余弦定理说课稿(实用15篇)

时间:2025-02-20 作者:笔舞

教案模板可以为教师的教学管理提供依据,有助于教学工作的有序进行。教案模板是教师备课的得力助手,下面是一些经典的教案模板分享给大家。

余弦定理说课稿(实用15篇)篇一

《余弦定理》是全日制中等教育国家规划教材(人教版)数学第一册中第六章平面向量第六部分。余弦定理是欧氏空间度量几何的最重要定理,是解斜三角形的重要定理,是整个测量学的基础。余弦定理是勾股定理的推广,可用解析法、向量法等方法证明。余弦定理主要能解决有关三角形的三类问题:

1)、已知两边及其夹角,求第三边和其他两个角。

2)、已知三边求三个内角;

3)、判断三角形的形状。以及相关的证明题。

本着数学与专业有机结合的指导思想,让数学服务于专业的需要。以及最大限度的提高学生的学习兴趣,在本节课,我不是将余弦定理简单呈现给学生,而是创造设情境,设计了与机械相关联并具有爱国主题的二个任务,通过任务驱动法教学,极大提高了学生的学习兴趣,激发学生探索新知识的强烈求知欲望,在完成数学教学任务的同时,强化了数学与专业的有机结合,培养了学生将数学知识运用于自身专业中的能力。同时通过任务驱动,培养了学生自主探究式学习的能力;提升解决实际实际问题的能力。因为所设计的两个任务具有爱国主义题材,学生在完成知识学习的同时,也极大的激发了爱国主义精神。

在确定教学方法前,首先要求教师吃透教材,选择恰当的教学方法和教学手段把知识传授给学生。本节课主要采用任务驱动法、引导发现法、观察法、归纳总结法、讲练结合法。并采用电教手段使用多媒体辅助教学。

1.任务驱动法。

教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,提高学生学习的兴趣,激发求知欲,启发学生对问题进行思考。在研究过程中,激发学生探索新知识的强烈欲望。提升解决实际总是的能力,并极大的激发了爱国主义精神。

2.引导发现法、观察法。

通过对勾股定理的观察和三角形直角的相关变形,学生从中受启发,发现余弦定理,并证明它。

3.归纳总结法。

学生通过前期的探索研究,自主归纳总结出余弦定理及其推论及判断三角形形状的相关规律。

4.讲练结合法。

讲授充分发挥教师主导作用,引导学生自主学习。练习让学生从多角度对所学定理进行认知,及时巩固所学的知识,锻炼了解决实际问题的能力,发挥出学生的主观能动性,成为学习的主体。

学生学法主要有观察、分析、发现、自主探究、小组协作等方法。经教师启发、诱导,学生通过观察与分析去发现并证明余弦定理,培养归纳与猜想、抽象与概括等逻辑思维能力,训练思维品质。

(一)知识目标。

2、使学生初步掌握应用余弦定理解斜三角形。

(二)能力目标。

1、培养学生在本专业范围内熟练运用余弦定理解决实际问题的能力。

2、通过启发、诱导学生发现和证明余弦定理的过程,培养学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。

3、通过对余弦定理的推导,培养学生的知识迁移能力和建模意识,及合作学习的意识。

(三)德育目标。

1、培养学生的爱国主义精神、及团结、协作精神。

2、通过三角函数、余弦定理、向量的数量积等知识的联系理解事物之间普遍联系与辩证统一。

教学重点是余弦定理及应用余弦定理解斜三角形;

分析勾股定理的'结构特征,从而突破发现余弦定理,应用余弦定理解斜三角形。

教学中注重突出重点、突破难点,从五个层次进行教学。

创设情境、任务驱动;

引导探究、发现定理;

完成任务、应用迁移;

拓展升华、交流反思;

小结归纳、布置作业。

(一)、导入。

1、教师创设情境设置二个任务,做为贯穿本课的主线和数学与专业有机结合的钮带,通过完成这二个任务,达到掌握余弦定理并学会应用的目标。

2、通过与直角三角形勾股定理引出余弦定理(快乐起点)经教师启发、诱导,学生通过探索研究,合理猜想来发现余弦定理。

(二)、新课。

3.证明猜想,导出余弦定理及余弦定理的变形。

经过严密逻辑推理证明得出余弦定理,这一过程中,锻炼了学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。

4.解决二个任务。

5.操作演练,巩固提高。

6.小结:

通过学生口答方式小结,让学生强化记忆,分清重点,深化对余弦定理的理解。

7.作业:

余弦定理说课稿(实用15篇)篇二

一、教材分析:(说教材)。

二、说教学思路。

本着数学与专业有机结合的指导思想,让数学服务于专业的需要。以及最大限度的提高学生的学习兴趣,在本节课,我不是将余弦定理简单呈现给学生,而是创造设情境,设计了与机械相关联并具有爱国主题的二个任务,通过任务驱动法教学,极大提高了学生的学习兴趣,激发学生探索新知识的强烈求知欲望,在完成数学教学任务的同时,强化了数学与专业的有机结合,培养了学生将数学知识运用于自身专业中的能力。同时通过任务驱动,培养了学生自主探究式学习的能力;提升解决实际实际问题的能力。因为所设计的两个任务具有爱国主义题材,学生在完成知识学习的同时,也极大的激发了爱国主义精神。

三、说教法。

教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,提高学生学习的兴趣,激发求知欲,启发学生对问题进行思考。在研究过程中,激发学生探索新知识的强烈欲望。提升解决实际总是的能力,并极大的激发了爱国主义精神。

2.引导发现法、观察法。

通过对勾股定理的观察和三角形直角的相关变形,学生从中受启发,发现余弦定理,并证明它。

3.归纳总结法。

学生通过前期的探索研究,自主归纳总结出余弦定理及其推论及判断三角形形状的相关规律。

4.讲练结合法。

讲授充分发挥教师主导作用,引导学生自主学习。练习让学生从多角度对所学定理进行认知,及时巩固所学的知识,锻炼了解决实际问题的能力,发挥出学生的主观能动性,成为学习的主体。

四、说学法。

学生学法主要有观察、分析、发现、自主探究、小组协作等方法。经教师启发、诱导,学生通过观察与分析去发现并证明余弦定理,培养归纳与猜想、抽象与概括等逻辑思维能力,训练思维品质。

五、教学目标。

(一)知识目标。

2、使学生初步掌握应用余弦定理解斜三角形。

1

(二)能力目标。

1、培养学生在本专业范围内熟练运用余弦定理解决实际问题的能力。

2、通过启发、诱导学生发现和证明余弦定理的过程,培养学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。

3、通过对余弦定理的推导,培养学生的知识迁移能力和建模意识,及合作学习的意识。

(三)德育目标。

1、培养学生的爱国主义精神、及团结、协作精神。

2、通过三角函数、余弦定理、向量的数量积等知识的联系理解事物之间普遍联系与辩证统一。

六、教学重点。

教学重点是余弦定理及应用余弦定理解斜三角形;

七、教学难点。

教学中注重突出重点、突破难点,从五个层次进行教学。

创设情境、任务驱动;

引导探究、发现定理;

完成任务、应用迁移;

拓展升华、交流反思;

小结归纳、布置作业。

(一)、导入。

1、教师创设情境设置二个任务,做为贯穿本课的主线和数学与专业有机结合的钮带,通过完成这二个任务,达到掌握余弦定理并学会应用的目标。

2、通过与直角三角形勾股定理引出余弦定理(快乐起点)经教师启发、诱导,学生通过探索研究,合理猜想来发现余弦定理。

(二)、新课。

3.证明猜想,导出余弦定理及余弦定理的变形。

经过严密逻辑推理证明得出余弦定理,这一过程中,锻炼了学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。

4.解决二个任务。

5.操作演练,巩固提高。

6.小结:

通过学生口答方式小结,让学生强化记忆,分清重点,深化对余弦定理的理解。

7.作业:

九、板书设计。

板书是课堂教学重要部分,为再现知识体系,突出重点,将余弦定理知识体系展示在板书中,利于学生加深印象,理清思路。

十、课后反思。

在教学设计上,采用任务驱动,教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,即提高学生学习的兴趣,又激发求知欲;知识点学习则循序渐进,符合学生的认知特点。经教师启发、诱导,学生通过观察、分析、发现、自主探究、小组协作等方法在获取新知的同时,培养了归纳与猜想、抽象与概括等逻辑思维能力。

余弦定理说课稿(实用15篇)篇三

《余弦定理》是全日制中等教育国家规划教材(人教版)数学第一册中第六章平面向量第六部分。余弦定理是欧氏空间度量几何的最重要定理,是解斜三角形的重要定理,是整个测量学的基础。余弦定理是勾股定理的推广,可用解析法、向量法等方法证明。余弦定理主要能解决有关三角形的三类问题:

1、已知两边及其夹角,求第三边和其他两个角。

2、已知三边求三个内角;

3、判断三角形的形状。以及相关的证明题。

本着数学与专业有机结合的指导思想,让数学服务于专业的需要。以及最大限度的提高学生的学习兴趣,在本节课,我不是将余弦定理简单呈现给学生,而是创造设情境,设计了与机械相关联并具有爱国主题的二个任务,通过任务驱动法教学,极大提高了学生的学习兴趣,激发学生探索新知识的强烈求知欲望,在完成数学教学任务的同时,强化了数学与专业的有机结合,培养了学生将数学知识运用于自身专业中的能力。同时通过任务驱动,培养了学生自主探究式学习的能力;提升解决实际实际问题的能力。因为所设计的两个任务具有爱国主义题材,学生在完成知识学习的同时,也极大的激发了爱国主义精神。

在确定教学方法前,首先要求教师吃透教材,选择恰当的教学方法和教学手段把知识传授给学生。本节课主要采用任务驱动法、引导发现法、观察法、归纳总结法、讲练结合法。并采用电教手段使用多媒体辅助教学。

1、任务驱动法。

教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,提高学生学习的兴趣,激发求知欲,启发学生对问题进行思考。在研究过程中,激发学生探索新知识的强烈欲望。提升解决实际总是的能力,并极大的激发了爱国主义精神。

2、引导发现法、观察法。

通过对勾股定理的观察和三角形直角的相关变形,学生从中受启发,发现余弦定理,并证明它。

3、归纳总结法。

学生通过前期的探索研究,自主归纳总结出余弦定理及其推论及判断三角形形状的相关规律。

4、讲练结合法。

讲授充分发挥教师主导作用,引导学生自主学习。练习让学生从多角度对所学定理进行认知,及时巩固所学的知识,锻炼了解决实际问题的能力,发挥出学生的主观能动性,成为学习的主体。

学生学法主要有观察、分析、发现、自主探究、小组协作等方法。经教师启发、诱导,学生通过观察与分析去发现并证明余弦定理,培养归纳与猜想、抽象与概括等逻辑思维能力,训练思维品质。

(一)知识目标。

2、使学生初步掌握应用余弦定理解斜三角形。

(二)能力目标。

1、培养学生在本专业范围内熟练运用余弦定理解决实际问题的能力。

2、通过启发、诱导学生发现和证明余弦定理的过程,培养学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。

3、通过对余弦定理的.推导,培养学生的知识迁移能力和建模意识,及合作学习的意识。

(三)德育目标。

1、培养学生的爱国主义精神、及团结、协作精神。

2、通过三角函数、余弦定理、向量的数量积等知识的联系理解事物之间普遍联系与辩证统一。

分析勾股定理的结构特征,从而突破发现余弦定理,应用余弦定理解斜三角形。

教学中注重突出重点、突破难点,从五个层次进行教学。

创设情境、任务驱动;

引导探究、发现定理;

完成任务、应用迁移;

拓展升华、交流反思;

(一)导入。

1、教师创设情境设置二个任务,做为贯穿本课的主线和数学与专业有机结合的钮带,通过完成这二个任务,达到掌握余弦定理并学会应用的目标。

2、通过与直角三角形勾股定理引出余弦定理(快乐起点)经教师启发、诱导,学生通过探索研究,合理猜想来发现余弦定理。

(二)新课。

3、证明猜想,导出余弦定理及余弦定理的变形。

经过严密逻辑推理证明得出余弦定理,这一过程中,锻炼了学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。

4、解决二个任务。

5、操作演练,巩固提高。

6、小结:

通过学生口答方式小结,让学生强化记忆,分清重点,深化对余弦定理的理解。

7、作业:

板书是课堂教学重要部分,为再现知识体系,突出重点,将余弦定理知识体系展示在板书中,利于学生加深印象,理清思路。

在教学设计上,采用任务驱动,教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,即提高学生学习的兴趣,又激发求知欲;知识点学习则循序渐进,符合学生的认知特点。经教师启发、诱导,学生通过观察、分析、发现、自主探究、小组协作等方法在获取新知的同时,培养了归纳与猜想、抽象与概括等逻辑思维能力。

文档为doc格式。

余弦定理说课稿(实用15篇)篇四

奇偶性是人教a版第一章集合与函数概念的第3节函数的基本性质的第2小节。

奇偶性是函数的一条重要性质,教材从学生熟悉的及入手,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地介绍了函数的奇偶性。从知识结构看,它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数的基础。因此,本节课起着承上启下的重要作用。

2、学情分析。

从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。

3、教学目标。

基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标:

余弦定理说课稿(实用15篇)篇五

《余弦定理》是全日制中等教育国家规划教材(人教版)数学第一册中第六章平面向量第六部分。余弦定理是欧氏空间度量几何的最重要定理,是解斜三角形的重要定理,是整个测量学的基础。余弦定理是勾股定理的推广,可用解析法、向量法等方法证明。余弦定理主要能解决有关三角形的三类问题:

1、已知两边及其夹角,求第三边和其他两个角。

2、已知三边求三个内角;

3、判断三角形的形状。以及相关的证明题。

本着数学与专业有机结合的指导思想,让数学服务于专业的需要。以及最大限度的提高学生的学习兴趣,在本节课,我不是将余弦定理简单呈现给学生,而是创造设情境,设计了与机械相关联并具有爱国主题的二个任务,通过任务驱动法教学,极大提高了学生的学习兴趣,激发学生探索新知识的强烈求知欲望,在完成数学教学任务的同时,强化了数学与专业的有机结合,培养了学生将数学知识运用于自身专业中的能力。同时通过任务驱动,培养了学生自主探究式学习的能力;提升解决实际实际问题的能力。因为所设计的两个任务具有爱国主义题材,学生在完成知识学习的同时,也极大的激发了爱国主义精神。

在确定教学方法前,首先要求教师吃透教材,选择恰当的教学方法和教学手段把知识传授给学生。本节课主要采用任务驱动法、引导发现法、观察法、归纳总结法、讲练结合法。并采用电教手段使用多媒体辅助教学。

1、任务驱动法。

教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,提高学生学习的兴趣,激发求知欲,启发学生对问题进行思考。在研究过程中,激发学生探索新知识的强烈欲望。提升解决实际总是的能力,并极大的激发了爱国主义精神。

2、引导发现法、观察法。

通过对勾股定理的观察和三角形直角的相关变形,学生从中受启发,发现余弦定理,并证明它。

3、归纳总结法。

学生通过前期的探索研究,自主归纳总结出余弦定理及其推论及判断三角形形状的相关规律。

4、讲练结合法。

讲授充分发挥教师主导作用,引导学生自主学习。练习让学生从多角度对所学定理进行认知,及时巩固所学的知识,锻炼了解决实际问题的能力,发挥出学生的主观能动性,成为学习的主体。

学生学法主要有观察、分析、发现、自主探究、小组协作等方法。经教师启发、诱导,学生通过观察与分析去发现并证明余弦定理,培养归纳与猜想、抽象与概括等逻辑思维能力,训练思维品质。

(一)知识目标。

2、使学生初步掌握应用余弦定理解斜三角形。

(二)能力目标。

1、培养学生在本专业范围内熟练运用余弦定理解决实际问题的能力。

2、通过启发、诱导学生发现和证明余弦定理的过程,培养学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。

3、通过对余弦定理的.推导,培养学生的知识迁移能力和建模意识,及合作学习的意识。

(三)德育目标。

1、培养学生的爱国主义精神、及团结、协作精神。

2、通过三角函数、余弦定理、向量的数量积等知识的联系理解事物之间普遍联系与辩证统一。

分析勾股定理的结构特征,从而突破发现余弦定理,应用余弦定理解斜三角形。

教学中注重突出重点、突破难点,从五个层次进行教学。

创设情境、任务驱动;

引导探究、发现定理;

完成任务、应用迁移;

拓展升华、交流反思;

(一)导入。

1、教师创设情境设置二个任务,做为贯穿本课的主线和数学与专业有机结合的钮带,通过完成这二个任务,达到掌握余弦定理并学会应用的目标。

2、通过与直角三角形勾股定理引出余弦定理(快乐起点)经教师启发、诱导,学生通过探索研究,合理猜想来发现余弦定理。

(二)新课。

3、证明猜想,导出余弦定理及余弦定理的变形。

经过严密逻辑推理证明得出余弦定理,这一过程中,锻炼了学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。

4、解决二个任务。

5、操作演练,巩固提高。

6、小结:

通过学生口答方式小结,让学生强化记忆,分清重点,深化对余弦定理的理解。

7、作业:

板书是课堂教学重要部分,为再现知识体系,突出重点,将余弦定理知识体系展示在板书中,利于学生加深印象,理清思路。

在教学设计上,采用任务驱动,教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,即提高学生学习的兴趣,又激发求知欲;知识点学习则循序渐进,符合学生的认知特点。经教师启发、诱导,学生通过观察、分析、发现、自主探究、小组协作等方法在获取新知的同时,培养了归纳与猜想、抽象与概括等逻辑思维能力。

(一)一、教材分析1.地位及作用“余弦定理”是人教a版数学必修5主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中“勾股定......

余弦定理说课稿(实用15篇)篇六

《余弦定理》是全日制中等教育国家规划教材(人教版)数学第一册中第六章平面向量第六部分。余弦定理是欧氏空间度量几何的最重要定理,是解斜三角形的重要定理,是整个测量学的基础。余弦定理是勾股定理的推广,可用解析法、向量法等方法证明。余弦定理主要能解决有关三角形的三类问题:

1、已知两边及其夹角,求第三边和其他两个角。

2、已知三边求三个内角;

3、判断三角形的形状。以及相关的证明题。

本着数学与专业有机结合的指导思想,让数学服务于专业的需要。以及最大限度的提高学生的学习兴趣,在本节课,我不是将余弦定理简单呈现给学生,而是创造设情境,设计了与机械相关联并具有爱国主题的二个任务,通过任务驱动法教学,极大提高了学生的学习兴趣,激发学生探索新知识的强烈求知欲望,在完成数学教学任务的同时,强化了数学与专业的有机结合,培养了学生将数学知识运用于自身专业中的能力。同时通过任务驱动,培养了学生自主探究式学习的能力;提升解决实际实际问题的能力。因为所设计的两个任务具有爱国主义题材,学生在完成知识学习的同时,也极大的`激发了爱国主义精神。

在确定教学方法前,首先要求教师吃透教材,选择恰当的教学方法和教学手段把知识传授给学生。本节课主要采用任务驱动法、引导发现法、观察法、归纳总结法、讲练结合法。并采用电教手段使用多媒体辅助教学。

1、任务驱动法。

教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,提高学生学习的兴趣,激发求知欲,启发学生对问题进行思考。在研究过程中,激发学生探索新知识的强烈欲望。提升解决实际总是的能力,并极大的激发了爱国主义精神。

2、引导发现法、观察法。

通过对勾股定理的观察和三角形直角的相关变形,学生从中受启发,发现余弦定理,并证明它。

3、归纳总结法。

学生通过前期的探索研究,自主归纳总结出余弦定理及其推论及判断三角形形状的相关规律。

4、讲练结合法。

讲授充分发挥教师主导作用,引导学生自主学习。练习让学生从多角度对所学定理进行认知,及时巩固所学的知识,锻炼了解决实际问题的能力,发挥出学生的主观能动性,成为学习的主体。

学生学法主要有观察、分析、发现、自主探究、小组协作等方法。经教师启发、诱导,学生通过观察与分析去发现并证明余弦定理,培养归纳与猜想、抽象与概括等逻辑思维能力,训练思维品质。

(一)知识目标。

2、使学生初步掌握应用余弦定理解斜三角形。

(二)能力目标。

1、培养学生在本专业范围内熟练运用余弦定理解决实际问题的能力。

2、通过启发、诱导学生发现和证明余弦定理的过程,培养学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。

3、通过对余弦定理的推导,培养学生的知识迁移能力和建模意识,及合作学习的意识。

(三)德育目标。

1、培养学生的爱国主义精神、及团结、协作精神。

2、通过三角函数、余弦定理、向量的数量积等知识的联系理解事物之间普遍联系与辩证统一。

分析勾股定理的结构特征,从而突破发现余弦定理,应用余弦定理解斜三角形。

教学中注重突出重点、突破难点,从五个层次进行教学。

创设情境、任务驱动;

引导探究、发现定理;

完成任务、应用迁移;

拓展升华、交流反思;

(一)导入。

1、教师创设情境设置二个任务,做为贯穿本课的主线和数学与专业有机结合的钮带,通过完成这二个任务,达到掌握余弦定理并学会应用的目标。

2、通过与直角三角形勾股定理引出余弦定理(快乐起点)经教师启发、诱导,学生通过探索研究,合理猜想来发现余弦定理。

(二)新课。

3、证明猜想,导出余弦定理及余弦定理的变形。

经过严密逻辑推理证明得出余弦定理,这一过程中,锻炼了学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。

4、解决二个任务。

5、操作演练,巩固提高。

6、小结:

通过学生口答方式小结,让学生强化记忆,分清重点,深化对余弦定理的理解。

7、作业:

板书是课堂教学重要部分,为再现知识体系,突出重点,将余弦定理知识体系展示在板书中,利于学生加深印象,理清思路。

余弦定理说课稿(实用15篇)篇七

大家好!

今天我说课的内容是余弦定理,本节内容共分3课时,今天我将就第1课时的余弦定理的证明与简单应用进行说课。下面我分别从教材分析。目标的确定。方法的选择和教学过程的设计这四个方面来阐述我对这节课的教学设想。

本节内容是江苏出版社出版的普通高中课程标准实验教科书《数学》必修五的第一章第2节,在此之前学生已经学习过了勾股定理。平面向量、正弦定理等相关知识,这为过渡到本节内容的学习起着铺垫作用。本节内容实质是学生已经学习的勾股定理的延伸和推广,它描述了三角形重要的边角关系,将三角形的“边”与“角”有机的联系起来,实现边角关系的互化,为解决斜三角形中的边角求解问题提供了一个重要的工具,同时也为在日后学习中判断三角形形状,证明三角形有关的等式与不等式提供了重要的依据。

在本节课中教学重点是余弦定理的内容和公式的掌握,余弦定理在三角形边角计算中的运用;教学难点是余弦定理的发现及证明;教学关键是余弦定理在三角形边角计算中的运用。

基于以上对教材的认识,根据数学课程标准的“学生是数学学习的主人,教师是数学学习的组织者。引导者与合作者”这一基本理念,考虑到学生已有的认知结构和心理特征,我认为本节课的教学目标有:

基于本节课是属于新授课中的数学命题教学,根据《学记》中启发诱导的思想和布鲁纳的发现学习理论,我将主要采用“启发式教学”和“探究性教学”的教学方法即从一个实际问题出发,发现无法使用刚学习的正弦定理解决,造成学生在认知上的冲突,产生疑惑,从而激发学生的探索新知的欲望,之后进一步启发诱导学生分析,综合,概括从而得出原理解决问题,最终形成概念,获得方法,培养能力。

在教学中利用计算机多媒体来辅助教学,充分发挥其快捷、生动、形象的特点。

为达到本节课的教学目标、突出重点、突破难点,在教材分析、确定教学目标和合理选择教法与学法的基础上,我把教学过程设计为以下四个阶段:创设情境、引入课题;探索研究、构建新知;例题讲解、巩固练习;课堂小结,布置作业。具体过程如下:

1、创设情境,引入课题。

利用多媒体引出如下问题:

a地和b地之间隔着一个水塘现选择一地点c,可以测得的大小及,求a、b两地之间的距离c。

【设计意图】由于学生刚学过正弦定理,一定会采用刚学的知识解题,但由于无法找到一组已知的边及其所对角,从而产生疑惑,激发学生探索欲望。

2、探索研究、构建新知。

(1)由于初中接触的是解直角三角形的问题,所以我将先带领学生从特殊情况为直角三角形()时考虑。此时使用勾股定理,得。

(3)考虑到我们所作的图为锐角三角形,讨论上述结论能否推广到在为钝角三角形()中。

通过解决问题可以得到在任意三角形中都有,之后让同学们类比出……这样我就完成了对余弦定理的引入,之后总结给出余弦定理的内容及公式表示。

在学生已学习了向量的基础上,考虑到新课改中要求使用新工具、新方法,我会引导同学类比向量法证明正弦定理的过程尝试使用向量的方法证明余弦定理、之后引导学生对余弦定理公式进行变形,用三边值来表示角的余弦值,给出余弦定理的第二种表示形式,这样就完成了新知的构建。

根据余弦定理的两种形式,我们可以利用余弦定理解决以下两类解斜三角形的问题:

(1)已知三边,求三个角;

(2)已知三角形两边及其夹角,求第三边和其他两个角。

3、例题讲解、巩固练习。

本阶段的教学主要是通过对例题和练习的思考交流、分析讲解以及反思小结,使学生初步掌握使用余弦定理解决问题的方法。其中例题先以学生自己思考解题为主,教师点评后再规范解题步骤及板书,课堂练习请同学们自主完成,并请同学上黑板板书,从而巩固余弦定理的运用。

例题讲解:

例1在中,

(1)已知,求;

(2)已知,求。

【设计意图】例题1分别是通过已知三角形两边及其夹角求第三边,已知三角形三边求其夹角,这样余弦定理的两个形式分别得到了运用,进而巩固了学生对余弦定理的运用。

例2对于例题1(2),求的大小。

【设计意图】已经求出了的度数,学生可能会有两种解法:运用正弦定理或运用余弦定理,比较正弦定理和余弦定理,发现使用余弦定理求解角的问题可以避免解的取舍问题。

例3使用余弦定理证明:在中,当为锐角时;当为钝角时,

【设计意图】例3通过对和的比较,体现了“余弦定理是勾股定理的'推广”这一思想,进一步加深了对余弦定理的认识和理解。

课堂练习:

练习1在中,

(1)已知,求;

(2)已知,求。

【设计意图】检验学生是否掌握余弦定理的两个形式,巩固学生对余弦定理的运用。

练习2若三条线段长分别为5,6,7,则用这三条线段()。

a、能组成直角三角形。

b、能组成锐角三角形。

c、能组成钝角三角形。

d、不能组成三角形。

【设计意图】与例题3相呼应。

练习3在中,已知,试求的大小。

【设计意图】要求灵活使用公式,对公式进行变形。

4、课堂小结,布置作业。

先请同学对本节课所学内容进行小结,教师再对以下三个方面进行总结:

(3)余弦定理的可以解决的两类解斜三角形的问题。

通过师生的共同小结,发挥学生的主体作用,有利于学生巩固所学知识,也能培养学生的归纳和概括能力。

布置作业。

必做题:习题1、2、1、2、3、5、6;

选做题:习题1、2、12、13。

【设计意图】。

作业分为必做题和选做题、针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高。

各位老师,以上所说只是我预设的一种方案,但课堂是千变万化的,会随着学生和教师的临时发挥而随机生成。预设效果如何,最终还有待于课堂教学实践的检验。

本说课一定存在诸多不足,恳请老师提出宝贵意见,谢谢。

余弦定理说课稿(实用15篇)篇八

各位老师大家好!

今天我说课的内容是余弦定理,本节内容共分3课时,今天我将就第1课时的余弦定理的证明与简单应用进行说课。下面我分别从教材分析。教学目标的确定。教学方法的选择和教学过程的设计这四个方面来阐述我对这节课的教学设想。

一、教材分析。

本节内容是江苏教育出版社出版的普通高中课程标准实验教科书《数学》必修五的第一章第2节,在此之前学生已经学习过了勾股定理。平面向量、正弦定理等相关知识,这为过渡到本节内容的学习起着铺垫作用。本节内容实质是学生已经学习的勾股定理的延伸和推广,它描述了三角形重要的边角关系,将三角形的“边”与“角”有机的联系起来,实现边角关系的互化,为解决斜三角形中的边角求解问题提供了一个重要的工具,同时也为在日后学习中判断三角形形状,证明三角形有关的等式与不等式提供了重要的依据。

在本节课中教学重点是余弦定理的内容和公式的掌握,余弦定理在三角形边角计算中的运用;教学难点是余弦定理的发现及证明;教学关键是余弦定理在三角形边角计算中的运用。

二、教学目标的确定。

基于以上对教材的认识,根据数学课程标准的“学生是数学学习的主人,教师是数学学习的组织者。引导者与合作者”这一基本理念,考虑到学生已有的认知结构和心理特征,我认为本节课的教学目标有:

三、教学方法的选择。

基于本节课是属于新授课中的数学命题教学,根据《学记》中启发诱导的思想和布鲁纳的发现学习理论,我将主要采用“启发式教学”和“探究性教学”的教学方法即从一个实际问题出发,发现无法使用刚学习的正弦定理解决,造成学生在认知上的冲突,产生疑惑,从而激发学生的探索新知的欲望,之后进一步启发诱导学生分析,综合,概括从而得出原理解决问题,最终形成概念,获得方法,培养能力。

在教学中利用计算机多媒体来辅助教学,充分发挥其快捷、生动、形象的特点。

四、教学过程的设计。

为达到本节课的教学目标、突出重点、突破难点,在教材分析、确定教学目标和合理选择教法与学法的基础上,我把教学过程设计为以下四个阶段:创设情境、引入课题;探索研究、构建新知;例题讲解、巩固练习;课堂小结,布置作业。具体过程如下:

1、创设情境,引入课题。

利用多媒体引出如下问题:

a地和b地之间隔着一个水塘现选择一地点c,可以测得的大小及,求a、b两地之间的距离c。

【设计意图】由于学生刚学过正弦定理,一定会采用刚学的知识解题,但由于无法找到一组已知的边及其所对角,从而产生疑惑,激发学生探索欲望。

2、探索研究、构建新知。

(1)由于初中接触的是解直角三角形的问题,所以我将先带领学生从特殊情况为直角三角形()时考虑。此时使用勾股定理,得。

(3)考虑到我们所作的图为锐角三角形,讨论上述结论能否推广到在为钝角三角形()中。

通过解决问题可以得到在任意三角形中都有,之后让同学们类比出……这样我就完成了对余弦定理的引入,之后总结给出余弦定理的内容及公式表示。

在学生已学习了向量的基础上,考虑到新课改中要求使用新工具、新方法,我会引导同学类比向量法证明正弦定理的过程尝试使用向量的方法证明余弦定理、之后引导学生对余弦定理公式进行变形,用三边值来表示角的余弦值,给出余弦定理的第二种表示形式,这样就完成了新知的构建。

根据余弦定理的两种形式,我们可以利用余弦定理解决以下两类解斜三角形的问题:

(1)已知三边,求三个角;

(2)已知三角形两边及其夹角,求第三边和其他两个角。

3、例题讲解、巩固练习。

本阶段的教学主要是通过对例题和练习的思考交流、分析讲解以及反思小结,使学生初步掌握使用余弦定理解决问题的方法。其中例题先以学生自己思考解题为主,教师点评后再规范解题步骤及板书,课堂练习请同学们自主完成,并请同学上黑板板书,从而巩固余弦定理的运用。

例题讲解:

例1在中,

(1)已知,求;

(2)已知,求。

【设计意图】例题1分别是通过已知三角形两边及其夹角求第三边,已知三角形三边求其夹角,这样余弦定理的两个形式分别得到了运用,进而巩固了学生对余弦定理的运用。

例2对于例题1(2),求的大小。

【设计意图】已经求出了的度数,学生可能会有两种解法:运用正弦定理或运用余弦定理,比较正弦定理和余弦定理,发现使用余弦定理求解角的问题可以避免解的取舍问题。

例3使用余弦定理证明:在中,当为锐角时;当为钝角时,

【设计意图】例3通过对和的比较,体现了“余弦定理是勾股定理的推广”这一思想,进一步加深了对余弦定理的认识和理解。

课堂练习:

练习1在中,

(1)已知,求;

(2)已知,求。

【设计意图】检验学生是否掌握余弦定理的两个形式,巩固学生对余弦定理的运用。

练习2若三条线段长分别为5,6,7,则用这三条线段()。

a、能组成直角三角形。

b、能组成锐角三角形。

c、能组成钝角三角形。

d、不能组成三角形。

【设计意图】与例题3相呼应。

练习3在中,已知,试求的大小。

【设计意图】要求灵活使用公式,对公式进行变形。

4、课堂小结,布置作业。

先请同学对本节课所学内容进行小结,教师再对以下三个方面进行总结:

(3)余弦定理的可以解决的两类解斜三角形的问题。

通过师生的共同小结,发挥学生的主体作用,有利于学生巩固所学知识,也能培养学生的归纳和概括能力。

布置作业。

必做题:习题1、2、1、2、3、5、6;

选做题:习题1、2、12、13。

【设计意图】。

作业分为必做题和选做题、针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高。

各位老师,以上所说只是我预设的一种方案,但课堂是千变万化的,会随着学生和教师的临时发挥而随机生成。预设效果如何,最终还有待于课堂教学实践的检验。

本说课一定存在诸多不足,恳请老师提出宝贵意见,谢谢。

文档为doc格式。

余弦定理说课稿(实用15篇)篇九

《余弦定理》是全日制中等国家规划教材(人教版)数学第一册中第六章平面向量第六部分。余弦定理是欧氏空间度量几何的最重要定理,是解斜三角形的重要定理,是整个测量学的基础。余弦定理是勾股定理的推广,可用解析法、向量法等方法证明。余弦定理主要能解决有关三角形的三类问题:

1)、已知两边及其夹角,求第三边和其他两个角。

2)、已知三边求三个内角;

3)、判断三角形的形状。以及相关的证明题。

本着数学与专业有机结合的指导思想,让数学服务于专业的需要。以及最大限度的提高学生的学习兴趣,在本节课,我不是将余弦定理简单呈现给学生,而是创造设情境,设计了与机械相关联并具有爱国主题的二个任务,通过任务驱动法教学,极大提高了学生的学习兴趣,激发学生探索新知识的强烈求知欲望,在完成数学教学任务的同时,强化了数学与专业的有机结合,培养了学生将数学知识运用于自身专业中的能力。同时通过任务驱动,培养了学生自主探究式学习的能力;提升解决实际实际问题的能力。因为所设计的两个任务具有爱国主义题材,学生在完成知识学习的同时,也极大的激发了爱国主义精神。

在确定教学方法前,首先要求教师吃透教材,选择恰当的教学方法和教学手段把知识传授给学生。本节课主要采用任务驱动法、引导发现法、观察法、归纳总结法、讲练结合法。并采用电教手段使用多媒体辅助教学。

1.任务驱动法。

教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,提高学生学习的兴趣,激发求知欲,启发学生对问题进行思考。在研究过程中,激发学生探索新知识的强烈欲望。提升解决实际总是的能力,并极大的激发了爱国主义精神。

2.引导发现法、观察法。

通过对勾股定理的观察和三角形直角的相关变形,学生从中受启发,发现余弦定理,并证明它。

3.归纳总结法。

学生通过前期的探索研究,自主归纳总结出余弦定理及其推论及判断三角形形状的相关规律。

4.讲练结合法。

讲授充分发挥教师主导作用,引导学生自主学习。练习让学生从多角度对所学定理进行认知,及时巩固所学的知识,锻炼了解决实际问题的能力,发挥出学生的主观能动性,成为学习的主体。

学生学法主要有观察、分析、发现、自主探究、小组协作等方法。经教师启发、诱导,学生通过观察与分析去发现并证明余弦定理,培养归纳与猜想、抽象与概括等逻辑思维能力,训练思维品质。

(一)知识目标。

2、使学生初步掌握应用余弦定理解斜三角形。

1

(二)能力目标。

1、培养学生在本专业范围内熟练运用余弦定理解决实际问题的能力。

2、通过启发、诱导学生发现和证明余弦定理的过程,培养学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。

3、通过对余弦定理的推导,培养学生的知识迁移能力和建模意识,及合作学习的意识。

(三)德育目标。

1、培养学生的爱国主义精神、及团结、协作精神。

2、通过三角函数、余弦定理、向量的数量积等知识的联系理解事物之间普遍联系与辩证统一。

教学重点是余弦定理及应用余弦定理解斜三角形;

教学中注重突出重点、突破难点,从五个层次进行教学。

创设情境、任务驱动;

引导探究、发现定理;

完成任务、应用迁移;

拓展升华、交流反思;

小结归纳、布置作业。

(一)、导入。

1、教师创设情境设置二个任务,做为贯穿本课的主线和数学与专业有机结合的钮带,通过完成这二个任务,达到掌握余弦定理并学会应用的目标。

2、通过与直角三角形勾股定理引出余弦定理(快乐起点)经教师启发、诱导,学生通过探索研究,合理猜想来发现余弦定理。

(二)、新课。

3.证明猜想,导出余弦定理及余弦定理的变形。

经过严密逻辑推理证明得出余弦定理,这一过程中,锻炼了学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。

4.解决二个任务。

5.操作演练,巩固提高。

6.小结:

通过学生口答方式小结,让学生强化记忆,分清重点,深化对余弦定理的理解。

7.作业:

板书是课堂教学重要部分,为再现知识体系,突出重点,将余弦定理知识体系展示在板书中,利于学生加深印象,理清思路。

在教学设计上,采用任务驱动,教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,即提高学生学习的兴趣,又激发求知欲;知识点学习则循序渐进,符合学生的认知特点。经教师启发、诱导,学生通过观察、分析、发现、自主探究、小组协作等方法在获取新知的同时,培养了归纳与猜想、抽象与概括等逻辑思维能力。

余弦定理说课稿(实用15篇)篇十

随着科学技术的发展,教育资源和教育需求也随之增长和变化。我校进行了初中数学分层教学课题研究,而分层次备课是搞好分层教学的关键,教师应在吃透教材、大纲的情况下,按照不同层次学生的实际情况,设计好分层次教学的全过程。本文将结合本人的教学经验,对分层教学教案设计进行初步探讨。

1教学目标的制定。

制定具体可行的教学目标,先要分清哪些属于共同目标,哪些属于层次目标。并在知识与技能、过程与方法、情感态度与价值观三个方面对不同层次的学生制定具体的要求。

2教法学法的制定。

制定教法学法应结合各层次学生的具体情况而定,如对a层学生少讲多练,注重培养其自学能力;对b层学生,则实行精讲精练,注重课本上的例题和习题的处理;对c层学生则要求要低,浅讲多练,弄懂基本概念,掌握必要的基础知识和基本技能。

3教学重难点的制定。

教学重难点的制定也应结合各层次学生的具体情况而定。

4教学过程的设计。

4.1情境导向,分层定标。教师以实例演示、设问等多种方法导入新课。要利用各种教学资料创设恰当的学习情境为各层学生呈现适合于本层学生水平学习的内容。

4.2分层练习,探讨生疑。学生对照各自的目标分层自学。教师要鼓励学生主动实践,自觉地去发现问题、探讨问题、解决问题。

4.3集体回授,异步释疑。“集体回授”主要是针对人数占优势的b层学生,为解决具有共性的问题而组织的一种集体教学活动。教师为那些来不及解决的、不具有共性的问题分先后在层内释疑即“异步释疑”。

5练习与作业的设计。

教师在设计练习或布置作业时要遵循“两部三层”的原则。“两部”是指练习或作业分为必做题和选做题两部分;“三层”是指教师在处理练习时要具有三个层次:第一层次为知识的直接运用和基础练习;第二、三两层次的题目为选做题,这样可使a层学生有练习的机会,b、c两层学生也有充分发展的余地。

分层教学下教师不能再“拿一个教案用到底”,而要精心地设计课堂教学活动,针对不同层次的学生选择恰当的方法和手段,了解学生的实际需求,关心他们的进步,改革课堂教学模式,充分调动学生的学习主动性,创造良好的课堂教学氛围,形成成功的激励机制,确保每一个学生都有所进步。

将本文的word文档下载到电脑,方便收藏和打印。

余弦定理说课稿(实用15篇)篇十一

人教版《普通高中课程标准实验教科书必修(五)》(第2版)第一章《解三角形》第一单元第二课《余弦定理》。通过利用向量的数量积方法推导余弦定理,正确理解其结构特征和表现形式,解决“边、角、边”和“边、边、边”问题,初步体会余弦定理解决“边、边、角”,体会方程思想,激发学生探究数学,应用数学的潜能。

本课之前,学生已经学习了三角函数、向量基本知识和正弦定理有关内容,对于三角形中的边角关系有了较进一步的认识。在此基础上利用向量方法探求余弦定理,学生已有一定的学习基础和学习兴趣。总体上学生应用数学知识的意识不强,创造力较弱,看待与分析问题不深入,知识的系统性不完善,使得学生在余弦定理推导方法的探求上有一定的难度,在发掘出余弦定理的结构特征、表现形式的数学美时,能够激发学生热爱数学的思想感情;从具体问题中抽象出数学的本质,应用方程的思想去审视,解决问题是学生学习的一大难点。

新课程的数学提倡学生动手实践,自主探索,合作交流,深刻地理解基本结论的本质,体验数学发现和创造的历程,力求对现实世界蕴涵的一些数学模式进行思考,作出判断;同时要求教师从知识的传授者向课堂的设计者、组织者、引导者、合作者转化,从课堂的执行者向实施者、探究开发者转化。本课尽力追求新课程要求,利用师生的互动合作,提高学生的数学思维能力,发展学生的数学应用意识和创新意识,深刻地体会数学思想方法及数学的应用,激发学生探究数学、应用数学知识的潜能。

继续探索三角形的边长与角度间的具体量化关系、掌握余弦定理的两种表现形式,体会向量方法推导余弦定理的思想;通过实践演算运用余弦定理解决“边、角、边”及“边、边、边”问题;深化与细化方程思想,理解余弦定理的本质。通过相关教学知识的联系性,理解事物间的普遍联系性。

教学重点是余弦定理的发现过程及定理的'应用;教学难点是用向量的数量积推导余弦定理的思路方法及余弦定理在应用求解三角形时的思路。

本课的教学应具有承上启下的目的。因此在教学设计时既要兼顾前后知识的联系,又要使学生明确本课学习的重点,将新旧知识逐渐地融为一体,构建比较完整的知识系统。所以在余弦定理的表现方式、结构特征上重加指导,只有当学生正确地理解了余弦定理的本质,才能更好地应用求解问题。本课教学设计力求在型(模型、类型),质(实质、本质),思(思维、思想方法)上达到教学效果。本课之前学生已学习过三角函数,平面几何,平面向量、解析几何、正弦定理等与本课紧密联系的内容,使本课有了较多的处理工具,也使余弦定理的探讨有了更加简洁的工具。因此在本课的教学设计中抓住前后知识的联系,重视数学思想的教学,加深对数学概念本质的理解,认识数学与实际的联系,学会应用数学知识和方法解决一些实际问题。学生应用数学的意识不强,创造力不足、看待问题不深入,很大原因在于学生的知识系统不够完善。因此本课运用联系的观点,从多角度看待问题,在提出问题、思考分析问题、解决问题等多方面对学生进行示范引导,将旧知识与新知识进行重组拟合及提高,帮助学生建立自己的良好知识结构。

余弦定理说课稿(实用15篇)篇十二

《余弦定理》选自人教a版高中数学必修五第一章第一节第一课时。本节课的主要教学内容是余弦定理的内容及证明,以及运用余弦定理解决“两边一夹角”“三边”的解三角形问题。

余弦定理的学习有充分的基础,初中的勾股定理、必修一中的向量知识、上一课时的正弦定理都是本节课内容学习的知识基础,同时又对本节课的学习提供了一定的方法指导。其次,余弦定理在高中解三角形问题中有着重要的地位,是解决各种解三角形问题的常用方法,余弦定理也经常运用于空间几何中,所以余弦定理是高中数学学习的一个十分重要的内容。

二、教学目标。

知识与技能:

1、理解并掌握余弦定理和余弦定理的推论。

3、能运用余弦定理及其推论解决“两边一夹角”“三边”问题。过程与方法:

1、通过从实际问题中抽象出数学问题,培养学生知识的迁移能力。

2、通过直角三角形到一般三角形的过渡,培养学生归纳总结能力。

3、通过余弦定理推导证明的过程,培养学生运用所学知识解决实际问题的能力。

情感态度与价值观:

1、在交流合作的过程中增强合作探究、团结协作精神,体验解决问题的成功喜悦。

2、感受数学一般规律的美感,培养数学学习的兴趣。

三、教学重难点。

重点:余弦定理及其推论和余弦定理的运用。

难点:余弦定理的发现和推导过程以及多解情况的判断。

四、教学用具。

普通教学工具、多媒体工具(以上均为命题教学的准备)。

余弦定理说课稿(实用15篇)篇十三

兹有________学校__________学院______专业_________同学于_________年___月____日至_____年______月日在实习。

该同学的实习职位是_____________。

该学生在实习期间工作认真,脚踏实地,虚心请教并且努力掌握工作技能,善于思考,能够举一反三。善解人意,积极配合领导及同事的工作,虚心听取他人意见。在时间紧迫的情况下,能够加时加班完成任务。能够将在学校所学的知识灵活应用到具体的工作中去,保质保量完成工作任务。同时,本公司将要求该学生严格遵守我公司的各项规章制度,实习时间,服从实习安排,完成实习任务,尊敬实习单位人员,并能与公司同事和睦相处。与其一同合作的员工都对该学生的表现予以肯定。

特此证明。

证明人:_________(实习单位盖章)。

_________年____月____日。

文档为doc格式。

余弦定理说课稿(实用15篇)篇十四

人教版《普通高中课程标准实验教科书·必修(五)》(第2版)第一章《解三角形》第一单元第二课《余弦定理》。通过利用向量的数量积方法推导余弦定理,正确理解其结构特征和表现形式,解决“边、角、边”和“边、边、边”问题,初步体会余弦定理解决“边、边、角”,体会方程思想,激发学生探究数学,应用数学的潜能。

本课之前,学生已经学习了三角函数、向量基本知识和正弦定理有关内容,对于三角形中的边角关系有了较进一步的认识。在此基础上利用向量方法探求余弦定理,学生已有一定的学习基础和学习兴趣。总体上学生应用数学知识的意识不强,创造力较弱,看待与分析问题不深入,知识的系统性不完善,使得学生在余弦定理推导方法的探求上有一定的难度,在发掘出余弦定理的结构特征、表现形式的数学美时,能够激发学生热爱数学的思想感情;从具体问题中抽象出数学的本质,应用方程的思想去审视,解决问题是学生学习的一大难点。

新课程的数学提倡学生动手实践,自主探索,合作交流,深刻地理解基本结论的本质,体验数学发现和创造的历程,力求对现实世界蕴涵的一些数学模式进行思考,作出判断;同时要求教师从知识的传授者向课堂的设计者、组织者、引导者、合作者转化,从课堂的执行者向实施者、探究开发者转化。本课尽力追求新课程要求,利用师生的互动合作,提高学生的数学思维能力,发展学生的数学应用意识和创新意识,深刻地体会数学思想方法及数学的应用,激发学生探究数学、应用数学知识的潜能。

继续探索三角形的边长与角度间的具体量化关系、掌握余弦定理的两种表现形式,体会向量方法推导余弦定理的思想;通过实践演算运用余弦定理解决“边、角、边”及“边、边、边”问题;深化与细化方程思想,理解余弦定理的本质。通过相关教学知识的联系性,理解事物间的普遍联系性。

教学重点是余弦定理的发现过程及定理的应用;教学难点是用向量的数量积推导余弦定理的思路方法及余弦定理在应用求解三角形时的思路。

本课的教学应具有承上启下的目的。因此在教学设计时既要兼顾前后知识的联系,又要使学生明确本课学习的重点,将新旧知识逐渐地融为一体,构建比较完整的知识系统。所以在余弦定理的表现方式、结构特征上重加指导,只有当学生正确地理解了余弦定理的本质,才能更好地应用求解问题。本课教学设计力求在型(模型、类型),质(实质、本质),思(思维、思想方法)上达到教学效果。本课之前学生已学习过三角函数,平面几何,平面向量、解析几何、正弦定理等与本课紧密联系的内容,使本课有了较多的处理工具,也使余弦定理的探讨有了更加简洁的工具。因此在本课的教学设计中抓住前后知识的联系,重视数学思想的教学,加深对数学概念本质的理解,认识数学与实际的联系,学会应用数学知识和方法解决一些实际问题。学生应用数学的意识不强,创造力不足、看待问题不深入,很大原因在于学生的知识系统不够完善。因此本课运用联系的观点,从多角度看待问题,在提出问题、思考分析问题、解决问题等多方面对学生进行示范引导,将旧知识与新知识进行重组拟合及提高,帮助学生建立自己的良好知识结构。

余弦定理说课稿(实用15篇)篇十五

本节内容是江苏教育出版社出版的普通高中课程标准实验教科书《数学》必修五的第一章第2节,在此之前学生已经学习过了勾股定理。平面向量、正弦定理等相关知识,这为过渡到本节内容的学习起着铺垫作用。本节内容实质是学生已经学习的勾股定理的延伸和推广,它描述了三角形重要的边角关系,将三角形的“边”与“角”有机的联系起来,实现边角关系的互化,为解决斜三角形中的边角求解问题提供了一个重要的工具,同时也为在日后学习中判断三角形形状,证明三角形有关的等式与不等式提供了重要的依据。

在本节课中教学重点是余弦定理的内容和公式的掌握,余弦定理在三角形边角计算中的运用;教学难点是余弦定理的发现及证明;教学关键是余弦定理在三角形边角计算中的运用。

基于以上对教材的认识,根据数学课程标准的“学生是数学学习的主人,教师是数学学习的组织者。引导者与合作者”这一基本理念,考虑到学生已有的认知结构和心理特征,我认为本节课的教学目标有:

基于本节课是属于新授课中的数学命题教学,根据《学记》中启发诱导的思想和布鲁纳的发现学习理论,我将主要采用“启发式教学”和“探究性教学”的教学方法即从一个实际问题出发,发现无法使用刚学习的正弦定理解决,造成学生在认知上的冲突,产生疑惑,从而激发学生的探索新知的欲望,之后进一步启发诱导学生分析,综合,概括从而得出原理解决问题,最终形成概念,获得方法,培养能力。

在教学中利用计算机多媒体来辅助教学,充分发挥其快捷、生动、形象的特点。

为达到本节课的教学目标、突出重点、突破难点,在教材分析、确定教学目标和合理选择教法与学法的基础上,我把教学过程设计为以下四个阶段:创设情境、引入课题;探索研究、构建新知;例题讲解、巩固练习;课堂小结,布置作业。具体过程如下:

1、创设情境,引入课题

利用多媒体引出如下问题:

a地和b地之间隔着一个水塘现选择一地点c,可以测得的大小及,求a、b两地之间的距离c。

【设计意图】由于学生刚学过正弦定理,一定会采用刚学的知识解题,但由于无法找到一组已知的边及其所对角,从而产生疑惑,激发学生探索欲望。

2、探索研究、构建新知

(1)由于初中接触的是解直角三角形的问题,所以我将先带领学生从特殊情况为直角三角形( )时考虑。此时使用勾股定理,得。

(3)考虑到我们所作的图为锐角三角形,讨论上述结论能否推广到在为钝角三角形( )中。

通过解决问题可以得到在任意三角形中都有,之后让同学们类比出……这样我就完成了对余弦定理的引入,之后总结给出余弦定理的内容及公式表示。

在学生已学习了向量的基础上,考虑到新课改中要求使用新工具、新方法,我会引导同学类比向量法证明正弦定理的过程尝试使用向量的方法证明余弦定理、之后引导学生对余弦定理公式进行变形,用三边值来表示角的余弦值,给出余弦定理的第二种表示形式,这样就完成了新知的构建。

根据余弦定理的两种形式,我们可以利用余弦定理解决以下两类解斜三角形的问题:

(1)已知三边,求三个角;

(2)已知三角形两边及其夹角,求第三边和其他两个角。

3、例题讲解、巩固练习

本阶段的教学主要是通过对例题和练习的思考交流、分析讲解以及反思小结,使学生初步掌握使用余弦定理解决问题的方法。其中例题先以学生自己思考解题为主,教师点评后再规范解题步骤及板书,课堂练习请同学们自主完成,并请同学上黑板板书,从而巩固余弦定理的运用。

例题讲解:

例1在中,

(1)已知,求;

(2)已知,求。

【设计意图】例题1分别是通过已知三角形两边及其夹角求第三边,已知三角形三边求其夹角,这样余弦定理的两个形式分别得到了运用,进而巩固了学生对余弦定理的运用。

例2对于例题1(2),求的大小。

【设计意图】已经求出了的度数,学生可能会有两种解法:运用正弦定理或运用余弦定理,比较正弦定理和余弦定理,发现使用余弦定理求解角的问题可以避免解的取舍问题。

例3使用余弦定理证明:在中,当为锐角时;当为钝角时,

【设计意图】例3通过对和的比较,体现了“余弦定理是勾股定理的推广”这一思想,进一步加深了对余弦定理的认识和理解。

课堂练习:

练习1在中,

(1)已知,求;

(2)已知,求。

【设计意图】检验学生是否掌握余弦定理的两个形式,巩固学生对余弦定理的运用。

练习2若三条线段长分别为5,6,7,则用这三条线段()。

a、能组成直角三角形

b、能组成锐角三角形

c、能组成钝角三角形

d、不能组成三角形

【设计意图】与例题3相呼应。

练习3在中,已知,试求的大小。

【设计意图】要求灵活使用公式,对公式进行变形。

4、课堂小结,布置作业

先请同学对本节课所学内容进行小结,教师再对以下三个方面进行总结:

(1)余弦定理的内容和公式;

(2)余弦定理实质上是勾股定理的推广;

(3)余弦定理的可以解决的两类解斜三角形的问题。

通过师生的共同小结,发挥学生的主体作用,有利于学生巩固所学知识,也能培养学生的归纳和概括能力。

布置作业

必做题:习题1、2、1、2、3、5、6;

选做题:习题1、2、12、13。

作业分为必做题和选做题、针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高。

各位老师,以上所说只是我预设的一种方案,但课堂是千变万化的,会随着学生和教师的临时发挥而随机生成。预设效果如何,最终还有待于课堂教学实践的检验。

本说课一定存在诸多不足,恳请老师提出宝贵意见,谢谢。

猜你喜欢 网友关注 本周热点 精品推荐
每个月的工作总结是我们评估自己工作表现的机会,也是规划未来工作方向的重要参考。以下是一些优秀的月工作总结范文,值得我们学习和借鉴其中的经验和做法。虽然高三大部门
优秀作文能够打动人心,引发读者共鸣,并通过文字传递出作者的见解和情感。以下是一些来自各个领域的优秀作文片段,希望能给大家带来一些思考。每个人都有自己的最爱,它陪
发言稿的语言应当贴近实际,能够引起听众的共鸣,同时也要避免一些过于专业化或难以理解的术语。通过阅读以下的发言稿范文,你可以了解到发言稿的各个部分是如何紧密联系在
教学工作计划是教师与学生、教师与学校之间的交流桥梁,可以促进教师和学生之间的合作互动。这些教学工作计划案例涵盖了不同学科和不同年级段的教学内容,可以供大家参考和
幼儿园小班是为了提供幼儿多样化学习体验和培养其探索精神而设立的。以下幼儿园小班总结范文的内容丰富多样,可以帮助你了解不同幼儿园的教育特色。活动目标:1、观察西瓜
作文是一种展示语言表达能力和思考能力的重要方式,写好一篇优秀的作文是每个学生的目标。以下是一些我认为非常出色的作文范文,它们的写作风格和观点都很独特,希望能给大
活动方案的制定应该考虑到活动的目的、目标、参与人员和时间等方面的因素。在下面,我们将为大家介绍一些成功的活动方案案例,希望能给大家带来启示。三八”国际劳动妇女
月工作总结是每个月结束时对所做的工作进行总结和回顾的一种重要方式,它可以帮助我们发现自己的优势和不足,为以后的工作提供有益的参考和改进方向。以下是小编为大家收集
培训心得体会的撰写过程能够促使我们对所学内容进行整理和概括。小编整理了一些培训心得体会,希望对大家在日后的学习和工作中有所帮助。我于8月1日参加了县教体局组织的
心得体会可以帮助我们更好地记录、回顾和分享自己的学习和成长经历,同时也是对他人的一种启示和帮助。如果你正在写心得体会,不妨看看下面这些范文,或许能够给你一些灵感
感恩是一种美德,让我们养成感恩的习惯,从而获得更多内心的满足。接下来是一些感恩的经典故事,让我们通过阅读感受生活中的感动和温情。尊敬的老师:大家好!先问大家一个
优秀作文不仅要有扎实的基础知识,还需要具备良好的写作技巧和表达能力。下面是一些经典的优秀作文摘录,希望对大家的写作有所帮助。在一个阳光明媚的日子里,爸爸驱车带着
通过写读后感,小学生可以表达自己对书籍内容的感受,增强情感体验和情绪表达能力。以下是一些小学生阅读后的感想和思考,希望能够给大家带来一些灵感。本书收录了叶圣陶爷
心得体会是我们学习和成长的里程碑,通过总结可以清晰地看到自己的成长轨迹。下面是一些来自不同领域的心得体会范文,希望可以给大家的写作带来一些灵感。同为学生,我自然
心得体会是一种反思和思考的过程,可以帮助我们更好地应对未来的挑战。在这里,我们为大家整理了一些关于心得体会的范文,希望能够给大家提供一些建议和指导。
优秀作文是在语文学习中展现出的写作能力的高峰之作,它能够彰显学生的思维深度和语言表达能力。通过阅读以下优秀作文范文,你可以了解到不同类型的作文写作技巧和特点。
读后感是对我们的智力和感性的一种培养,它可以提高我们的思考深度和批判性思维。这里收集了一些读者对于自传、传记等人物书籍的深入思考和感悟。读了《小木偶的故事》,我
月工作总结有助于加强团队合作和沟通,促进同事之间的交流和共同成长。这份月工作总结范文以目标达成和成果展示为主线,激发了读者的兴趣和注意力。转眼间,20xx年即将
非常感谢大家的光临,今天的活动将会是一次难忘的经历。这些范文是根据过去的经验和借鉴他人的成功经验而得出的。尊敬的各位亲朋好友:大家早上好!吉日良辰,古城天降吉祥
优秀作文是一篇字字珠玑、深入人心的佳作,它能够给读者带来启发和思考。对于写作优秀作文来说,阅读一些优秀的范文是非常有帮助的,下面是一些值得一读的例子。
军训心得记录了我们在军事训练过程中的成长和收获,也是对这段特殊经历的回忆和感悟。以下是小编为大家整理的一些军训心得,希望能够给大家带来一些灵感和思考。
中班教案是教师在教学过程中用来指导中班幼儿学习活动的教学设计。小编搜集了一些中班教案的实例,供大家参考和学习,希望能够对您的教学工作有所帮助。1、使幼儿在熟悉原
编写工作计划书时,我们应该确保目标明确、任务具体、时间合理。工作计划书是一份十分重要的文件,下面是一些精选的范文,供大家参考学习。保育员的`工作与幼儿息息相关,
作文是语文学习中重要的一环,对学生的写作能力有着很大的锻炼作用。现在,就请大家跟随小编一起来欣赏一些精彩非凡的优秀作文范文吧。令人留恋的假期生活飞也似的过去了,
幼儿园小班的教学内容涵盖认知、语言、社会、身体、艺术等多个领域。以下是幼儿园小班的教学工具和教育教学内容,供大家参考借鉴。1、通过看、摸、尝知道糖果的外形、味道
辞职报告需要经过反复修改和审查,确保内容准确、合理、得体。为了帮助大家更好地写辞职报告,下面是一些范文供大家参考。由于个人未来发展的原因,今天是我在qsmc工作
通过月工作总结,我们可以审视自己的工作方式、效率和质量,找出需要改进的地方。如果你还不知道如何写月工作总结,不妨参考以下范文以获取灵感和思路。从深圳回到襄樊工作
每当我陶醉在书的海洋中时,儿时爸爸妈妈教我读书的情景就会浮现在眼前。在我刚会说话并能明白一点道理的时候,爸爸妈妈就给我买来许多布满彩图和拼音的图书,还有画着各种
毕业典礼是一种庄重而隆重的仪式,标志着学生完成学业,迈向新的人生阶段。在下面,我们提供一些毕业典礼主题和庆祝活动的想法,供您参考和借鉴。尊敬的各位师长,亲爱的同
优秀作文运用多元化的写作技巧和手法,能够生动地展现一个主题的多个维度。现在,请大家跟随小编的脚步,一起来欣赏下面这些优秀作文的范例,相信它们能够给大家带来不少的
优秀作文应当拥有清晰的逻辑结构和条理性,使读者能够一目了然地理解作者的思路。接下来,小编为大家分享一些优秀作文范文,希望能够给大家写作提供一些新的思路和方法。
演讲稿是一个可以影响他人思想和行为的机会,可以通过演讲来改变人们的观点和态度。在学习这些演讲稿范文时,可以分析其中的演讲技巧和表达方式,以提升自己的写作水平。
优秀作文需要时间和精力的积累,不断的反思和改进才能达到更高的水平。以下是小编为大家整理的一些优秀作文范文,希望能够给大家一些启示和灵感。李四是一个猎人家的孩子,
笑是人们对生活苦难的一种积极应对方式,它能让我们更加坚强面对困难。小编特意为大家精选了几篇搞笑的范文,希望大家能够开怀大笑。家是爱的港湾,是每一个人必不可少的居
对于每一个人来说,年终总结是一次审视自己过去一年所取得成绩和反思不足的机会,从而为来年制定更好的计划和目标。以下是小编为大家整理的一些年终总结范文,仅供参考,希
销售合同的签订应遵循诚实信用、公平交易和合法合规的原则。借鉴一下以下的销售合同样本,可以让您更好地理解合同的结构和条款的设置。签约地:甲方:(以下简称甲方)。乙
通过写读后感,我们可以发现自己在阅读中的成长和变化,加深自我认识和理解。小编为大家整理了一些经典的读后感,希望能为大家写读后感提供一些灵感和参考。小说的主人公是
优秀学生具备批判性思维,能够对信息进行分析和评估,从中提取出有用的内容,形成自己的独立见解。成为一名优秀学生需要具备良好的自律能力和毅力。如何提高学习效率是成为
培训心得是对自己培训经历的一种回顾和总结,可以帮助我们提升自我认知和能力。接下来,我们一起来看看一些写得很不错的培训心得,希望能让大家在写作时有更多的参考。
青春是我们笑过、哭过、拼搏过的岁月,我们用激情和汗水追逐着自己的理想。以下是小编为大家整理的青春励志影视作品,欢迎大家一起欣赏和讨论。尊敬的老师,亲爱的同学们:
通过撰写自查报告,我们可以及时发现和解决工作中的问题,提高工作效率,提升个人能力。自查报告是对自己在特定时间段内的学习、工作、生活等方面进行全面总结和评估的一种
撰写一篇演讲稿需要我们对主题进行深入研究,以确保内容的准确和完整性。希望这些演讲稿范文能够对您的演讲稿写作提供有益的帮助和启示。小朋友们:早上好,今天老师跟小朋
通过写读后感,我们可以更深入地理解书中的主题和作者的意图。以下是一些读者们分享的读后感佳作,它们从不同的角度看待作品,形成了多样性的观点和见解。引导语:也许每个
在不同的时代和地域,服装的风格和款式都有着显著的差异,反映了当时的社会和审美观念。在时尚圈里,有一些经典的服装搭配原则,下面是一些成功的案例供大家参考。
活动方案是关于某项活动的详细计划和安排,它包括活动目标、内容、时间、地点等方面的内容。活动方案范文中还提供了活动执行的详细流程和注意事项,帮助您更好地组织和管理
读后感是对作品中的某些细节、描写和主题进行解读和分析的一种方式。小编为大家整理了一些经典的读后感范文,希望能给大家提供一些参考和借鉴。··我今天读了海底两万里,
工作计划书可以为我们的工作提供一个清晰的路线图,引领我们不断前进和进步。如果你正准备编写一份工作计划书,那么以下的范文将为你提供一些有益的思路和方法。
单位是组织与管理一个团队或机构的基本单位,它起着协调和监督的作用。下面是小编精心挑选的一些单位总结,希望能够对大家的写作有所帮助。自2012年通过某某市事业单位
梦想是人生的航标,它指引我们追求更好的自己和更美好的未来。以下是一些梦想实现的实用建议,相信会对你的梦想之旅有所助益。我们每个人都是蝴蝶,外面的世界是我们的梦想
参加军训是一次难得的机会,通过军训可以增强体质,培养纪律意识和团队合作精神。踏上军训的征程,我体验到了许多意想不到的事情。军训不仅是一次艰苦的锻炼,更是一次全面
培训心得体会的撰写可以对培训方案和教学内容进行评估和改进。接下来将为大家展示一些精彩的培训心得范文,希望能给大家提供一些借鉴。幼儿教师是一个神圣的职业,担负着为
每个月的工作总结都是对自己工作状态的一次盘点,也是对未来工作的规划和指导。写月工作总结时,可以多向前辈和同事请教,获取更多的意见和建议。怎样保持微笑,怎样问候客
少先队工作计划的执行需要注重监督和评估,及时发现问题和不足,及时调整计划,确保少先队工作的有效开展。参考这些范文,我们可以更好地掌握少先队工作计划的结构和要求,
通过写作,我们可以更好地表达自己的思想和情感,展示自己的才华和创造力。小编为大家整理了一些优秀作文的经典案例,希望能够给大家一些写作的灵感和思路。快乐,是拥有;
通过写读后感,我们可以对自己阅读的书籍进行评价和推荐,也可以为其他读者提供借鉴和参考。阅读别人的读后感可以帮助我们更好地了解作品,下面是一些读后感范文,供大家参
通过对范文范本的学习和模仿,我们可以丰富自己的词汇蓄积和表达技巧。请大家注意,这些范文仅供参考,写作时要根据自己的实际情况进行调整和改进。1.确立学生的主体地位
在现代社会中,调查报告在各个领域都扮演着重要的角色,为决策者提供科学依据和参考。在下面的范文中,你可以了解到如何准确收集和分析数据,以及如何结合实际情况提出可行
优秀作文需要有恰当的论证和充分的事例支持,使文章更有说服力。以下是一些经典的优秀作文范文,希望通过这些作品的欣赏和分析,可以帮助大家提高写作水平。重阳节到了,班
演讲稿可以通过举例、引用名言等方式提升说服力和可信度。以下的演讲范文都是经过精选和优化的,希望能给大家带来一些帮助和灵感。尊敬的各位领导,老师:您们好!今天,幸
质量月还是一个宣传企业品牌形象和提升顾客满意度的重要机会。以下是一些成功企业举办质量月活动的范例,供大家参考和借鉴。企业法人是食品安全的第一责任人,必须做到:(
检讨书是一种自我约束和自我管理的手段,可以帮助我们改正不良习惯。以下是小编为大家准备的一些检讨书写作指南,希望可以帮助到大家。尊敬的老师:您好!我错了,我不应该
在实习结束之际,写下一篇实习心得能够帮助我们更好地反思与总结这段实习经历。下面是一些成功的实习心得范文,希望对大家写作时有所帮助。社会经济的发展,让财务管理成为
在写检讨书之前,我们需要对自己的行为和做事方式进行深入的思考。我们提供了一些经典的检讨书模板,希望能帮助大家更好地完善自己的反思。尊敬的校领导、老师:。您好!首
开学典礼是激励学生在新学期中树立目标、保持动力、不断进步的重要动力源泉。以下是一些成功学校开学典礼总结的案例,希望能给大家带来一些启示和借鉴。新的学期开始了,小
优秀作文是对语言运用和思维逻辑的高度挑战,我们要不断提高自己的写作水平,追求作文的卓越。这些优秀作文范文展示了作者独特的观点和深入的思考,值得我们学习和借鉴。
运动会是学校生活中的一大亮点,使同学们能够放松身心,展现自己的才华。下面是小编整理的一些经典运动会总结,欢迎大家阅读并分享自己的感悟。飞机般的落地,一串连接
它是一种重要的记录工作经历、面对的挑战和取得的成就的方式。以下是小编为大家收集的一些优秀的述职报告范文,供大家参考借鉴。同事们:。大家好!回顾过去一年的工作,有
述职报告的撰写应与工作要求相结合,注重实际效果和应用价值。在这里,大家可以浏览一些经过精心编辑的述职报告范文,来提升自己的写作水平和表达能力。各位领导你们好:我
幼儿园中班的学习环境会创造出积极乐观的氛围,激发孩子们的学习兴趣和动力。以下是幼儿园中班的教学资料和教学设计,供大家参考使用。1、了解故事传说情节,理解故事传说
尊敬的各位来宾,大家上午好!我是今天的主持人,感谢大家的到来。下面是小编为大家整理的一些主持词范文,希望能为大家提供一些参考和借鉴。合:大家上午好!a:在这春夏
范本的收集和整理需要耗费大量的时间和精力,但是却可以带来巨大的收益。以下是一些经典的范文范本,希望能够对大家的写作提供一些思路和指导。到了医院,很多的事是要自己
总结心得体会可以帮助我们发现隐藏在学习和工作中的问题和挑战。以下是一些心理学家的心得体会,他们对于人类行为和心理状态的思考和观察可能会给我们启示。随着现代化社会
只有每个人都意识到环保的重要性并采取实际行动,我们才能共同建设一个美丽的地球家园。以下是一些环保范文,供大家参考,了解环保的重要性和实践方法。我们全人类有一个共
总结范文可以提高我们的表达能力和写作水平,增强沟通能力。以下是一些精心挑选的总结范文,希望对大家的写作能起到启发作用。在学习教育阶段,学校组织全体教职工认真学习
一个月的工作总结可以让我们反思过去的工作过程,改进工作方法,提高工作质量。以下是小编为大家整理的一些月工作总结范文,希望能为大家的总结写作提供一些参考和借鉴。
国旗下讲话稿应该尊重听众的思想和感受,注重表达方式和措辞的协调。以下是小编为大家收集的国旗下讲话稿范文,供大家参考和借鉴。高考梦,是人生梦的起点,没有经历过高考
通过撰写社会实践报告,我们可以向他人分享自己的实践经验,为他人提供有益的参考和借鉴。以下是一些社会实践报告案例,希望能给大家提供写作指导和灵感。20xx年3月x
自我介绍可以展示我们的个性特点,让别人对我们有更深入的了解。为了帮助大家写一篇完美的自我介绍,下面是一些范文供大家参考。一个好的自我介绍是面试成功的关键,怎么
通过分析范文范本,我们可以学习到一些写作的技巧和方法,提高自己的表达能力。以下是小编为大家搜集整理的优秀范文范本,希望对大家的学习和写作有所帮助。亲爱的少先队员
大家好,感谢各位莅临本次重要活动,我将全力以赴为大家呈现精彩的节目。接下来是小编为大家搜集的一些经典主持词范文,希望能给大家带来一些灵感和思考。尊敬的各位领导,
在这个重要的场合上,我非常荣幸能够担任今天的主持人。以下是一些专家对于解决类似问题的建议和经验分享,希望对大家有所启发。从x发言中我们即看到了创业的艰辛和不易,
活动方案的成功与否取决于我们的策划和执行,我们应该注重团队合作和协同工作。希望以上活动方案范文对您有所帮助,祝您制定出成功的活动方案!“6.5”世界环境日中国主
自查报告需要借助客观的数据和事实,对自己的工作或学习成果进行分析和总结。以下是一些经典的自查报告范文,希望可以对大家的写作起到一定的借鉴作用。根据武大保字《关于
无论是毕业生还是有经验的职场人士,编写一份令人印象深刻的个人简历都是至关重要的。接下来是一些经过精心筛选和整理的个人简历样本,供大家参考和借鉴。目前所在:天河区
写心得体会的过程不仅让我们回顾已经走过的路程,还可以让我们更加清晰地认识到自己的强项和改进的方向。这是一篇精彩的心得体会,作者通过真实的经历和深入的思考,给我们
演讲稿范文可以提前规划演讲的内容结构,确保演讲逻辑清晰、有条不紊。在这里,小编为大家准备了一些脍炙人口的演讲稿范文,敬请欣赏。各位老师,同学们:大家早上好!今天
广播稿的撰写需要注意音质,语速和语调,以保证广播效果最佳。接下来,我为大家推荐一些广播稿的实例,希望能够帮助大家写出更具有吸引力和感染力的稿件。老师们,同学们:
计划书是一个全面规划和组织的工具,可以帮助我们更好地实现目标。最后,希望这些计划书范文能够帮助你更好地编写自己的计划书,实现自己的目标和梦想。健身俱乐部的预销售
优秀作文是对语言运用和思维逻辑的高度挑战,我们要不断提高自己的写作水平,追求作文的卓越。通过学习优秀作文,我们能够发现和提高自己的不足之处,使自己的作文更上一层
优秀作文不仅仅是文字的堆砌,更是作者内心思想和感情的真实表达。希望大家能够喜欢这些优秀作文范文,从中汲取写作的灵感和经验。窗外的世界很精彩,请打开窗户吧。——题
一份好的计划书能够帮助我们理清思路,明确目标,优化资源配置,提高工作效率。下面是一些优秀的计划书范文,涵盖了不同领域的项目和活动,供大家参考学习。班会方法:通过
劳动合同是劳动者与用人单位签订的,规定工作内容和待遇的约定。接下来,我们将为您提供一些劳动合同的具体例子,供您参考和借鉴。根据《中华人民共和国劳动法》、《中华人
作为一名马上面临毕业的大学生,我真的希望自身的一生能过的精彩,因此就应该做好自身的职业生涯规划,而做职业生涯规划的意义在于寻求适合自身发展的需要,从而实现个人的
优秀作文可以帮助我们更好地理解和掌握作者的观点和思想。下面是一些优秀作文的赏析,希望能够为大家提供一些写作的参考和指导。“常回家看看,回家看看……”这段旋律相信
运动会的举办能够引发学生们的积极竞争意识,激发他们对体育运动的热爱。以下是小编为大家整理的运动会总结范文,希望能够给大家提供一些参考和启示,帮助大家更好地撰写自
优秀作文不仅仅是语言组织的技巧,更是作者对世界的独特理解和感悟的展现。以下是小编为大家准备的一些优秀作文范文,希望大家能够有所收获。冬的枯色,已经在树冠上完露出
个人简历应该能够准确地展示你的相关工作经验和所具备的技能,以增加你在竞争中的优势。接下来是一些值得借鉴的个人简历示例,希望能为你在求职过程中起到一些启发作用。
月工作总结不仅是对自己的一种回顾和总结,也是对领导和同事的一种汇报和交流。下面是一些来自不同行业和岗位的月工作总结示范,相信对大家都会有所启发。时间不知不觉,我
年度总结不仅可以记录下自己的成就,还能够发现自己的不足之处,为来年的发展制定更好的计划。下面是一些经过精心挑选的年度总结范文,它们涉及不同的行业和领域,希望能给
写一份详细的月工作总结,可以帮助我们把握工作中的亮点和问题,进一步提升个人的专业能力和创新思维。以下是小编为大家收集的月工作总结范文,希望对大家的写作有所启发和