教学工作计划的制定需要充分利用各种教学资源,包括教材、教具、多媒体设备等。希望以下这些教学工作计划的范文能够对广大教师在制定自己的教学计划时提供一些参考。
分数应用题教案(优秀14篇)篇一
1.成数的含义。
师述:什么是成数呢?“几成”就是十分之几,如“一成”就是十分之一,也就是10%。
(1)填空:
“三成”是十分之(),改写成百分数是()。
“三成五”是十分之(),改写成百分数是()。
(2)把下面的“成数”改写成百分数。
七成二成五五成九成九。
十成二成八七成四八成二。
2.出示例1。
(1)学生默读。
(2)这道题和复习中的第三题有什么不同之处?
(3)指名学生说解题思路。
师述:在列式计算时,我们可以直接把“成数”化成百分数,用百分数进行列式计算。
板书:
=41.6×(1+25%)。
=41.6×1.25。
=52(吨)。
答:今年收白菜52吨。
3.练习。
4.折扣的含义。
师述:工厂和商店为了推销商品,有时将商品减价百分之几销售,这就是平常说的打“折扣”销售。
某种商品打“八折”出售,就是按原价的80%出售,也就是减价20%。打五折出售,就是按原价的()%出售,也就是减价()%。
5.出示例2。
例2商店出售一种录音机,原价330元。现在打九折出售,比原价便宜了多少元?
(1)学生读题。
(2)问:打九折出售是什么意思?
(3)求比原价便宜了多少元?你想怎样解答?
(4)指名说解题思路。
板书:方法(一)330-330×90%。
=330-297。
=33(元)。
方法(二)330×(1-90%)。
=330×10%。
=33(元)。
答:比原价便宜了33元。
6.课堂小结。
今天我们学习了哪些知识?
师述:今天我们学习了有关“成数”和“折扣”的知识,知道了“成数”和“折扣”的含义,以及“成数”和“折扣”与分数和百分数之间的关系,并且学习了有关“成数”和“折扣”的一些实际的、简单的应用题。
(三)巩固反馈。
1.填空:
(1)某县今年棉花产量比去年增产三成。这句话的意思是()是()的30%。
(2)一块麦地,改用新品种后,产量增加了四成五。这句话的意思是改用新品种后产量是()的'()%。
(3)一种皮茄克打九折出售。这句话的意思是()是()的90%。
(4)一批旧书打五五折出售。这句话的意思是现价比()便宜了()%。
2.把下面的折扣数改写成百分数。
七折九折六五折八五折六八折。
3.把下面的百分数改写成“成数”。
75%60%42%100%95%。
6.一种画册原价每本6.9元,现在按每本4.83元出售。这种画册按原价打了几折?
课堂教学设计说明。
本节课从概念入手,并和原来学习的百分数应用题进行比较,学生易于找到突破口,便于学生理解、掌握本节课的重点和难点。通过和百分数应用题的比较,加深了学生对百分数应用题的理解和掌握,培养了学生分析能力。另外,课本上出现了大量生活中的实例,使学生体会到百分数就在我们身边,学好百分数应用题,能解决大量实际问题,从而提高了学生学习百分数应用题的兴趣。
板书设计。
将本文的word文档下载到电脑,方便收藏和打印。
分数应用题教案(优秀14篇)篇二
教学内容:课本第17页例1及课后做一做,练习四第2题。
教学目标:会画线段图分析分数乘法一步应用题的数量关系,能根据一个数乘分数的意义,理解“求一个数的几分之几是多少”的应用题的数量关系,并正确列式解答。
教学重点:理解“求一个数的几分之几是多少”的应用题的解题方法。教学难点:画线段图分析数量关系。
教学准备:直尺,课件。
教学过程:
一、复习。
1.口答算式和结果.(课件出示)。
3(2)12的多少?4。
2(3)60的多少?5(1)30的是多少?
2.引导学生回顾一个数乘分数的意义,请学生回答.3导入课题.二、新授。
出示例1。(课件演示例题)。
1、让学生读题,审题,说出题中的已知条件和问题,并指导画图。(板书)。
问:这道题应把谁看作单位“1”?平均分成几份?所占的是这样的几份?
2、引导学生分析数量关系。
3、列式计算。
算式:2500×=1000(米2)答:我国人均耕地面积为1000米2。(课件出示)。
三、全课小结。
四、布置作业。
课后反思:25。
分数应用题教案(优秀14篇)篇三
使学生进一步认识分数乘法应用题的基本数量关系,掌握解题思路和解题方法,提高分析推理和解决实际问题的能力。
分数乘法应用题的基本数量关系式,解题思路和解题方法。
教学过程设计
教学内容:
师生活动
备注
一、复习
二、教学新课
二、 巩固练习
三、小结
四、作业
1、解答应用题。
学校舞蹈队有32人,合唱队的人数是舞蹈队的,合唱队有多少人?
一人板演。这道题你是怎样想的?
2、引入新课
1、教学例3
(1)读题,说明条件和问题。
问:题里哪个月份的产量与呢个月份的比?要先画哪个月份产量的线段?(画线段图)表示五月份产量的线段要怎样画?(画线段图)增加的台数是哪个数量的1/5?要求什么问题?指的线段上那一部分?(在线段上表示)
(1)讨论:这道题例哪个数量是单位1?为什么?哪个台数是四月份台数的1/5?
要求五月份比四月份增产多少台可以怎样想?
(学生看着线段图,自己先试着说一说。)
指名学生口述。
(2)按照这样想的过程,列式计算。
(3)小结。
2、教学试一试
解答这道题可以怎样想?
学生练习。
问:数量关系式什么?为什么用原价乘就是降低的价钱?
从上面解题的过程可以看出,解题学习的应用题也和前一节课一样,关键式先确定单位1的数量,接着要弄清与题里几分之几对应的式什么数量。这些数量之间的关系就是单位1的量乘几分之几就等于与它对应的数量。
1、练一练1
2、练习三7说出单位1的量
把数量关系填写完整
3、练一练2
口述思考过程。提问有怎样的数量关系。
4、练习三10
口答算式和结果。
为什么用求枣子比栗子多的吨数?
5、练习三12
练习三8、9、10
板书:单位1的量几分之几=对应数量
充分借助线段图使学生理解此类应用题也是在求一个数的几分之几是多少?个别同学要加小灶.
分数应用题教案(优秀14篇)篇四
2.学会用一个数乘分数的意义解答两步分数乘法应用题.。
教学重点。
1.掌握两步分数应用题的解题思路和方法.。
教学难点。
分析两次单位“1”的不同之处.。
教学过程。
一、复习、质疑、引新。
(一)指出下面分率句中的单位“1”.。
1.乙是甲的。
2.小红的身高是小明的。
3.参加合唱队的同学占全班同学的。
4.乙的相当于甲。
5.1个篮球的价钱是一个排球价钱的倍。
(二)口头分析并列式解答。
1.小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小华储蓄了多少元?
2.小华储蓄了15元,小新储蓄的是小华的,小新储蓄了多少元?
二、探索、悟理。
(一)出示组编的例题。
1.思考讨论。
(1)小华储蓄的钱是小亮的,是什么意思?谁是单位“1”?
(2)小新储蓄的是小华的,又是什么意思?谁是单位“1”?
2.汇报思路讲方法。
由此基础上试列综合算式:
(二)巩固练习。
小华有36张邮票,小新的邮票是小华的,小明的邮票是小新的,小明有多少张邮票?
1.分析数量关系,独立画图并列式解答.。
2.学生板演.。
(张)。
(张)。
答:小明有40张.。
3.综合算式。
三、归纳、明理。
用连乘解答的题有什么特点?”“解题思路是什么?”
1.认真读题弄清条件和问题。
2.确定单位“1”找准数量关系。
根据分数乘法的意义,找准“量”、“率”对应关系,即谁是谁的几分之几.。
3.列式解答。
板书:抓住分率句,找准单位“1”,
画图来分析,列式不用急.。
四、训练、深化。
(一)联想练习根据下面的每句话,你能想到什么?
1.苹果的个数是梨的.(如,梨是单位“1”;苹果少,梨多;苹果比梨少等)。
2.修了全长的。
3.现在的售价比原来降低了。
(二)先口头分析数量关系,再列式解答.。
1.鹅的孵化期是30天,鸭的孵化期是鹅的,鸡的孵化期是鸭的,鸡的孵化期是多少天?
(三)提高题.。
五、课后作业。
六、板书设计。
分数应用题教案(优秀14篇)篇五
1、使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答已知一个数的几分之几是多少求这个数的应用题。
2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。
分数除法应用题的特点及解题思路和解题方法。
一:复习
1、根据条件说出把哪个数量看作单位1。
(1)棉田的面积占全村耕地面积的2/5。
(2)小军的体重是爸爸体重的3/8。
(3)故事书的本数占图书总数的1/3。
(4)汽车速度相当于飞机速度的1/5。
2、找单位1,并说出数量关系式。
(1)白兔的只数占总只数的2/5。
(2)甲数正好是乙数的3/8。
(3)男生人数的1/3恰好和女生同样多。
集体订正时,让学生分析数量关系,说出把哪个数量看作单位1,并说出解答这个问题的数量关系式,即:体重4/5=体内水分的重量。同学们都能正确分析和解答分数乘法应用题,分数除法应用题又如何解答呢?今天这节课我们就一起来研究。(板书课题:分数除法应用题)
二、新授
(1)指名读题,说出已知条件和问题。
(2)共同画图表示题中的条件和问题。
(3)分析数量关系式
提问:根据水份占体重的4/5,可以得到什么数量关系式?
学生回答后,教师说明:例1和复习题的第二个已知条件相同,因此单位1相同,数量关系式也相同,都是把体重看作单位1,数量关系式是:体重4/5=体内水分的重量。
根据学生的回答,把线段图进一步完善。
提问:根据题目的条件,我们已经找到了这一题的数量关系式:体重4/5=体内水分的重量。现在已知体内水分的重量,要求儿童体重有多少千克,可以用什么方法解答?(引导学生说出用方程解答。)
让学生试列方程,并说出方程表示的意义。
让学生把方程解完,并写上答案。
出示教材的检验,提问:要检验儿童的体重是不是正确,应该怎样做?(用求出的体重乘4/5,看看是不是等于水分的千克数。)
2、比较。
根据学生的回答,帮助学生整理出:
(1)看作单位1的数量相同,数量关系式相同。
(2)复习题单位1的量已知,用乘法计算;
例1单位1的量未知,可以用方程解答。
(3)因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位1,根据单位1是已知还是未知,再确定是用乘法解还是方程解。
三、巩固练习
1、做书p34做一做
要求学生先按照题目中的想说出想的过程,说出数量关系式,再列方程解答。订正时要说一说是按照什么来列方程的。
2、做练习九第1题。
先让学生找出把哪个数量看作单位1,说出数量关系式,再列方程解答。
四、小测:(略)
六、布置作业
练习九第2题
教后反思:学生在已学过的分数乘法应用题的基础上,能找出关键句,并根据关键句说出相对的数量关系式。为孩子创造做数学的机会,通过让学生积极参与知识的形成过程,让学生运用已有的知识经验,从不同的角度,用不同方法获取新知识,在不同程度上都得到发展。使学生不但知其然,还知其所以然。同时又使学生的观察力、想象力、思维能力和创新能力得到培养和发展,在学会的过程中达到会学的目的。
再根据题目的条件判断单位1的量,是已知的就乘法计算;单位1的量是未知的就用方程来解答;并学会了怎样验算。教学中不仅要重视知识的最终获得,更要重视学生获取知识的探究过程。结论仅是一个终结点,而探究结论、揭示结论的过程则是由无数个点组成的线、面、体,在探究的过程中,只有让学生动手做数学,学生很可能获得超出结论自身的价值的若干倍的数学知识。
小测:列出数量关系式,并列式解答。
1、六年一班有三好学生9人,正好占全班人数的1/5,全班有多少人?(用方程解)
2、一瓶油吃了3/5,正好是300克,这瓶油重多少克?(用方程)
小测:列出数量关系式,并列式解答。
1、六年一班有三好学生9人,正好占全班人数的1/5,全班有多少人?(用方程解)
2、一瓶油吃了3/5,正好是300克,这瓶油重多少克?(用方程)
分数应用题教案(优秀14篇)篇六
16×5=80(个)。
(2)5个人4天编多少个?
80×4=320(个)。
综合算式:16×5×4。
=80×4。
=320(个)。
答:5个人4天编320个.。
(1)1个人4天编多少个?16×4=64(个)。
(2)5个人4天编多少个?64×5=320(个)。
综合算式:16×4×5。
=64×5。
=320(个)。
答:5个人4天编320个.。
分数应用题教案(优秀14篇)篇七
1.使学生了解储蓄的意义和一些有关利息的初步知识,知道本金、利息和利率的含义,会利用利息的计算公式进行一些有关利息的简单计算。
2.提高学生分析、解答应用题能力,培养认真审题的良好习惯。
教学重点和难点。
理解本金、利息和利率三者之间的关系及运用公式进行计算。
教学过程设计。
(一)复习准备。
2.六一班有男生25人,女生是男生的80%。女生有多少人?
板书:(105.22-100)÷100。
=5.22÷100。
=5.22%。
问:这道题叙述了一件什么事?
师述:今天我们就来研究有关储蓄问题的应用题。
分数应用题教案(优秀14篇)篇八
13、参观消防。
15、小嘎勒小学有603个同学去参观普者黑,组了9辆车,平均每辆车做多少人?
16、有837盆花,放进8个花坛,平均每个花坛放几盆?还剩几盆?
21、食品厂生产了242盒饼干,如果每三盒装一箱,需要多少个包装盒?
26、有428个零件,每6个装一盒,这些零件能装都是盒?还剩多少盒?
28、一件上衣34元,一条裤子36元,商店卖了10套这样的服装,一共卖了多少元?
31、某工厂有男职工32人,女职工的人数是男职工的12倍,一共有多少个职工?
37、一架飞机每分钟飞行21千米,48分钟大约飞行多少千米?
二、连乘应用题。
三、连除应用题。
1、张老师给三(2)班买了6副羽毛球拍,一共花了264元,每只羽毛球拍多少钱?
2、超市里有720个月饼,4个装一盒,二盒装一箱,一共可以装多少箱?
4、把一条160厘米的绳子对折两次后是多少厘米?对折三次呢?
5、某工厂三个车间一共有180人,各个车间都是3个小组,评价每个小组都是人?
7、三(2)班的同学分5组植树,每组8个人,共植树160棵,平均每人植树多少棵?
8、库房里有48台冰箱,一辆货车一次运送4台,每天送2次。这些冰箱多少天能运完?
四、长方形和正方形的面积。
4、一块长方形菜地,长16米,宽6米,它的面积是多少平方米?合多少平方分米?
5、教室黑板长为30分米,宽为1米,它的面积是多少平方分米?合多少平方米?
8、一个正方形的养鱼池,边长是15米。它的水面是多少平方米?周长是多少米?
19、边长4厘米的正方形,它的周长和面积各是多少?相等吗?
21、一个长方形的宽是5厘米,长是宽的2倍,它的周长是多少?面积是多少?
分数应用题教案(优秀14篇)篇九
教学要求:使学生进一步掌握分数、百分数应用题的解题思路和解题方法,能正确地解答稍复杂的分数、百分数应用题,以及工程问题,提高学生分析推理和解答应用题的能力。
教学过程():
今天,我们继续复习分数、百分数应用题。(板书课题)通过复习,进一步掌握它们的结构特点和解题思路,能正确解答稍复杂的分数、百分数应用题,提高分析数量关系和解答应用题的能力。
1.提问:解答分数、百分数应用题,可以按怎样的顺序分析思考?
2.分数乘法应用题。
(1)校园里有桂树28棵,玉兰树棵数是桂树的 ,玉兰树有多少棵?
(2)校园里有桂树28棵,玉兰树棵数比桂树少 ,玉兰树有多少棵?
3.分数除法应用题。
(1)校园里有玉兰树21棵,正好是桂树棵数的 ,桂树有多少棵?
(2)校园里有玉兰树21棵,正好比桂树棵数多 ,桂树有多少棵?
4.小结。
从上面两组题可以看出,在分数应用题里,先确定单位“1”的量,如果已知单位“1”的量,用算术方法解答;当单位“1”的量未知时,用方程解答比较方便。分析数量关系时,还要注意数量之间的对应关系,如果问题或已知数量与题里的“几分之几”不对应,就是稍复杂的.分数应用题,解答时先要根据题里数量之间的对应关系,找出相应的数量关系式,然后对照数量关系式列出算式或方程解答。
1.做练习十六第12题。
要求学生根据问题列出两个算式。(指名一人板演,其余学生做在练习本上)集体订正,让学生说说各是怎样想的,按怎样的数量关系式列式的。
2.做练习十六第13题。
(1)指名三人板演,其余学生在练习本上列出算式或方程。集体订正,说出每一步求的是什么。
(2)提问:第(2)题与第(1)题比,有什么相同和不同的地方?为什么都用算术方法解答?为什么两题的算式不一样?指出;当所求的数量与分数对应时,就直接用一步计算求出结果;当所求数量与分数不对应时,就要用单位“1”的数量加上或减去几分之几的对应量,求出结果。
(3)提问:第(3)题与第(2)题比,有什么相同和不同的地方?为什么解题方法不一样?解题时都是按怎样的数量关系列式子的?指出:从这里的比较可以知道,根据单位“l”是已知的还是未知的,可以确定用算术方法做还是用方程解答。但不管用什么方法,都需要先分析,根据数量的对应关系找出数量关系式,再对照数量关系式列式子解答。
3.做练习十六第14题。
让学生说一说这两题的数量关系,强调根据题意,一桶油的重量减去第一次用去的,再减去第二次用去的,就等于剩下的重量。指名学生口答,老师板书。提问:解题过程中有哪些是相同的?哪里不同?为什么?指出:解答分数、百分数应用题,还要注意题里分数是表示的什么意义,弄清是表示两个量的关系还是具体数量。
4.做练习十六第16题。
提问:解答分数、百分数应用题的基本过程怎样?解题时还应该注意什么问题?
学生读题。提问:第二次降低的是哪个价格的15%?想一想第一次降价后的价格可以看做原价的百分之几?(1—20%)请同学们课后思考一下怎样算,自己试一试。
1.完成练习十六第12~14题的计算。
2.练习十六第15题。
分数应用题教案(优秀14篇)篇十
1.通过复习,使学生能够掌握的数量关系,并能正确的解答.
2.通过复习,培养学生的分析能力以及综合能力.
3.通过复习,培养学生认真、仔细的学习习惯.
重点。
通过复习,使学生能够掌握的数量关系,并能正确的解答.
难点。
通过复习,使学生能够掌握的数量关系,并且能够数量、正确的解答.
过程。
一、复习准备.
老师这里有两个数,一个是6,另一个是3.你能够用6与3提问并且进行回答吗?
学生回答:
(1)3是6的几分之几?
(2)6是3的几倍?
(3)3比6少几分之几?
(4)6比3多几分之几?
(5)6占6与3总和的几分之几?
(6)3是6与3差的几倍?……。
谈话导入 :今天我们就来复习.(:的复习)。
二、复习探讨.
(一)例4.
学校举办的美术展览中,有50幅水彩画,80幅蜡笔画.___________?
1.提问:根据已知条件,你都可以提出什么问题?并解答.
2.反馈:
(1)水彩画和蜡笔画共多少幅?
(2)水彩画比笔画少多少幅?
(3)蜡笔画比水彩画多几分之几?
(4)水彩画比蜡笔画少几分之几?
(5)水彩画是蜡笔画的几分之几?
(6)蜡笔画是水彩画的几分之几?
(7)……。
3.质疑.
(1)5问和6问为什么解答方法不同?(单位1不同)。
(2)3问和4问的问题有什么不同?(单位1不同)。
(二)例题变式.
(1)学生独立解答.
(2)学生讨论两道题的区别.
总结:看来我们做时,需要认真审题并且在找准单位1的同时注意找准对应关系.
(三)深化.
如果题目中的分数发生了变化,我们还会解答吗?
(1)学生独立解答.
(2)学生讨论两道题的区别.
总结:虽然与百在表现形式上不同,但是数量关系相同.同样需要注意认真审题并且在找准单位1的同时注意找准对应关系.
三、巩固反馈.
1.分析下面每个题的含义,然后列出文字表达式.
(1)今年的产量比去年的产量增加了百分之几?
(2)实际用电比计划节约了百分之几?
(3)十月份的利润比九月份的利润超过了百分之几?
(4)1999年的电视机价格比1998年降低了百分之几?
(5)现在生产一个零件的时间比原来缩短了百分之几?
(6)十一月份比十二月份超额完成了百分之几?
2.列式不计算.
(1)油菜子的出油率是42%,2100千克油菜子可以榨油多少千克?
3.判断并且说明理由.
男生比女生多20%,女生就比男生少20%. ( )。
四、课堂总结.
通过今天这堂课,你有什么收获吗?
五、课后作业 .
某体操队有60名男队员,
(1)女队员比男队员多,女队员有多少名?
(2)男队员比女队员多,体操队员共有多少名?
(3)女队员比男队员少,女队员有多少名?
(4)男队员比女队员少,体操队员共有多少名?
六、设计。
分数应用题教案(优秀14篇)篇十一
1.进一步掌握的数量关系.
2.学会用一个数乘分数的意义解答两步.
1.掌握两步分数应用题的解题思路和方法.
分析两次单位“1”的不同之处.
一、复习、质疑、引新。
(一)指出下面分率句中的单位“1”.
1.乙是甲的。
2.小红的身高是小明的。
3.参加合唱队的同学占全班同学的。
4.乙的相当于甲。
5.1个篮球的价钱是一个排球价钱的倍。
(二)口头分析并列式解答。
1.小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小华储蓄了多少元?
2.小华储蓄了15元,小新储蓄的是小华的,小新储蓄了多少元?
(三)引新:刚才复习的两个题,同学们完成的很好,现在将这两个小题,组成一道题,你还会解答吗?这就是本节课要的新内容.
二、探索、悟理。
(一)出示组编的例题。
1.思考讨论。
(1)小华储蓄的钱是小亮的,是什么意思?谁是单位“1”?
(2)小新储蓄的是小华的,又是什么意思?谁是单位“1”?
2.汇报思路讲方法。
根据“小华储蓄的钱是小亮的”,把小亮的钱看作单位“1”,可以求出小华储蓄的钱:.根据“小新储蓄的是小华的”,把小华的钱看作单位“1”,再标出小新的储蓄钱:.
由此基础上试列综合算式:
(二)巩固练习。
1.分析数量关系,独立画图并列式解答.
2.学生板演.
(张)。
(张)。
答:小明有40张.
3.综合算式。
三、归纳、明理。
用连乘解答的题有什么特点?”“解题思路是什么?”
1.认真读题弄清条件和问题。
2.确定单位“1”找准数量关系。
根据分数乘法的意义,找准“量”、“率”对应关系,即谁是谁的几分之几.
3.列式解答。
板书:抓住分率句,找准单位“1”,
画图来分析,列式不用急.
四、训练、深化。
(一)联想练习根据下面的每句话,你能想到什么?
1.苹果的个数是梨的.(如,梨是单位“1”;苹果少,梨多;苹果比梨少等)。
2.修了全长的。
3.现在的售价比原来降低了。
(二)先口头分析数量关系,再列式解答.
(三)提高题.
五、课后作业 。
六、
解答分数应用题的关键是弄清题中的数量关系,谁和谁比,把谁看作单位“1”,求的是谁的几分之几。这也正是课堂教学的重点和难点,是学生分析能力的体现。是我们课堂的叫目标之一。
这节课是分数应用题的第二节。学生已具备初步分析已知和找单位“1”的能力,但是增加了一个条件,并增加了一个数量。要利用已有的分析方法分步分析,才能化难为易,教学中采用小组合作的形式,发挥集体的智慧,在共同讨论中理解已知条件,有利于学生排除思维障碍。教师再配以线段图加深强生理解题意,以实现旧知识向新知识的迁移和飞跃。练习的设计,由易到难、变换条件,有助于学生灵活分析,防止定势。
分数应用题教案(优秀14篇)篇十二
教学内容:
教学目标:
3、在“猜想——探索”的过程中,培养学生的猜想、观察、分析、概括及表达能力和小组合作精神。
教学重点:让学生充分经历“猜想——探索”的过程,使他们得出分数能否化成有限小数的规律。
教学难点:探究、理解一个分数能否化成有限小数。
教具学具:多媒体课件。
教学过程:
一、提出问题。
1、说出下列各数各有哪些不同的质因数?
103512815214022125。
2、分数化成小数,一般用什么方法?
3、提出问题。
(1)、动手操作。
同学们,我们已经学习了分数化小数的方法。看这里有许多分数。媒体出示分数:
媒体出示要求:(同桌合作)。
把分数化成小数(借助计算器)。
根据计算的结果分类。
(2)、反馈。
谁愿意来说一说通过计算,你们把这些分数分为几类?
又是怎样分的?
在学生回答后,媒体出示分得的结果。
能化成有限小数不能化成有限小数。
1/22/55/81/35/62/9。
7/104/253/409/148/157/30。
这节课我们就来研究能化成有限小数的分数的规律。
(板书课题:能化成有限小数的分数的规律)。
二、大胆猜想:
这两个部分的分数有什么相同的地方?有什么不同的地方?
提出问题:仔细观察这些分数,你觉得一个分数能否化成有限小数与什么有关?
学生可能提出一下三条:
(1)一个分数能不能化成有限小数与分数的分子有关。
(2)一个分数能不能化成有限小数与分数的分母有关。
(3)一个分数能不能化成有限小数与分数的分子、分母都有关。
三、探索规律:
第一次探索:
1、提出问题:有的同学认为一个分数能不能化成有限小数与分子有关。你们怎样认为?
2、反馈:你们怎样认为?
学生举例说明:1/2和1/3、2/5和2/9、5/8和5/6这三组分数每一组中分子相同,但是有的能化成有限小数,有的不能化成有限小数,所以一个分数能不能化成有限小数与分子无关。
根据学生回答:媒体闪动一下分数1/2和1/3、2/5和2/9、5/8和5/6,
小结:我们可以从1/2和1/3、2/5和2/9、5/8和5/6看出:一个分数能不能化成有限小数与分子无关。
那么我提出的第三条:与分子分母都有关,正确吗?
第二次探索:
2、小组讨论。
学生在小组讨论中可能出现以下几种情况:
(1)分母个位是0的分数都能化成有限小数。
(2)分母是分子倍数的分数能化成有限小数。
(3)分母是2和5的倍数的分数一定能化成有限小数。
(4)能化成有限小数的分数分母中只含有质因数2和5。
3、在学生小组讨论时,教师巡视并参与,引导学生运用举例的方法进行推理。
(1)7/30分母个位是0的分数不能化成有限小数。
(2)有的同学认为:分母是2或5的倍数的分数能化成有限小数。
这个想法对吗?为什么?
学生举例说明:
5/8、7/10、4/25、3/40分母都是2或5的倍数能化成有限小数;。
5/6、9/14、8/15、7/30分母都是2或5的倍数不能化成有限小数。
得出结论:“分母是2或5的倍数的分数一定能化成有限小数”是不正确的。
(4)反馈。
a、讨论中引导学生把这些分数的分母分解质因数。
反馈时,根据学生回答板书显示:
5/82×2×25/62×3。
7/102×59/142×7。
4/255×58/153×5。
3/402×2×2×57/302×3×5。
引导学生得出结论:如果分母中除了2和5以外,不含有其他质因数,这个分数就能化成有限小数。
分母中含有2和5以外的质因数,这个分数就能化成有限小数。
生自己找几个分母中只含有质因数2和5的分数,来验证自己的猜想。
出示:b、3/15中分母15分解质因数15=3×5,分母中有质因数3,但把他化成小数等于0.2是一个有限小数。
讨论:这和我们刚才的结论不是矛盾了吗?为什么?
通过讨论得出:刚才我们讨论的分数都是最简分数,3/15不是最简分数,但是化简后等于1/5,分母中不含有2和5以外的质因数,所以能化成有限小数。
学生回答:这个分数必须是最简分数才符合这个规律。
(5)这就是能化成有限小数的分数的规律,请大家看书,把这个规律填写完整,并轻声地读两遍。
三、运用规律。
1、根据刚才的发现,想一想判断一个分数能不能化成有限小数要先想什么?再想什么?同桌互相说一说。
哪位同学愿意来说一说。
学生回答:先想这个分数是不是最简分数?再想分母中是否含有2和5以外的质因数?
2、练一练。
判别下面各分数,哪些能化成有限小数,哪些不能化成有限小数?为什么?
3/2027/1815/84/1132/258/97/283/169/40。
29/1214/5。
小组讨论:通过刚才的判断,你又发现了什么?
学生回答:我们只要先看它是不是最简分数,再分析分母中质因数的情况。
3、判断题。
(1)一个分数,如果分母中除了2和5以外,还含有其他的质因数,这个分数就不能化成有限小数。()。
(2)一个最简分数,如果分母中含有质因数2和5,这个分数一定能化成有限小数。()。
(3)一个最简分数,如果分母有约数3,一定不能化成有限小数。()。
(4)一个最简分数,如果分母有约数7,一定不能化成有限小数。()。
第(1)(2)是错误的,要求学生说说是怎样想的?怎样说就对了。
四、课堂小结。
回顾一下,这节课我们探索了什么?你有那些收获?
五、拓展延伸:
刚才我们探索得到了分数化小数时的一个规律。
其实在分数化小数时,还有许多规律。
观察下列各式,按规律填空。
1/2=0.5(2)1/5=0.2(5)。
3/4=0.75(2×2)4/25=0.16(5×5)。
7/8=0.875(2×2×2)9/125=0.072(5×5×5)。
5/16能化成()位小数8/625能化成()位小数。
(2×2×2×2)(5×5×5×5)。
先独立思考,再小组讨论。
学生汇报时说出规律:分母中只有1个质因数2(或5)化成一位小数,只有2个质因数(2或5)化成两位小数,……只有4个质因数2(或5)所以能化成四位小数。
因为5/16分母中有4个质因数2,所以它能化成四位小数。
因为8/125分母中有4个质因数5,所以它能化成四位小数。
用计算器算一算对吗?
学生通过计算器证明答案是正确的。
教师小结:在数学王国中还有许许多多的规律,我们只要认真学习,不断探索,一定能发现更多更有趣的规律。
分数应用题教案(优秀14篇)篇十三
列:
答:兄弟四人一共带了元钱。
列:
答:分给甲元,分给乙元.。
列:
答:现在箱子里有个白球。
列:
答:白子占全部棋子的/()。
列:
答:共有筐荔枝。
列:
答:这所小学有男生人,女生人。
列:
答:问这块合金含金克,含银克。
列:
答:他们现在的年龄分别是,,。
列:
答:四只小猴共吃了个桃。
列:
答:那么参赛学生有人,获奖学生有人。
分数应用题教案(优秀14篇)篇十四
年的百分之几?(百分号前面保留一位小数)。
3、白沙县计划造林20公顷,实际造林比计划多5公顷,实际造林比计划多百分之几?
4、乐华收录机现在每台售价120元,比原来降低40元。降低了百分之几?
5、一项工程,甲队独做4小时完成,乙队独做6小时完成。两队合做,需要几小时完成?
文档为doc格式。