有超出平均身高的人。不过,既然队员中有人身高超过了平均数
生:那就一定有人身高不到平均数。
师:没错。据老师所查资料显示,这位队员的身高只有178厘米,远远低于平均身高。看来,平均数只反映一组数据的一般水平,并不代表其中的每一个数据。好了,探讨完身高问题,我们再来看看池塘的平均水深。
(师出示图11)
师:冬冬来到一个池塘边。低头一看,发现了什么?
生:平均水深110厘米。
生:不对!
师:怎么不对?冬冬的身高不是已经超过平均水深了吗?
生:平均水深110厘米,并不是说池塘里每一处水深都是110厘米。可能有的地方比较浅,只有几十厘米,而有的地方比较深,比如150厘米。所以,冬冬下水游泳可能 会有危险。
师:说得真好!想看看这个池塘水底下的真实情形吗?
(师出示池塘水底的剖面图,如图12)
生:原来是这样,真的有危险!
师:看来,认识了平均数,对于我们解决生活中的问题还真有不少帮助呢。当然,如果不了解平均数,闹起笑话来,那也很麻烦。这不,前两天,老师从最新的《健康报》上查到这么一份资料。
(师出示:《2007年世界卫生报告》显示,目前中国男性的平均寿命大约是71岁)
生:中国男性的平均寿命比原来长了。
生:我想,老伯伯可能以为平均寿命是71岁,而自己已经70岁了,看来只能再活1年了。
师:老伯伯之所以这么想,你们觉得他懂不懂平均数。
生:不懂!
生:老伯伯,我觉得平均寿命71岁反映的只是中国男性寿命的一般水平,这些人中,一定会有人超过平均寿命的。弄不好,你还会长命百岁呢!
师:谢谢你的祝福!不过,光这么说,好像还不足以让我彻底放心。有没有谁家的爷爷或是老太爷,已经超过71岁的?如果有,那我可就更放心了。
生:我爷爷已经78岁了。
生:我爷爷已经85岁了。
生:我老太爷都已经94岁了。
师:真有超过71岁的呀!猜猜看,这一回老伯伯还会再难过吗?
生:不会了。
师:探讨完男性的平均寿命,想不想了解女性的平均寿命?有谁愿意大胆地猜猜看?
生:我觉得中国女性的平均寿命大约有65岁。
生:我觉得大约有73岁。
(师呈现相关资料:中国女性的平均寿命大约是74岁)
师:发现了什么?
生:女性的平均寿命要比男性长。
生:不一定!
生:虽然女性的平均寿命比男性长,但并不是说每个女性的寿命都会比男性长。万一这老爷爷特别长寿,那么,他完全有可能比老奶奶活得更长些。
师:说得真好!走出课堂,愿大家能带上今天所学的内容,更好地认识生活中与平均数有关的各种问题。下课!
小学数学平均数教学设计范文(18篇)篇十四
1、依据倍数和因数的含义和已有的乘除法知识,自主探索总结找一个数的倍数和因数的方法.
2、使学生在认识倍数和因数以及探索一个数的倍数或因数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平。教学重点:理解因数和倍数的含义.教学难点:自主探索并总结找一个数的倍数和因数的方法.教学过程:
脑筋急转弯:有三个人,他们中有2个爸爸,2个儿子,这是怎么回事?
教师说明:人和人之间的关系是相互依存,数和数之间也是相互依存的。揭题:
1、创设情境。
用12个同样大的正方形拼成一个长方形,可以怎么拼?请同学们先想象一下,然后说出你的摆法,并用乘法算式表示出来。
学生汇报拼法,教师依次展示长方形的拼图,并板书:
4×3=1
26×2=12
12×1=12
教师根据4×3=12揭示:4×3=12
12×1=12吗?
2、深化感知。
(1)你能举出一些算式,说说谁是谁的倍数,谁是谁的因数吗?
教师说明:为了方便,我们在研究倍数和因数时,所说的数一般指不是0的自然数。
1、设疑。
在刚才的学习中,我们知道了3的倍数有
12、18。除了
12、18还有别的吗?请在纸上写出3的倍数。你能完成得又对又好吗?。学生在书写过程中引发冲突:为什么停下来不写了?有什么困难吗?引导学生讨论后达成共识:加省略号表示写不完。
2、交流。
揭示“有序”,为什么要有序地写倍数呢?全班讨论:“你是怎么写3的倍数的?”。
3×
13×
2 3×
3……
3
3+3
6+3
……
一三得三二三得六三三得九
引导学生讨论得出:用依次×
1、×
2、×3……写出3的倍数。
3、深化:请写出2的倍数,5的倍数。
4、引导观察,发现规律。
小组讨论:观察这三道例子,你有什么发现?全班交流,概括规律。
5、小结:发现这些规律可以更好地帮助我们寻找一个数的倍数。
1、设疑。
刚刚我们学会了找一个数的倍数,接下来我们来找一个数的因数。
请写出36的所有因数,
2、组织讨论。
你是怎么找36的因数的?
( )×( )=36从一道乘法算式中可以找到2个36的因数,6×6=36呢?
36÷( )=( )从一道除法算式中也可以找到2个36的因数。
3、讨论“多”。问:写得完吗?你可以按照什么顺序写?
师动画演示36的因数(从两端往中间写),同时指出:当两个因数越来越接近时,也就快要写完了。
4、巩固深化。
请写出15的因数,16的因数。学生练习后组织评讲。
5、引导观察,发现规律。
问:通过观察这三道例子,你能发现什么规律?
6、小结:写一个数的因数时可以从1和它本身来写,从小到大依次寻找。
1、快乐大转盘
2、猜数游戏。
集体研讨发言稿
这是一节概念课,关于“倍数和因数”教材中没有写出具体的数学意义,只是借助乘法算式加以说明,进而让学生探究寻找一个数的倍数和因数。通过备课,我梳理出这样一个教学脉络:乘法算式——倍数和因数——乘法算式——找一个数的倍数和因数。从教材本身来看,这部分知识对于五年级学生而言,没有什么生活经验,也谈不上有什么新兴趣,是一节数学味很浓的概念课。如何借助教材这一载体,让学生在互动、探究中掌握相应的知识,让乏味变成有味呢?我从以下三个方面谈一点教学体会。
一、设疑迁移,点燃学习的火花。
良好的开头是成功的一半。我采用脑筋急转弯中的一道题作为谈话进入正题,不仅可以调动学生的学习兴趣,看似不相关的两件事例中隐藏着共同点:一一对应、相互依存。对感知倍数和因数进行有效的渗透和拓展。
二、渗透学法,形成学习的技能。
3、依次乘
1、
2、3……、用乘法口诀等等。在学生充分讨论的基础上,我组织学生围绕“好”展开评价,有的学生认为:从小到大依次写,因为有序,所以觉得好;有的学生认为:用乘法算式写倍数,既快而且不受前面倍数的影响,可以很快地找到第几个倍数是多少,因为简捷正确率高所以觉得好。如此的交流虽然花费了“宝贵”的学习时间,但是学生从中能体会到学习的方法,发展了思维,这才是最宝贵的。正所谓没有一路上的山花烂漫,哪有山顶上的风光无限。
三、活用教材,拓展学习的深度。
教材中安排36÷()=()这一道除法算式来找一个数的因数。我觉得这样的设计可能会带来几点不足,其一:学生感知倍数和因数的概念、寻找一个数的倍数都是借助乘法算式,同样,找一个数的因数也可以利用乘法,让所学的知识形成系统岂不更有利于学生进行有效学习吗?其二:从学情来分析,相对于除法,学生更熟练、更喜欢运用乘法。以学定教,真正做到以人为本。我在教学时引导学生讨论得出:借助()×()=36来寻找一个数的因数。
课尾,我设计了一两个游戏,将整堂课的内容进行整理和概括,对易混淆的概念加以比较,对后续的学习进行适当的铺垫。融知识性、趣味性为一体,收到了课虽止意未尽的良好效果。
纵观整节课,学生在学习过程中自始至终处于主体地位,尝试练习、自主探索、解决问题,教师只是加以引导,以合作者的身份参与其中。整节课似行云流水、波澜不惊,但我想学生在思维上得到了训练,探究问题、寻求解决问题策略的能力也会逐步得到提高的。
小学数学平均数教学设计范文(18篇)篇十五
1、说课:说教材、说教学目标、说教法学法、说教学程序。案例:《分数的初步认识》、《用字母表示数》模拟片段教学:说教学程序。
2、说课的“说教学程序”:复习铺垫、新授、巩固、综合运用、拓展延伸、小结等;模拟片段教学的“说教学程序”:一般说“新授”部分。
3、说课主要说“为什么这样教”,模拟片段教学重在“怎样教”。
2、要关注学生学习方式的转变;如:动手操作、小组合作、同桌互相说一说、自学课本等。
3、要体现课堂评价的多元;教师评价、学生评价适时、恰当。
4、要展示板书的科学性和合理性;与课堂教学同步(及时);有所选择;字体规范;布局合理。
5、不能出现科学性的错误;如:《平行与垂直》《认识几分之一》《连续退位减法》。
6、要注意培养学生数学信息收集、整理和交流的能力;
7、要体现学生提出数学问题的能力;
8、要关注学生方法多样化,体现学生不同的思维方式;学生不同的解法、不同的理解、不同的表述等要能及时板书。
2、空间与图形教师的演示;学生的动手操作;
案例:《平行四边形的面积》。
4、解决问题学生发现数学信息、提出数学问题、解决数学问题的能力;学生解题方法的多样化。
1、如何开头?
2、教学目标要说吗?
3、复习多长时间比较合适?《商的变化规律》。
4、如何小结?
5、要充分利用资源—————没有三角板。
小学数学平均数教学设计范文(18篇)篇十六
两端植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树的要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。
让学生学习应用植树问题的思想方法解决一些简单的实际问题,培养学生观察、分析及推理的能力,培养他们探索数学问题的兴趣和发现绿化的重要性。
1、理解在线段上植树(两端栽)的情况中“棵数=间隔数+1”的关系。
2、利用线段图理解“棵数=间隔数+1”“总长=间隔数×间距”等间隔数与点数、总长、间距的关系,解决生活中的实际问题。
3、能将植树问题推广到生活中的其他问题中,学会通过画线段图来分析理解题意。
[教学重点]:用不完全归纳法总结并理解“点数=间隔数+1”。
[教学难点]:掌握用线段图解决生活中的数学问题的方法。
一、创设情境。
1、听唱歌曲《春天在哪里》,让学生感受春天的美好。
2、比较两组图片的不同,让学生说出植树对人类的重要意义,引出本节课所要学习的的植树问题。
二、探究新知。
(展示题目)。
1、学生画线段图表示,教师巡视指导。
2、指名回答。
3、教师把学生的想法用表格出示如下:
4、引导总结:
5、生:手指线段图。
师:在线段图上,点数和间隔数又有怎样的关系呢?
生:点数=间隔数+1。
6、师:总长与间距和间隔数又有怎样的等量关系呢?
生:总长=间距×间隔数。
7、尝试应用:
三、巩固新知。
四、小结本节内容。
五、教学作业。
小学数学平均数教学设计范文(18篇)篇十七
本单元教学加法交换律、结合律,乘法交换律、结合律。在学生掌握了四则计算和混合运算顺序的基础上,进一步教学运算律,有利于学生更好地理解运算,掌握运算技巧,提高计算能力。
本节教材是在学生经过较长时间的四则运算学习,对四则运算已有较多感性认识的基础上,结合一些实例,学习加法的运算律。
学情分析。
学生从小学一年级开始,就在加法的计算中和演算中接触过这方面的知识,有较多的感性认识,这是学习加法交换律的基础。教材安排这两个运算律都是从学生熟悉的实际问题的解答引入,让学生通过观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算规律。然后让学生根据对运算律的初步感知举出更多的例子,进一步分析、比较,发现规律,并先后用符号和字母表示出发现的规律,抽象、概括出运算律。教师应有意识地让学生运用已有经验,经历运算律的发现过程,让学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理地构建知识。
教学目标。
1、教学技能目标:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
2、过程方法目标:使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。
3、情感、态度、价值观目标:使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。
教学重点和难点。
重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。
难点:使学生经历探索加法结合律和交换律的过程,发现并概括出运算律。
小学数学平均数教学设计范文(18篇)篇十八
1、使学生初步学会用"替换"的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。
2、使学生在对解决实际问题的过程中不断反思,感受"替换"策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
一、情境导入。
同学们,早上喜欢和牛奶吗?和牛奶有益身体健康。
我女儿在家也喜欢喝牛奶,每次早晨喝一小杯(出示一小杯)。我早晨每次喝一大杯(出示一小杯)。大杯中的牛奶大约是小杯牛奶的2倍。
出示1大杯和2小杯,问1大杯可以够我和几次?2小杯可以够我女儿喝几次?
1大杯和2小杯都给我喝,可以喝几次?
1大杯和2小杯都给我女儿喝,可以喝几次?
指名汇报,说说是怎样想的?
说明:刚才想的过程其实就是替换的策略。
揭示课题:用替换的策略解决实际问题。
二、自主探索。
思考:你能解决吗?为什么?(使学生联想到都是大杯或者都是小杯比较容易解决;或者告诉大杯容量与小杯容量的关系。)。
说说所增加的条件,你是怎样理解的?
思考,你准备怎样解决?先独立思考,然后小组内交流想法。
3、全班交流,重点让学生说明怎样替换,替换之后是什么杯子,总量是多少?
使学生感悟到无论怎样替换之后的果汁总量是不变的'。
(根据学生的回答,以课件演示替换的过程)。
思考,为什么要把1大杯替换成3小杯,或者把3小杯替换成1大杯?(感受替换的依据)。
4、学生列式解决。
指名汇报,注重结合替换的思路,理解算式。
师:像这样的实际问题,我们用替换的策略进行解决,是否正确呢?
学生提出检验的方法,并阅读书上的介绍,然后进行检验。
5、小结用替换的策略解决实际问题的过程,加深对解题思路的理解。
6、体现价值。
教师介绍用方程解答的方法,还可以请学生说说不用替换的策略,还可以怎样解决。然后进行比较,使学生深深感受到策略的价值。
三、完成练习的第1题。
1、在题中用图表示替换的过程,然后解决问题,并检验。
2、汇报交流,将学生的作品在实物展示台上展示。注意体现学生可能出现的不同情况,(有可能出现线段图)。
3、结合图说出算式。
4、这个题目还有不同的替换吗?为什么?使学生认识到具体情况具体对待。
四、指导练一练。
1、读题,尝试解答,教师巡视了解。
2、练一练与例题相比有难度,因此让学生在指导下完成,可以用优秀生的思路来提示其他学生。
3、重视图的作用,以图来帮助理解。
五、思考。
1、本课应该以策略的价值体现为主,还是应该以替换的依据为主?感觉难以合理安排。
2、课堂教学时,忽视了学生在替换过程中语言的准确表达。如:用什么替换什么,或者把什么替换成什么。在数学中语言应该是规范、到位的。