教案模板是教师为了更好地组织和展开教学活动而设计的一种工具,它可以帮助教师系统地规划和安排教学内容。小编为大家收集了一些名师的教案模板,希望能够给大家提供一些启示和借鉴。
完全平方公式说课稿(优质17篇)篇一
探索单项式除以单项式法则(出示投影1)计算下列各题,并说说你的理由1.xyx,(8mn)(2mn),(abc)(3ab).师生共同分析:此题是做除法运算,可以从两方面思考:根据除法是乘法的逆运算,将除法问题转化为乘法问题去解决,即()x=xy,由单项式乘以单项式法则可得(xy)x=xy,因此,xyx=xy.另外,根据同底数幂的除法法则,由约分也可得=xy.学生动笔:写出(2)(3)题的结果.教师板书:xyx=xy,(8mn)(2mn)=4n,(abc)(3ab)=abc师:以上运算是单项式除以单项式的运算,你能说说如何进行单项式除以单项式的运算?学生活动:小组讨论,教师引导学生从系数、同底数幂、只在被除式含有的字母三方面思考,讨论充分后,由一名同学叙述,其余同学补充纠正.出示单项式除法法则(投影显示)单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.
二、做一做。
三、随堂练习。
p401学生活动:让四名同学到黑板板演,其余同学在练习本上计算,同伴可交流,互相订正.教师巡回检查,对存在问题及时更正.待四名板演同学完成后,师生共同订正.
四、小结。
本节课主要学习了单项式除以单项式的运算.在运用法则计算时应注意以下几点:。
1.系数相除与同底数幂相除的区别;。
2.符号问题;。
完全平方公式说课稿(优质17篇)篇二
重点、难点根据公式的特征及问题的特征选择适当的公式计算.
教学过程。
一、议一议。
1.边长为(a+b)的正方形面积是多少?
2.边长分别为a、b拍的两个正方形面积和是多少?
3.你能比较(1)(2)的结果吗?说明你的理由.师生共同讨论:学生回答(1)(a+b)(2)a+b(3)因为(a+b)=a+2ab+b,所以(a+b)-(a+b)=a+2ab+b-a-b=2ab,即(1)中的正方形面积比(2)中的正方形面积大.
二、做一做。
例1.利用完全平方式计算1.102。
三、试一试。
计算:。
1.(a+b+c)。
2.(a+b)师生共同分析:对于1要把多项式完全平方转化为二项式的完全平方,要使用加法结合律,为使用完全平方公式创造条件.如(a+b+c)=[a+(b+c)]对于(2)可化为(a+b)=(a+b)(a+b).学生动笔:在练习本上解答,并与同伴交流你的做法.学生叙述。
四、随堂练习。
p381。
五、小结。
本节课进一步学习了完全平方公式,在应用此公式运算时注意以下几点.1.使用完全平方公式首先要熟记公式和公式的'特征,不能出现(ab)=ab的错误,或(ab)=aab+b(漏掉2倍)等错误.2.要能根据公式的特征及题目的特征灵活选择适当的公式计算.3.用加法结合律,可为使用公式创造了条件.利用了这种方法,可以把多项式的完全平方转化为二项式的完全平方.
六、作业。
课本习题1.14p381、2、3.
七、教后反思。
1.9整式的除法第一课时单项式除以单项式教学目标1.经历探索单项式除法的法则过程,了解单项式除法的意义.
2.理解单项式除法法则,会进行单项式除以单项式运算.重点、难点重点:单项式除以单项式的运算.难点:单项式除以单项式法则的理解.
完全平方公式说课稿(优质17篇)篇三
前不久听了我校朱昌荣老师的一节数学课,这节课是朱老师安排的一节乘法公式——平方差公式的新授课,这节课给我留下了深刻的影响。
教师讲课语言清晰,有较强的表达和应变能力,课堂教学基本功好。
乘法公式的引入,使学生既复习了多项式的乘法运算,又形象直观地理解了乘法公式的内在实质。课堂教学中充分体现了以点拨为主的教学。对于公式的性能严格要求学生理解,课堂内的练习量、内容及安排上恰当好处,有基本运用公式,有变式运用公式,也有适当的加深应用,满足了不同层次的学生的学习。
一点建议:
1、引入时,还可以安排得生动一点,可以先设疑,提出问题,让学生探讨,猜想,归纳,以激发学生更高的学习兴趣,或采用多题的多项式乘法运算,当学生感到有些“烦“时,让学生猜想这类运算能否运用简单的结论来得出,从而使学生感到今天要学的内容的重要性,这样学生的学习将更主动。
2、刚才说过语言清晰,但不够精炼,尤其在总结公式特征时,未能用简练的语言描述出特征,以致学生在完成例题和练习题的过程中,对在运用公式之前需要变型的题型,出错率较高。其实平方差公式的特征就是有两项相同,而另两项恰恰是互为相反数或项。相同项在前,相反项在后,结果才能用相同项的平方减去相反项的平方。
3、对于平方差公式的几何意义,敢于让学生大胆上黑板演示是好的,但过程繁琐,缺乏精炼,直观,不能让大部分学生弄懂。这时我们老师应该给出恰当准确的解释。
以上是我的浅显认识,不妥之处,还望朱老师海涵,大家批评。
谢谢。
完全平方公式说课稿(优质17篇)篇四
一、学习目标:
2.会推导平方差公式,并能运用公式进行简单的运算.
二、重点难点。
难点:理解平方差公式的结构特征,灵活应用平方差公式.
三、合作学习。
你能用简便方法计算下列各题吗?
12001×19992998×1002。
导入新课:计算下列多项式的积.
1x+1x-12m+2m-2。
32x+12x-14x+5yx-5y。
结论:两个数的和与这两个数的差的积,等于这两个数的平方差.
即:a+ba-b=a2-b2。
四、精讲精练。
文档为doc格式。
完全平方公式说课稿(优质17篇)篇五
一、教学内容:
本节内容是人教版教材八年级上册,第十四章第2节乘法公式的第二课时——完全平方公式。
二、教材分析:
完全平方公式是乘法公式的重要组成部分,也是乘法运算知识的升华,它是在学生学习整式乘法后,对多项式乘法中出现的一种特殊的算式的总结,体现了从一般到特殊的思想方法。完全平方公式是学生后续学好因式分解、分式运算的必备知识,它还是配方法的基本模式,为以后学习一元二次方程、函数等知识奠定了基础,所以说完全平方公式属于代数学的基础地位。
本节课内容是在学生掌握了平方差公式的基础上,研究完全平方公式的推导和应用,公式的发现与验证为学生体验规律探索提供了一种较好的模式,培养学生逐步形成严密的逻辑推理能力。完全平方公式的学习对简化某些代数式的运算,培养学生的求简意识很有帮助。使学生了解到完全平方公式是有力的数学工具。
重点:掌握完全平方公式,会运用公式进行简单的计算。
难点:理解公式中的字母含义,即对公式中字母a、b的理解与正确应用。
三、教学目标。
(1)经历探索完全平方公式的推导过程,掌握完全平方公式,并能正确运用公式进行简单计算。
(2)进一步发展学生的符号感和推理能力,了解公式的几何背景,感受数与形之间的联系,学会独立思考。
(3)通过推导完全平方公式及分析结构特征,培养学生观察、分析、归纳的能力,学会与他人合作交流,体验解决问题的多样性。
(4)体验完全平方公式可以简化运算从而激发学生的学习兴趣;在自主探究、合作交流的学习过程中获得体验成功的喜悦,增强学习数学的自信心。
四、学情分析与教法学法。
学情分析:课程标准提出数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,本节课就是在前面的学习中,学生已经掌握了整式的乘法运算及平方差公式的基础上开展的,具备了初步的总结归纳能力。另外,14岁的中学生充满了好奇心,有较强的求知欲、创造欲、表现欲,所以只有能调动学生的学习热情,本节内容才较易掌握。但八年级学生的探究能力有差异,逻辑推理能力也有待于提高,而且易粗心马虎,这都是本节课要注意的问题。
学法:以自主探究为主要学习方式,使学生在独立思考、归纳总结、合作交流。
总结反思中获得数学知识与技能。
教法:以启发引导式为主要教学方式,在引导探究、归纳总结、典例精析、合作交流的教学过程中,教师做好组织者和引导者,让学生在老师的指导下处于主动探究的学习状态。
五、教学过程(略)。
六、教学评价。
在教学中,教师在精心设置教学环节中,做到以学生为主体,做好组织者和引导者,全面评价学生在知识技能、数学思考、问题解决和情感态度等方面的表现。教师通过情境引入、提供问题引导学生从已有的知识为出发点,自主探究,发现问题,深入思考。学生解决问题要以独立思考为主,当遇到困难时学会求助交流,教师也要给学生思考交流的时间,让学生经历得出结论的过程,培养发现问题解决问题的能力。
在整个学习过程中,通过对学生参与自主探究的程度、合作交流的意识以及独立思考的习惯,发现问题的能力进行评价,并对学生的想法或结论给予鼓励评价。
完全平方公式说课稿(优质17篇)篇六
本节课属于人教版八年级数学上册第十五章《整式乘除与因式分解》第二节中的内容,前一节已学习习近平方差公式,这一课主要研究完全平方公式的特征及应用。教学关键是引导学生正确理解完全平方公式的推导过程,几何背景,并能准确应用完全平方公式解决相关问题。教学后我进行反思如下:本课的知识要点是经历探索完全平方公式的过程,了解公式的几何背景,会应公式进行简单的计算,教学已基本达到了预期目标,能突出重点,兼顾难点。本节课上学生体会了数形结合及转化的数学思想,并知道猜想的结论必须要加以验证;授课思维流畅,知识发生发展过渡自然,学生容易得到一些结论但在老师的.引导下又使问题的探讨得以不断深入,学生思考积极、气氛活跃,教学效果较好。采用以小组自主探究的学习方式,同时各小组展开激烈的比赛。整节课都在紧张而愉快的气氛中进行。学生非常活跃。人人都能积极参与。先从代数式的几何意义出发,激发学生的图形观,利用拼图的方法,使学生在动手的过程中发现规律,并通过小组合作,探究归纳公式,然后强调数值的计算,使学生掌握公式的计算技巧。从而突出以学生为主体的探索性学习原则。让学生自编符合完全平方公式和平方差公式结构的计算题,从而有效地将两类公式区分开,深刻认识公式的结构特征,并大大激发了学生的学习积极性。
同时课后感觉应该引导学生用文字概括公式的内容,从而培养学生抽象的数学思维能力和语言表达能力。对需要帮助的学生进行针对性的个别指导较少。对于学生计算中存在的问题应让学生自己纠错,教师不应全权代劳。如利用两数和的公式计算(a+b)2环节,两位学生分别讲述自己的想法之后,教师应该让全体学生根据其方法进行计算,自主验证,即使有些学生写不出来,也会因为经过思考而印象深刻,如果为了节省时间教师自己代劳,那样就不能够充分体现学生的主体作用,而且效果也较前者差些。
在今后的教学中应注意从以下几个方面改进:1、在教学中要讲法则、公式的应用,也要讲公式的推导,使学生在理解公式,法则道理的基础上进行记忆,比如:我们要借助面积图形对完全平方公式做直观说明。
完全平方公式说课稿(优质17篇)篇七
学习目标:
1、能说出有序数对的定义。
2、能用有序数对表示实际生活中物体的位置。
学习重点:用有序数对表示位置。
学习难点:用有序数对表示位置。
学习过程:
自学过程:(一)、自学知识清单。
1、教材64页,在图7.1—1中找出参加数学问题讨论的同学。
小组内交流一下,看一看你们找的'位置相同吗?
思考:(2,4)和(4,2)在同一位置吗?为什么?
2、请回答教材65页:思考题。
3、我们把这种有顺序的______个数a与b组成的_______叫做_______,记作(,)。
(二)、自学反馈。
练习1、利用________________,可以准确地表示出一个位置,
如电影院的座号,“3排2号”、表示为(3,2),则“2排3号”可以表示为。
练习2、如图(1)所示,一方队正沿箭头所指的方向前进,a的位置为三列四行,表示为a(3,4),则b,c,d表示为b(,),c(,)。
d(,)。
练习3、完成课本第65页的练习。
练习4、用有序数对表示物体位置时,(3,2)与(2,3)表示的位置相同吗?请结合下面图形加以说明.
练习5、如图所示,a的位置为(2,6),小明从a出发,经。
完全平方公式说课稿(优质17篇)篇八
1、了解完全平方公式的特征,会用完全平方公式进行因式分解.
2、通过整式乘法逆向得出因式分解方法的过程,发展学生逆向思维能力和推理能力.
3、通过猜想、观察、讨论、归纳等活动,培养学生观察能力,实践能力和创新能力.
学习建议教学重点:
完全平方公式说课稿(优质17篇)篇九
公式法进行因式分解,除了逆用平方差公式之外,还有两个相对来说较难的公式逆用即完全平方和(或差)公式:(a+b)2=a2+2ab+b2。
逆用完全平方公式进行因式分解关键同样是搞清完全平方公式的结构特点:等号左边是一个二项式的.平方,等号右边是一个二次三项式,其中有两项是公式左边二项式中每一项的平方,另一项是左边二项式中那两项乘积的2倍。或等号右边记作:首平方,尾平方,2倍之积中间放。
有了前边学习完全平方公式为基础,逆用完全平方公式进行因式分解只需要“颠倒使用”即可:等号右边作为“条件”,左边作为“结果”,但对学生来说,还是相当困难的。
1、写成“首平方,尾平方,2倍之积中间放”的形式。
2、按公式写出“两项和的平方”的形式,即因式分解。
3、两项和中能合并同类项的合并。
例题及练习的呈现次序尽量本着先易后难、先单一后综合的螺旋上升原则。
1、a、b代表单独单项式,如:(1)m2-6m+9(2)4a2-4ab+b2。
2、a、b代表多项式,如:(1)(a+2b)2-8a(a+2b)+16a2。
在此要有“整体思想”的意识,注意:相同部分作为一个整体然后再套用公式。
(1)ay2-2a2y+a3。
(2)16xy2-9x2y-y2。
(1)-m2+2mn-n2(2)3a2+6a+27。
尽管课前进行了充分的准备工作,但是学生作业中仍暴露出许多问题,如部分学生直接感到无从下手。
完全平方公式说课稿(优质17篇)篇十
学习了乘法公式中的完全平方,一个是两数和的平方,另一个是两数差的平方,两者仅一个“符号”不同。相乘的结果是两数的平方和,加上(或减去)两数的积的2倍,两者也仅差一个“符号”不同,运用完全平方公式计算时,要注意:
(1)切勿把此公式与平方差公式混淆,而随意写。
(2)切勿把“乘积项”2ab中的2丢掉。
(3)计算时,要先观察题目是否符合公式的条件。若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算;若不能变为符合条件的形式,则应运用乘法法则进行计算。
今后在教学中,要注意以下几点:
1、让学生自编几道符合平方差公式结构的计算题,目的是辨认题目的结构特征。
完全平方公式说课稿(优质17篇)篇十一
本节课属于人教版八年级数学上册第十五章《整式乘除与因式分解》第二节中的内容,前一节已学习平方差公式,这一课主要研究完全平方公式的特征及应用。教学关键是引导学生正确理解完全平方公式的推导过程,几何背景,并能准确应用完全平方公式解决相关问题。教学后我进行反思如下:本课的知识要点是经历探索完全平方公式的过程,了解公式的几何背景,会应公式进行简单的计算,教学已基本达到了预期目标,能突出重点,兼顾难点。本节课上学生体会了数形结合及转化的数学思想,并知道猜想的结论必须要加以验证;授课思维流畅,知识发生发展过渡自然,学生容易得到一些结论但在老师的引导下又使问题的探讨得以不断深入,学生思考积极、气氛活跃,教学效果较好。采用以小组自主探究的学习方式,同时各小组展开激烈的比赛。整节课都在紧张而愉快的气氛中进行。学生非常活跃。人人都能积极参与。先从代数式的几何意义出发,激发学生的图形观,利用拼图的方法,使学生在动手的过程中发现规律,并通过小组合作,探究归纳公式,然后强调数值的计算,使学生掌握公式的计算技巧。从而突出以学生为主体的探索性学习原则。让学生自编符合完全平方公式和平方差公式结构的计算题,从而有效地将两类公式区分开,深刻认识公式的结构特征,并大大激发了学生的.学习积极性。
同时课后感觉应该引导学生用文字概括公式的内容,从而培养学生抽象的数学思维能力和语言表达能力。对需要帮助的学生进行针对性的个别指导较少。对于学生计算中存在的问题应让学生自己纠错,教师不应全权代劳。如利用两数和的公式计算(a+b)2环节,两位学生分别讲述自己的想法之后,教师应该让全体学生根据其方法进行计算,自主验证,即使有些学生写不出来,也会因为经过思考而印象深刻,如果为了节省时间教师自己代劳,那样就不能够充分体现学生的主体作用,而且效果也较前者差些。
在今后的教学中应注意从以下几个方面改进:1、在教学中要讲法则、公式的应用,也要讲公式的推导,使学生在理解公式,法则道理的基础上进行记忆,比如:我们要借助面积图形对完全平方公式做直观说明。2.必须强调学生时刻把握公式的特征及用途。3.讲联系、讲对比、讲特征,要善于排除新旧知识间互相干扰的作用,规范板书。每节课的板书尽量坚持做到三保留:重要知识点保留,典型例题保留,学生易错点保留。
完全平方公式说课稿(优质17篇)篇十二
本节课属于八年级数学上册《整式乘除与因式分解》第二节中的内容,前一节已学习了平方差公式,这一课主要研究完全平方公式的特征及应用。教学关键是引导学生正确理解完全平方公式的推导过程,几何背景,并能准确应用完全平方公式解决相关问题。教学后我进行反思如下:本课的知识要点是经历探索完全平方公式的过程,了解公式的几何背景,会应公式进行简单的计算,教学已基本达到了预期目标,能突出重点,兼顾难点。本节课上学生体会了数形结合及转化的数学思想,并知道猜想的结论必须要加以验证;授课思维流畅,知识发生发展过渡自然,学生容易得到一些结论但在老师的引导下又使问题的探讨得以不断深入,学生思考积极、气氛活跃,教学效果较好。采用以小组自主探究的学习方式,同时各小组展开激烈的比赛。整节课都在紧张而愉快的气氛中进行。学生非常活跃。人人都能积极参与。先从代数式的几何意义出发,激发学生的图形观,利用拼图的方法,使学生在动手的过程中发现规律,并通过小组合作,探究归纳公式,然后强调数值的计算,使学生掌握公式的计算技巧。从而突出以学生为主体的探索性学习原则。让学生自编符合完全平方公式和平方差公式结构的计算题,从而有效地将两类公式区分开,深刻认识公式的结构特征,并大大激发了学生的学习积极性。
同时课后感觉应该引导学生用文字概括公式的内容,从而培养学生抽象的数学思维能力和语言表达能力。对需要帮助的学生进行针对性的个别指导较少。对于学生计算中存在的问题应让学生自己纠错,教师不应全权代劳。如利用两数和的公式计算环节,两位学生分别讲述自己的想法之后,教师应该让全体学生根据其方法进行计算,自主验证,即使有些学生写不出来,也会因为经过思考而印象深刻,如果为了节省时间教师自己代劳,那样就不能够充分体现学生的主体作用,而且效果也较前者差些。
在今后的教学中应注意从以下几个方面改进:
1、在教学中要讲法则、公式的应用,也要讲公式的推导,使学生在理解公式,法则道理的基础上进行记忆,比如:我们要借助面积图形对完全平方公式做直观说明。
2、必须强调学生时刻把握公式的特征及用途:
特征:左边是两个相同的二项式相乘,右边是一个三项式,其中两项是二项式中每一项的平方和,另一项是二项式中项的乘积的2倍或其相反式。
3、讲联系、讲对比、讲特征、学生在运用公式时出现的错误,其原因是把完全平方公式和旧知识及分配律弄混淆,要善于排除新旧知识间互相干扰的作用、规范板书。每节课的板书尽量坚持做到三保留:重要知识点保留,典型例题保留,学生易错点保留。
完全平方公式说课稿(优质17篇)篇十三
1、本课的知识要点是经历探索完全平方公式的过程,了解公式的几何背景,会应公式进行简单的计算,教学已基本达到了预期目标,能突出重点,兼顾难点。
2、本节课上学生体会了数形结合及转化的数学思想,并知道猜想的结论必须要加以验证;授课思维流畅,知识发生发展过渡自然,学生容易得到一些结论但在老师的引导下又使问题的探讨得以不断深入,学生思考积极、气氛活跃,教学效果较好。
1、应该引导学生用文字概括公式的内容,从而培养学生抽象的数学思维能力和语言表达能力。
2、对需要帮助的学生进行针对性的个别指导较少。
3、对于学生计算中存在的问题应让学生自己纠错,教师不应全权代劳。如利用两数和的公式计算(a+b)2环节,两位学生分别讲述自己的想法之后,教师应该让全体学生根据其方法进行计算,自主验证,即使有些学生写不出来,也会因为经过思考而印象深刻,如果为了节省时间教师自己代劳,那样就不能够充分体现学生的主体作用,而且效果也较前者差些。
完全平方公式说课稿(优质17篇)篇十四
这课主要研究完全平方公式的特征及应用。教学关键是引导学生正确理解完全平方公式的推导过程,几何背景,并能准确应用完全平方公式解决相关问题。
这节课我做得较好的方面:。
1、本课的知识要点是经历探索完全平方公式的过程,了解公式的几何背景,会应公式进行简单的计算,教学已基本达到了预期目标,能突出重点,兼顾难点。
2、本节课上学生体会了数形结合及转化的数学思想,并知道猜想的结论必须要加以验证;授课思维流畅,知识发生发展过渡自然,学生容易得到一些结论但在老师的引导下又使问题的探讨得以不断深入,学生思考积极、气氛活跃,教学效果较好。
3、整节课都在紧张而愉快的气氛中进行。学生非常活跃。人人都能积极参与。教学中,我比较关注学生的情感态度,对那些积极动脑,热情参与的同学,都给予了鼓励和表扬。促使学生的情感和兴趣始终保持最佳状态,进而提高课堂教学的有效性。
4、先从代数式的几何意义出发,激发学生的图形观,利用拼图的方法,使学生在动手的过程中发现规律,并通过小组合作,探究归纳公式,然后强调数值的计算,使学生掌握公式的计算技巧。从而突出以学生为主体的探索性学习原则。
本节课有待完善的地方:
1、对需要帮助的学生进行针对性的个别指导较少。
2、对于学生计算中存在的问题应让学生自己纠错,教师不应全权代劳。如利用两数和的公式计算环节,两位学生分别讲述自己的想法之后,教师应该让全体学生根据其方法进行计算,自主验证,即使有些学生写不出来,也会因为经过思考而印象深刻,如果为了节省时间教师自已代劳,那样就不能够充分体现学生的主体作用,而且效果也较前者差些。
再教设计:。
1、在教学中要讲法则、公式的应用,也要讲公式的推导,使学生在理解公式,法则道理的基础上进行记忆,要借助面积图形对完全平方公式做直观说明。
2、讲联系、讲对比、讲特征。学生在运用公式时出现的(a+b)2=a2+b2的错误,其原因是把完全平方公式和旧知识积的乘方弄混淆,要善于排除新旧知识间互相干扰的作用。
3、规范板书。每节课的板书尽量坚持做到三保留:重要知识点保留,典型例题保留,学生易错点保留。
完全平方公式说课稿(优质17篇)篇十五
这一节课主要研究完全平方公式的证明方法,关键是引导学生正确理解完全平方公式的推导过程,以及这两个公式的几何背景。
这节课我做的比较好的方面:
经历探索完全平方公式的过程,通过拼图游戏,从形到数又从数到形,让学生了解公式的几何背景,学生体会了数形结合的数学思想,并知道猜想的结论必须加以验证,本节授课思维流畅,知识发生发展过程过渡自然,学生容易得到一些结论但在老师的引导下又使问题的探讨得以不断深入,学生思考积极,气氛活跃,教学效果较好。
这节课采用小组自主探究,小组合作的学习方式,紧张而愉快,学生及相互交流的同时又相互合作,极大的调动了学生学习的热情同时我也比较关注那些积极动脑,热情参与的同学,及时的给予表扬和鼓励,进而促进课堂教学的有效性。
从几何意义出发,激发学生的图形观,利用拼图游戏,使学生在动手的过程中发现结论,并通过小组合作,探究归纳公式,从而突出以学生为主体的的探究性学习原则。
这节课做的不足的方面有对学生个别指导较少,应到各小组当中去积极参与学生的活动;学生拼图时间略微有些偏长,对后面的教学稍有影响,显的前松后紧。
完全平方公式说课稿(优质17篇)篇十六
1、使学生理解完全平方公式的意义,弄清完全平方公式的形式和特点;使学生知道把完全平方公式反过来就可以得到相应的因式分解。
2、掌握运用完全平方公式分解因式的`方法,能正确运用完全平方公式把多项式分解因式(直接用公式不超过两次)。
教学方法:对比发现法课型新授课教具投影仪。
教师活动:学生活动。
新课讲解:
(投影)我们把形如a2+2ab+b2与a2-2ab+b2叫做完全平方式,和平方差公式一样,我们也可以利用它把一些多项式因式分解。例如:
a2+8a+16=a2+2×4a+42=(a+4)2。
a2-8a+16=a2-2×4a+42=(a-4)2。
(要强调注意符号)。
首先我们来试一试:(投影:牛刀小试)。
1.把下列各式分解因式:
(1)x2+8x+16;;(2)25a4+10a2+1。
(3)(m+n)2-4(m+n)+4。
(教师强调步骤的重要性,注意发现学生易错点,及时纠正)。
2.把81x4-72x2y2+16y4分解因式。
(本题用了两次乘法公式,难度稍大,教师要鼓励学生大胆尝试,敢于创新)。
将乘法公式反过来就得到多项式因式分解的公式。运用这些公式把一个多项式分解因式的方法叫做运用公式法。
练习:第88页练一练第1、2题。
完全平方公式说课稿(优质17篇)篇十七
1、本节课学生的探究活动比较多,教师既要全局把握,又要顺其自然,千万不可拔苗助长,为了后面多做几道练习而人为的主观裁断时间安排,其实公式的探究活动本身既是对学生能力的培养,又是对公式的识记过程,而且还可以提高他们的应用公式的本领。因此,不但不可以省,而且还要充分挖掘,以使不同程度的学生都有事情做且乐此不疲,更加充分的参与其中。对于这一点,教师一定要转变观念。
2、在完全平方公式的探求过程中,学生表现出观察角度的差异:有些学生只是侧重观察某个单独的式子,把它孤立地看,而不知道将几个式子联系地看;有些学生则既观察入微,又统揽全局,表现出了较强的观察力。教师要善于抓住这个契机,适当对学生进行学法指导,培养他们“既见树木,又见森林”的优良观察品质。
3、对于公式使用的条件既要把握好“度”,又要把握好“方向”。对于公式中的字母取值范围,不必过分强调(实际上,这个范围限定的太小了);而对于公式的特点,则应当左右兼顾,特别是公式的左边,它是正确应用公式的前提,却往往不被重视,结果造成几个类似公式的混淆,给正确解题设置了障碍。
4、教无定法,教师应根据本班的实际情况灵活安排教学步骤,切实把关注学生的发展放在首位来考虑,并依此制定合理而科学的教学计划。如,对于较好的班级,则可以优先发展,采取居高临下的教学思路,先整体把握再对比击破,或是将其纳入整体结构系统,采取类比的学习方式;而对于基础较薄弱的班级,则应以提高学习兴趣、教会学习、培养成功体验为主,千万不可拔苗助长,以防物极必反。
文档为doc格式。