教学工作计划的编写需要教师对教材内容和教学方法有全面的了解和把握。希望这些教学工作计划范文能够给大家带来启发和帮助,使我们在教学工作中更加出色和有成效。
人教版七年级数学教案设计(实用18篇)篇一
教学重难点分析:
1、学情分析:从知识基础看,学生在小学已学习了求正方形的面积及正方体的体积,具备求一个正数的平方和立方的知识水平,且刚学完有理数的乘法,能帮助学生很好的理解乘方的定义及表示,实现知识的正迁移。但学生对于有理数乘方的符号法则的掌握上会有难度,对于这类计算容易混淆,是本节课的难点。
2、教学重、难点。
教学重点:理解乘方定义,会进行有理数的乘方运算;。
教学难点:有理数乘方运算的符号法则的形成与运用。
教法学法分析:
教法:启发式教学,多媒体辅助教学;。
学法:观察、比较、归纳,合作探究。
教学过程设计:
1、创设情境提出问题。
(1)、边长为3的正方形的面积是___3×3可以记作___,读作_________.
(2)、棱长为3的正方体的体积是___3×3×3可以记作___,读作_________.
通过创设问题情境,唤起旧知,为学习新知做好铺垫。
2、自主探索形成新知。
观察下列各式有何特征?
(1)2×2×2×2=。
(2)(-3)×(-3)×(-3)=。
引导学生通过类比、探究、归纳乘方定义及表示,实现知识的迁移,培养学生归纳、概括的能力。明确乘方是乘法的特殊形式,体现化归的数学思想。
3、应用新知巩固概念。
4、探索研究发现规律。
通过题组训练,探索规律,合作交流,获得乘方运算的符号法则,充分发挥学生的学习主体作用,体现分类的数学思想。
5、应用新知巩固训练。
进一步巩固学生对符号法则的运用及利用乘方的知识解决问题的能力。
6、拓展思维知识延伸。
利用故事提高学生学习数学兴趣,培养学生应用数学解决解决问题能力,激发学生的探索的热情。
7、课堂小结归纳反思。
锻炼学生及时总结的良好习惯和归纳能力。
教学评价分析:
对学生探究过程的参与及与同学合作交流进行评价,以增强学生学习主动性;。
(1)关注学生的智力参与度。
(2)学生的课堂参与度。
2、对不同层次的学生采取分层练习的评价方式,以满足不同层次的学生知识技能的发展。
人教版七年级数学教案设计(实用18篇)篇二
上个星期考了第五章的检测题,总体做的不是太好,没有高分。这段时间上课感觉还可以,可考出的成绩不理想。每个小组我给算出来了平均分,各个小组之间的差距也很大,有的小组平均分在六十分以上,有的才四十多分。这段时间各个小组的表现也基本和这次成绩差不多,上课表现比较积极都参入进来的小组平均分就会高,如果小组中有两三个不积极去用心学的这个组的平均成绩就不高。
可能当时学这一章的时候有点快,有一些知识已经遗忘了。本章的检测题难度不大,可容易出错的地方比较多。特别是选择题学生普遍做的很差,像找对顶角对数的、相等角的对数,这样的题目对学生来说总是数不准。可能也是因为在上课时这方面训练的不够,以后要多注意这些题目。再一方面是学生的做题步骤还书写不规范。他们总是想着只写出答案,中间的过程不知道怎么去写,这个还要进一步的加强。
有一些题目也是老师反复强调的题目,上课时看他们的反应也是都会了的,可一到考试了不知怎么就不会做了。是不是还是训练的太少了,还要进一步加强他们的记忆力。
将本文的word文档下载到电脑,方便收藏和打印。
人教版七年级数学教案设计(实用18篇)篇三
一、指导思想:
人教版七年级数学上册教学计划,本班学生刚刚完成小学六年的学习,升入初一,也就是我们现在所说的七年级。通过调阅小六毕业会考成绩册和试卷,发现本班学生的数学成绩不甚理想。从学生作答来看,基础知识不扎实,计算能力较差,思路不灵活,缺乏创新思维能力,尤其是解难题的能力低下。总体上来看,低分很多,两极分化较为严重。
二、情况分析:
学生情况分析:
全面贯彻党的十七大教育方针,以七年能数学教学大纲为标准,坚决完成《初中数学新课程标准》提出的各项基本教学目标。制定人教版七年级数学上册教学计划,根据学生的实际情况,从生活入手,结合教材内容,精心设计教学方案。通过本学期数学课堂教学,夯实学生的基础,提高学生的基本技能,培养学生学习数学知识和运用数学知识的能力,帮助学生初步建立数学思维模式。最终圆满完成七年级上册数学教学任务。
三、教学目标。
人教版七年级数学上册教学计划知识与技能目标:认识有理数和代数式,掌握有理数的各种性质和运算法则,初步学会使用代数式探究数量之间的关系。认识基本几何图形,掌握基本基本作图能力和的技巧。过程与方法目标:学会抽取实际问题中的数学信息,发展几何思维模式。培养学生的观察和思维能力,尤其是自主探索的能力。情感与态度目标:培养学生学习数学的兴趣,认识数学源自生活实践,最终回归生活。班级教学目标:优秀率:15%,合格率80%。
四、教材分析。
第一章、有理数:本章主要学习有理数的基本性质及运算。本章重点内容是有理数的概念,性质和运算。本章的难点在于理解有理数的基本性质、运算法则,并将它们应用到解决实际问题和计算中。
第二章、整式的加减:本章主要是学习单项式和多项式的加减运算。本章重点内容是单项式、多项式、同类项的概念;合并同类项及去括号的法则及整式的加减运算。本章难点在于理解合并同类项和去括号的法则。
第三章、一元一次方程:本章主要学习一元一次方程的概念、等式的基本性质、一元一次方程的解法及应用。本章重点内容是理解等式的基本性质;掌握解一元一次方程的一般步骤;列方程解决实际问题的基本思路。本章难点在于解一元一次方程,并利用一元一次方程解决简单的实际问题。
第四章、图形认识初步:本章主要学习线段和角有关的性质。本章的重点是区别直线、射线、线段,角的有关性质和计算;理解互为余角、互为补角的性质及应用。本章的难点在于线段和角的有关计算。
五、教学措施。
1、人教版七年级数学上册教学计划,认真研读新课程标准,潜心钻研教材,根据新课程标准,结合学生实际情况,进行针对性的备课,精心设置课堂教学内容和模式。上好每一堂课,阅好每一份试卷,搞好每一节辅导,组织好每一次测验。
2、开展丰富多彩的课外活动,课外调查,向学生介绍数学家、数学史、数学趣题,喻教于乐,激发学生的学习兴趣,挖掘学生的潜能,培养数学特长生。
3、开展分层教学实验,使不同的学生学到不同的知识,使人人能学到有用的知识,使不同的人得到不同的发展,获得成功感,使优生更优,差生逐渐赶上。
人教版七年级数学教案设计(实用18篇)篇四
3,体验数形结合的思想。
教学难点归纳相反数在数轴上表示的点的特征。
知识重点相反数的概念。
教学过程(师生活动)设计理念。
设置情境。
引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类。
4,-2,-5,+2。
允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。
(引导学生观察与原点的距离)。
思考结论:教科书第13页的思考。
再换2个类似的数试一试。
培养学生的观察与归纳能力,渗透数形思想。
深化主题提炼定义给出相反数的定义。
学生思考讨论交流,教师归纳总结。
规律:一般地,数a的相反数可以表示为-a。
思考:数轴上表示相反数的两个点和原点有什么关系?
练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特征做准备。
深化相反数的概念;“零的相反数是零”是相反数定义的一部分。
强化互为相反数的数在数轴上表示的点的几何意义。
给出规律。
解决问题问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?
学生交流。
分别表示+5和-5的相反数是-5和+5。
练一练:教科书第14页第二个练习利用相反数的概念得出求一个数的相反数的方法。
小结与作业。
课堂小结1,相反数的定义。
2,互为相反数的数在数轴上表示的点的特征。
3,怎样求一个数的相反数?怎样表示一个数的相反数?
本课作业1,必做题教科书第18页习题1.2第3题。
2,选做题教师自行安排。
本课教育评注(课堂设计理念,实际教学效果及改进设想)。
1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想.
2,教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法.
3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地.
课题:1.2.4绝对值。
教学目标1,掌握绝对值的概念,有理数大小比较法则.
2,学会绝对值的计算,会比较两个或多个有理数的大小.
3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.
教学难点两个负数大小的比较。
知识重点绝对值的概念。
教学过程(师生活动)设计理念。
设置情境。
学生思考后,教师作如下说明:
实际生活中有些问题只关注量的具体值,而与相反。
观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离.
学生回答后,教师说明如下:
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。
验数学知识与生活实际的联系.
将本文的word文档下载到电脑,方便收藏和打印。
人教版七年级数学教案设计(实用18篇)篇五
1、单项式。
对数字和若干个字母施行有限次乘法运算,所得的代数式叫做单项式.单独一个数或一个字母也是单项式.
2、系数。
单项式中的数字因数叫做这个单项式的系数.
3、单项式的次数。
一个单项式中,所有字母的指数的和叫做这个单项式的次数.
4、多项式。
几个单项式的和叫做多项式.
5、多项式的项。
在多项式中,每个单项式叫做多项式的项.
-6是常数项.
6、常数项。
多项式中,不含字母的项叫做常数项.
7、多项式的次数。
多项式里,次数最高的项的次数,就是这个多项式的次数.
8、降幂排列。
把一个多项式,按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列.
9、升幂排列。
把一个多项式,按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列.
10、整式。
单项式和多项式统称整式。
11、同类项。
所含字母相同,并且相同字母的次数也相同的项,叫做同类项.常数项都是同类项.
12、合并同类项。
把多项式中的同类项合并成一项,叫做合并同类项.
合并同类项的法则是:
同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.
13、去括号法则。
括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;。
括号前是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号.
例:a+(b-2c)-(e-2d)=a+b-2c-e+2d。
14、添括号法则。
添括号后,括号前面是“+”号,括到括号里的各项都不变符号;。
添括号后,括号前面是“-”号,括到括号里的各项都改变符号.
例:m+2x-y+z-5=m+(2x-y)-(-z+5)。
15、整式的加减。
整式加减的一般步骤:
1.如果遇到括号,按去括号法则先去括号;。
2.合并同类项.
16、代数式的恒等变形一个代数式用另一个与它恒等的表达式去代换,叫做恒等变形.
人教版七年级数学教案设计(实用18篇)篇六
1.有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)其中a表示横轴,b表示纵轴。
2.平面直角坐标系:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与垂直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或横轴,竖直的数轴叫做y轴或纵轴,x轴或y轴统称为坐标轴,它们的公共原点o称为直角坐标系的原点。
3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
4.坐标:对于平面内任一点p,过p分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点p的横坐标和纵坐标。
5.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。
6.特殊位置的点的坐标的特点。
(1)x轴上的点的纵坐标为零;y轴上的点的横坐标为零。
(2)第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。
(3)在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。
(4)点到轴及原点的距离。
7.在平面直角坐标系中对称点的特点。
(1)关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。(横同纵反)。
(2)关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。(横反纵同)。
(3)关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。(横纵皆反)。
数学q是什么意思。
q是有理数集,但q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。
学数学的方法有哪些。
抓好预习环节预习。
这是上课前做好接受新知识的准备过程。有些学生由于没有预习习惯,对老师一堂课要讲的内容一无所知,坐等教师讲课,显得呆板被动。有些学生虽能预习,但看起书来却似走马观花,,这种预习一点也达不到效果。
认真做题。
课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆。
及时纠错。
课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。
总结那些相似的数学题目。
当我们养成了总结归纳的习惯,那么的学生就会知道自己在解决数学题目的时候哪些是自己比较擅长的,哪些是自己还不足的。
同时善于总结也会明白自己掌握哪些数学的解题方法,只有这样你才能够真正掌握了数学的解题技巧。其实,做到总结和归纳是学会数学的关键,如果学生不会做到这一点那么久而久之,不会的数学题目还是不会。
人教版七年级数学教案设计(实用18篇)篇七
1,掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;。
2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义;。
3,体验分类是数学上的常用处理问题的方法。
教学难点正确理解分类的标准和按照一定的标准进行分类。
知识重点正确理解有理数的概念。
教学过程(师生活动)设计理念。
探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).
问题1:观察黑板上的9个数,并给它们进行分类.
学生思考讨论和交流分类的情况.
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.
例如,
对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数,,.••…(由于小数可化为分数,以后把小数和分数都称为分数)。
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.
按照书本的说法,得出“整数”“分数”和“有理数”的概念.
看书了解有理数名称的由来.
“统称”是指“合起来总的名称”的意思.
学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会。
练一练1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.
2,教科书第10页练习.
此练习中出现了集合的概念,可向学生作如下的说明.
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.
思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
也可以教师说出一些数,让学生进行判断。
集合的概念不必深入展开。
创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。
有理数这个分类可视学生的程度确定是否有必要教学。
小结与作业。
课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
本课作业1,必做题:教科书第18页习题1.2第1题。
2,教师自行准备。
本课教育评注(课堂设计理念,实际教学效果及改进设想)。
1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概。
念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进。
行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分。
类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。
2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。
3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。
人教版七年级数学教案设计(实用18篇)篇八
1、让学生生自主探索小数的加、减法的计算方法,理解计算的算理并能正确地进行加、减法。
2、使学生体会小数加减运算在生活、学习中的广泛应用,体会数学的工具性作用。
3、激发学生学习小数加减法的兴趣,涌动长大后也要为国争光的豪情,提高学习的主动性和自觉性。
教学重难点。
教学重点:用竖式计算小数加减法。
教学难点:理解小数点对齐的算理。
教学工具。
多媒体课件。
教学过程。
(一)情景引入。
师:同学们,你们还记得吗?整数的加减法是怎样计算的?让我们用一道习题回顾一下。
(呈现多媒体,学生自主完成习题并总结计算算理)。
师:同学们你们可真棒,那么今天我们学习小数的加减法(引出课题并板书)。
(二)例题讲解。
(1)小丽买了下面两本书,一共花了多少钱?
(2)《数学家的故事》比《童话选》贵多少钱?
生:好的。
(展示小丽遇到的问题(1),并让学生列出算式)。
师:根据咱们总结的整数加减法的算理,想一想这个式子怎么计算呢?
(让学生大胆的去尝试,小组讨论,并列出竖式)。
师:你们发现小数加减法计算时需要注意什么?
生1:注意数位对齐。
生2:注意小数点要对齐。
生3:……。
老师小结:小数点要对齐,得数的小数点也要对齐。
师:小丽啊还有一个问题让我们看一看(展示问题(2))。
(让学生自主解决,并再回忆需要注意什么?)。
完成后学生给予总结,完成小数加减法的时候需要注意什么?
(三)习题巩固。
课本72页做一做。
课后小结。
学生谈一谈本节课你学到了什么?
给出总结:计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),再按照整数加、减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点。
课后习题。
一、计算。
1.5-0.5=1-0.9=2.3+0.6=0.9+0.8=。
1.9-0.8=3.5-2.4=0.36+0.65=0.96-0.32=。
二、竖式计算。
20.87-3.65=3.25+1.73=。
18.77+3.14=23.5-2.8=。
三、解决问题。
1、小红买文具,买钢笔用去6.7元,买文具盒用去9.8元,一共用去多少钱?
板书。
计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),再按照整数加、减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点。
人教版七年级数学教案设计(实用18篇)篇九
1、这堂课从简单问题入手,由浅至深,比较符合初一学生的认知性,学生了解了概念后马上让他们开启自己的智慧大门,并让学生自己找到符合概念的条件,加深印象。穿插式的练习,让学生能够趁热打铁,更加熟练的掌握和理解一元一次方程的一些概念。在上课的过程中更重视的是学生的探索学习,以及数学“建模”能力的培养。为后面学习打下基础。
3、在课堂的第二个环节中,通过实际问题的'引入,让学生动起脑来,阶梯型问题的设置使得一些后进生也投入到课堂中来,体现了差异性的教学。在学生慢慢列出方程的同时其实也培养了他们的逻辑思维能力,也体会到了列方程它与算式相比较之下的优点,合作式的学生活动增进了学生的合作交流能力,我并通过一些激励性的话语激发学生参与数学的兴趣,在列完方程的最后让学生归纳出列方程解应用题的基本步骤。使学生加深对知识的掌握也培养了他们的语言组织能力以及学会标准的数学用语。
二、从教学方法反思。
本节课本着“尊重差异”为基础,先“引导发现”,后“讲评点拨”,所以再讲解前面概念的时候,我稍稍放慢速度让后进生听的明白,因为方程是解应用题的基础,抓住基础知识再去发展他们的逻辑思维能力对后进生是十分重要的。
三、从学生反馈反思。
这堂课学生能积极思考,认真学习,课后作业都能及时完成。作业质量较好,但是对于稍难点的实际问题得列式还是有一些问题。在应用题的列式方面是所有学生学习的一个难点,这是我后面课堂要注意的地方:如何去教会学生找到数量关系去列方程。
人教版七年级数学教案设计(实用18篇)篇十
1知识与技能:
使学生理解和掌握整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。
2过程与方法:
通过观察、操作、讨论的活动,使学生经历探究口算方法的全过程。
3情感态度与价值观:
让学生感受数学与生活的联系,培养学生用数学知识解决简单实际问题的能力。
教学重难点。
1教学重点:
掌握用整十数除的口算方法。
2教学难点:
理解用整十数除的口算算理。
教学工具。
多媒体设备。
教学过程。
1复习引入。
口算。
20×3=7×50=6×3=。
20×5=4×9=8×60=。
24÷6=8÷2=12÷3=。
42÷6=90÷3=3000÷5=。
2新知探究。
1.教学例1。
有80面彩旗,每班分20面,可以分给几个班?
(1)提出问题,寻找解决问题的方法。
师:从中你能获取什么数学信息?
师:怎样解决这个问题?
(2)列式80÷20。
(3)学生独立探索口算的方法。
师:怎样算80÷20呢,请同学们先自己想一想、算一算,再说给同桌听一听。
学生汇报:
预设学生可能会有以下两种口算方法:
a.因为20×4=80,所以80÷20=4这是想乘算除。
b.因为8÷2=4,所以80÷20=4这是根据计数单位的组成。
为什么可以不看这个“0”?(80÷20可以想“8个十里面有几个二十?”)。
这样我们就把除数是整十数的转化为我们已经学过的表内除法。
(4)师小结:
同学们有的用乘法算除法的,也有用表内除法来想的,都很好,那么你喜欢哪种方法呢?
把你喜欢的方法说给同桌听。
(5)检查正误。
师:我们分的结果对不对?请同学们看屏幕(课件演示分的结果)。
(6)用刚学会的方法再次口算,并与同桌交流你的想法。
40÷2020÷1060÷3090÷30。
(7)探究估算的方法。
出示:83÷20≈80÷19≈。
师:你能知道题目要求我们做什么吗?你怎么知道的?你是怎样计算的?和同学们交流一下。
生:求83除以20、80除以19大约得多少,从题目中的约等号看出不用精确计算。
师:谁想把你的方法跟大家说一说。
预设:83接近于80,80除以20等于4,所以83除以20约等于4。
19接近于20,80除以20等于4,所以80除以19约等于4。
2.教学例2。
(1)创设情境引出问题。
师:谁会解决这个问题?
150÷50。
(2)小组讨论口算方法。
(3)你是怎么这样快就算出的呢?
a.因为15÷5=3,所以150÷50=3。
b.因为3个50是150,所以150÷50=3。
这一题跟刚才分彩旗的口算方法有不同吗?
都是运用想乘算除和表内除法这两种方法来口算的。
师:在解决分彩旗和刚才的问题中,我们共同探讨了除法的口算方法,(板题:口算除法)口算时,可以用自己喜欢的方法来口算。
口算练习:150÷30240÷80300÷50540÷90。
3.估算。
(1)探计估算的方法。
师:你能知道题目要求我们做什么吗?
你能估吗?请先估算,再把你的估算方法与同伴交流,看看能否互相借鉴。
(2)谁想把你的方法跟大家说一说。
(3)总结方法:把被除数和除数都看作与原数比较接近的整十数再用口算方法算。
(4)判断估算是否正确:122÷60=2349÷50≈8为什么不正确?
3巩固提升。
1.独立口算。
观察每道题,怎样很快说出下面除法算式的商?
如果估算的话把谁估成多少。
2.算一算、说一说。
(1)除数不变,被除数乘几,商也乘几。
(2)被除数不变,除数乘几,商反而除以几。
3.解决问题。
(1)一共要寄240本书,每包40本。要捆多少包?
你能找到什么条件、问题。你会解决吗?
240÷40=6(包)。
答:要捆6包。
(2)这个小朋友也是一个爱看书的好孩子,她在看一本故事书。
出示条件:一共有120个小故事,每天看1个故事。
问题:看完这本书大约需要几个月?
问:要求看完这本书大约需要几个月?必须要知道哪些条件,你会求吗?
120÷30=4(个)。
答:看完这本书大约需要4个月。
课后小结。
这节课你有什么收获?还有什么问题?
本节课学习了整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。
板书。
口算除法。
有80面彩旗,每班分20面,可以分给几个班?
80÷20=。
文档为doc格式。
人教版七年级数学教案设计(实用18篇)篇十一
这节课的内容是一元一次方程第一课时。课后,我对本节课从四方面进行了如下反思:
一:对选择引例的反思。
在小学学生已接触过方程,但没有过多的研究。而本节课是一元一次方程的开篇课,它起着承上启下的作用,通过这节课既要让学生认识到方程是更方便、更有力的数学工具,又要让学生体验到从算术方法到代数方法是数学的进步,这些目标的实现谈何容易!课本上的例题虽然能很好的体现方程的优越性,但难度较高。学生很少有利用方程解应用题的经历,能否理解和接受?斟酌再三,还是放到后面再讲。那么哪个题既简单又能明显地承载着从算术到方程的进步呢?几乎翻阅了所有的有关资料,无独有偶,在新课标教案126页的一道数学名题“啊哈,它的全部,它的一半,其和等于19。”让我眼前一亮,我为自己好不容易找到一个例题而兴奋不已,立刻拿去和我们数学组经验丰富的老教师交流一下我的想法,他们觉得这个例子倒挺好的,可是也提出了一个让我深思的问题,这个题不是能够很好地体现出从算术到方程的进步,因为题很简单,方程的优越性体现的不够明显。刚才的新奇和兴奋迅速冷却了下来,陈老师的一句话彻底点醒了我,如果实在找不到合适的例题,不妨就用这个题,通过这个题从语言和方法上突破它,可以先让学生感知方程的优越性,后面学习中再不断地渗透方程的优越性。听完陈老师的一席见解,我顿时豁然开朗,增加了以这个题作为引例的信心。事实证明,这个引例既富有创新又能激发学生的兴趣,既符合学生的已有经验和知识水平,又符合学生的认知规律。
二:对选题的反思。
我在备课中【活动3】最初选用的题是:
修改后的题是:
判断下列各式是方程的有:
(1)(2)(3)(4)(5)。
考虑到学生初对方程概念的研究,不在数字上人为的设置障碍,因为是否是方程与数字的大小根本无关,于是把数字全部统一成了6、2、8三个数,利于学生从未知数和等号的角度进一步理解方程的概念。最初选用的题数字太多,显得题很多且条理性不强,容易分散学生对概念本质的把握。改进后的题目更利于学生观察方程的特征,从而更深刻地掌握概念的本质。需要特别说明的是,如果说前5个小题是为了让学生抓住方程的两个要点,那么后3个小题则是对概念本质的提升,即:是否是方程与未知数所在的位置、未知数的个数、未知数的次数等均无关。
三:对课堂实践的反思。
本节课的设计思路:首先以“名题欣赏”导入,引入概念,通过四组练习让学生深刻理解方程和一元一次方程的概念,最后由学生自己归纳小结。
当环节进行到【活动3】时,我让学生写出一个或几个方程,在给学生判断点评时,我发现学生在黑板上写的全部都是未知数在等号左边的方程,这时我突然意识到学生在模仿我前面呈现的方程,不禁暗自责怪自己考虑不周,怎么没出一个等号两边都含有未知数的方程呢?它给我敲响了一个警钟。正当我想写一个等号两边都含有未知数的方程来弥补设计上的不足时,我忽然发现最后一排的一位男生已经高高地举起了手,他提出问题:“老师:等号两边都含有未知数的式子是不是方程,例如:2y-1=3y”?我为有学生能提出这样的问题而感到庆幸,一是因为它及时弥补了我备课中的不足;二是由学生提出问题要比我提出问题更有价值。这可以反映出该生善于思考,同时也反映出了学生真实的疑惑。为了提高学生的探究能力,我并没有急于解释,而是把问题抛给学生,让学生来解决。我立刻提出:“谁能解决这位同学提出的`问题呢?”这时我看到后面几位学生已经高高地举起了手。我随机点了一名学生,这位同学回答到:“判断一个式子是不是方程只要看是否含有未知数和等号就ok了,与未知数的位置无关!”他精彩的回答引起听课教师一阵喝彩!我也顿时惊喜万分,他说的太好了,不管是语言表达还是准确性上都无可挑剔。我为敢于给学生这样一个机会又一次感到庆幸;通过这个同学精彩的回答,我深深地感受到:“教师给学生一个机会,学生就会还你一个惊喜。”
四:教后整体反思。
成功之处:
1.引例、练习题的选择都很恰当。
2.思路清晰,重点突出,注意到了学生的自主探索,节奏把握较好。
3.数学文化的渗透比较自然。
4.“写一个或几个一元一次方程”此环节的设计体现了从理论到实践的过程,使学生的能力得到提升,学习效果得到落实。
5.语言简练,教态大方,师生互动比较热烈,充分调动了学生的积极性。
6.板书设计较为合理。本节课的主要内容都以提炼的方式呈现出来。
不足之处:
1.在处理三道实际背景题时留给学生的思考时间偏少,显得仓促。
2.在后面两组题环节之间的过渡语言不是很自然。
3.授课语言仍需加强锤炼。
这节课的准备和每个环节的设计我颇费了一些心思,上完课之后总的感觉是达到了我预期的目标。非常感谢评委组的老师们中恳的建议,以及同行们的肯定,这让我受益匪浅。在今后的教学中,我将扬长避短,力争做的更好!
人教版七年级数学教案设计(实用18篇)篇十二
1、大于0的数叫做正数(positivenumber)。
2、在正数前面加上负号“-”的数叫做负数(negativenumber)。
3、整数和分数统称为有理数(rationalnumber)。
4、人们通常用一条直线上的点表示数,这条直线叫做数轴(numberaxis)。
5、在直线上任取一个点表示数0,这个点叫做原点(origin)。
6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue)。
7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
8、正数大于0,0大于负数,正数大于负数。
9、两个负数,绝对值大的反而小。
10、有理数加法法则。
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。
12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
13、有理数减法法则。
减去一个数,等于加上这个数的相反数。
14、有理数乘法法则。
两数相乘,同号得正,异号得负,并把绝对值向乘。
任何数同0相乘,都得0。
15、有理数中仍然有:乘积是1的两个数互为倒数。
16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
17、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
18、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
19、有理数除法法则。
除以一个不等于0的数,等于乘这个数的倒数。
20、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
21、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。在an中,a叫做底数(basenumber),n叫做指数(exponeht)。
22、根据有理数的乘法法则可以得出。
负数的奇次幂是负数,负数的偶次幂是正数。
显然,正数的任何次幂都是正数,0的任何次幂都是0。
23、做有理数混合运算时,应注意以下运算顺序:
(1)先乘方,再乘除,最后加减;。
(2)同级运算,从左到右进行;。
(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
24、把一个大于10数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。
25、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximatenumber)。
26、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significantdigit)。
短时间提高数学成绩的方法。
1、查查在知识方面还能做那些努力。关键的是做好知识的准备,考前要检查自己在初中学习的数学知识是否还有漏洞,是否有遗忘或易混的地方;其次是对解题常犯错误的准备,再看一下自己的错误笔记,如果你没有错题本,那可以把以前的做过的卷子找出来。翻看修改的部分,那就是出错的地方、争取在答卷时,不犯或少犯过去曾犯过的错误。也就是错误不二犯。
2、一定要对自己、对未来充满信心,心态问题是影响考试的最重要的原因。走进考场就要有舍我其谁的霸气。要信心十足,要相信自己已经读了一千天的初中,进行了三百多天的复习,做了三千至四千道初中数学题,养兵千日,用兵一时,现在是收获的时候,自己会取得好成绩的。
3、看完书后,把课本放起来,做习题,通过做习题来再一次检查自己哪些地方做的不够好,如果碰到不会的地方,可以再看课本,这样以来,相信会给你留下深刻的印象。
数学学习方法。
1、基础很重要。
是不是感觉数学都能考满分的同学,连书都不用看,其实数学学霸更重视基础。,数学公式,几何图形的性质,函数的性质等,都是数学学习的基础,甚至可以说基础的好坏,直接决定中考数学成绩的高低。
李现良表示,班里某位同学来找自己讲题,其实题目并不难,但这位同学就是因为一些最基础的知识没有掌握透彻,导致做题的时候没有思路。基础不牢、地动山摇,一个小小的知识漏洞可能导致你在整一个题中都没有思路,非常危险。
2、错题本很重要。
在所有科目中,数学这个科目最重要错题本学习法。李现良同学也特别提倡大家整理错题,李现良对于错题本有一些小窍门,那就是平时如果坚持整理错题,最终会导致自己错题本很多很厚,我们可以定期复习,对于一些彻底掌握的,可以做个标记,以后就不用再次复习,这样错题本使用起来就会效率更高。
3、做题要多反思。
数学学习要大量做题去巩固,但做题不要只讲究数量,更要讲究质量,遇到经典题,综合性高的题目时,每道题写完解答过程后,需要进行分析和反思,多问几个为什么,这样才能把题真正做透。
4、把数学知识形成体系。
数学学霸李现良表示,课本上的知识都是零散的,建议大家自己画思维导图把知识串起来,画思维导图的过程,就是不断理解,让知识变成结构的过程。
人教版七年级数学教案设计(实用18篇)篇十三
比较正数和负数的大小。
1、借助数轴初步学会比较正数、0和负数之间的大小。
2、初步体会数轴上数的顺序,完成对数的结构的初步构建。
负数与负数的比较。
一、复习:
1、读数,指出哪些是正数,哪些是负数?
—85。6+0。9—+0—82。
2、如果+20%表示增加20%,那么—6%表示。
二、新授:
(一)教学例3:
1、怎样在数轴上表示数?(1、2、3、4、5、6、7)。
2、出示例3:
(1)提问你能在一条直线上表示他们运动后的情况吗?
(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。
(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。
(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。
(6)引导学生观察:
a、从0起往右依次是?从0起往左依次是?你发现什么规律?
(7)练习:做一做的第1、2题。
(二)教学例4:
1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
2、学生交流比较的方法。
3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。
4、再让学生进行比较,利用学生的具体比较来说明“—8在—6的左边,所以—8〈—6”
5、再通过让另一学生比较“8〉6,但是—8〈—6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。
6、总结:负数比0小,所有的负数都在0的'左边,也就是负数都比0小,而正数比0大,负数比正数小。
7、练习:做一做第3题。
三、巩固练习。
1、练习一第4、5题。
2、练习一第6题。
3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是摄氏度。
四、全课总结。
(1)在数轴上,从左到右的顺序就是数从小到大的顺序。
(2)负数比0小,正数比0大,负数比正数小。
第二课教学反思:
许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。
例3——两个不同层面的拓展:
1、在数轴上表示数要求的拓展。
数轴除了可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1。5。建议此处教师补充要求学生表示出“+1。5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1。5和—1。5绝对值相等。同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。
2、渗透负数加减法。
教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。
例4——薄书读厚、厚书读薄。
薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)。
例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘了三种不同类型,一一请学生介绍比较方法,将薄书读厚。
将厚书读薄——无论哪种类型,比较方法万变不离其宗。
无论哪种比较方法,最终都可回归到“数轴上左边的数比右边的数小。”即使有学生在比较—8和—6大小时是用“86,所以—8—6”来阐述其原因,其实也与数轴相关。因为当绝对值越大时,表示离原点的距离越远,那么在数轴上表示的点也就在原点左边越远,数也就越小。所以,抓住精髓就能以不变应万变。
在此,我还补充了—3/7和—2/5比较大小的练习,提升学生灵活应用知识解决实际问题的能力。
人教版七年级数学教案设计(实用18篇)篇十四
1.小明用天平测量物体的质量(如下图),已知每个小砝码的质量为1克,此时天平处于平衡状态.若设大砝码的质量为x克.
考查说明:本题主要考查等式基本性质1.
答案与解析:根据等式基本性质1:等式两边同时加或减去同一个数或式子,结果仍为等式.
2.方程3y=。
两边都除以3得y=1。
改正:________________________________________________.
考查说明:本题主要考查等式基本性质2并熟练运用.
答案与解析:得y=。
两边同时除以3时,右边也要除以3,不是乘以3。
3.当x=时,60-5x=0.
考查说明:本题主要考查利用等式两条基本性质来解简单方程.
答案与解析:12.由原方程和等式性质1得5x=60,再由等式性质2,两边同除以5,得x=12.
4.方程的解是(36,48中选填一个)。
考查说明:本题考查的知识点是方程的解的概念,使得等号成立即可.
答案与解析:36.方程的解使等式两边相等,把两个数代入验算即可.
5.一年三班55人,一年八班29人,因植树需要从三班中抽出x人到八班,使得两班人数相同,则根据题意可列方程为_____________.
考查说明:本题主要考查根据题意找等量关系,从而列出方程.
答案与解析:55-x=29+x.等量关系为:抽调后,三班人数=八班人数,关键要理解三班少了x人的同时,八班多了x人.
二、选择题。
6.下列方程中,是一元一次方程的是()。
a、
b、
c、
d、
考查说明:本题主要考查一元一次方程的概念.
答案与解析:a.a和b都需要化简后再判断,c明显是二元的,d分母中含未知数,不是整式方程.
7.根据下列条件能列出方程的是()。
a.一个数的'与另一个数的的和。
b.与1的差的4倍是8。
c.和的60%。
d.甲的3倍与乙的差的2倍。
考查说明:本题考查的知识点是方程与代数式的区别.
答案与解析:b.其余几个答案都不能列出等号.
三、解答题。
考查说明:本题考查的知识点是列一元一次方程解应用题,并会利用等式性质解简单的一元一次方程.本题等量关系为:教师票价+学生票价=910.
答案与解析:设:学生有x人,根据题意。
列出方程得70+70x×=910,
解方程得70x×=840,
即35x=840,
所以x=24.
人教版七年级数学教案设计(实用18篇)篇十五
几何图形大小:长度、面积、体积等。
位置:相交、垂直、平行等。
2几何体也简称体。包围着体的是面。
3常见的立体图形:柱体、椎体、球体等各部分不都在一个平面内。
4平面图形:在一个平面内的图形就是平面图形。
5展开图:识记一些常用的展开图。圆柱/圆锥的侧面展开图;。
6点线面体:是组成几何图形的基本元素。
7直线、射线、线段。
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。
经过两点有一条直线,并且只有一条直线。两点确定一条直线。
8角。
9角的比较与运算。
角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
余角:如果两个角的和等于90度(直角),就说这两个叫互为余角,即其中每一个角是另一个角的余角。
补角:如果两个角的和等于180度(平角),就说这两个叫互为补角,即其中每一个角是另一个角的补角。
性质:等角(同角)的补角相等。等角(同角)的余角相等。
人教版七年级数学教案设计(实用18篇)篇十六
1.教学目标、重点、难点.
教学目标:
(1)了解方程的解的概念.
(2)体验对方程解的估算,会检验一个数是不是某个一元方程的解.
(3)渗透对应思想.
重点:方程解的意义,会检验一个数是不是一个一元方程的解.
难点:方程解的意义,会检验一个数是不是一个一元方程的解.
2.例、习题的意图。
本节课重点是了解方程的解的意义.通过实际问题中对所列方程解的估算,了解什么是方程的解以及由于估算遇到了困难,产生寻求方程解法的需求,为后面的学习做好铺垫.
例1是通过实际问题列出方程,根据(1)题未知数的取值范围以及方程解的概念逐一代入方程来寻求方程的解,使学生亲身体验什么是方程的解,也为例2检验一个数值是不是方程的解做好铺垫.对第(2)、(3)题再采用(1)题方法寻求方程的解已不容易,这又为后边学习解方程奠定了积极的心理储备.
例2是根据方程的解的意义,使学生会检验一个数值是不是方程的解,这一点应切实使学生掌握.
3.认知难点与突破方法。
难点是方程解的意义和检验一个数是不是一个一元方程的解.例1起着承上启下的作用,在估算方程解的过程中,理解方程解的意义,学会检验一个数是不是一个一元方程的解.抓住关键字“等号左右两边相等”,检验一个数是不是一个一元方程的解,要分别计算方程的左右两边,若其值相等,则这个未知数是方程的解,若不相等,则不是方程的解.
二、新课引入。
复习:
1.什么是一元一次方程?
2.练习:当,,时,求式子的值.
答案:,,.
通过练习2强调求式子的值的一般步骤,其中易错易混的地方,如代入的值是负数,应加上括号,数与数相乘时应恢复乘号,运算关系不能混淆等.
三、例题讲解。
例1教材p69中例1。
分析:三个题目中的相等关系分别是:
(1)计算机已使用的时间+继续使用的时间=规定的检修时间.
(2)2(长+宽)=周长.
(3)女生人数—男生人数=.
分析:方程中等号左边有未知数,估算的值代入方程应使等号左边的值等于等号右边的值2450,这样的值才适合方程.由于表示月份,是正整数,不妨让,,……分别代入方程算一算.
由计算结果可以看到,每一个的允许值都使代数式有一个确定的数值,为方便起见,可以列一个表格:
1234567…185021502300245026002750…从表中发现:当时,的值是,也就是,当时,方程中等号的左边:.等号的右边:2450.由此得到方程的左边=右边,就说叫做方程的解,也就是方程中,未知数的值为5.所以,方程的解就是.
教材p71中的小云朵,可以多选几个情况来说明,以加强对方程解得意义的理解.
从表中你还能发现哪个方程的解?(引导学生得出)如方程的解是;方程的解是等等,使学生进一步体会方程解的概念.
方程解的意义:使方程中等号左右两边相等的未知数的值,叫做方程的解.
由于这两个方程估算其解有一定的困难,数不整齐,或方程比较复杂,出现矛盾冲突,引导学生得出:学习解方程的方法十分必要.
怎样检验一个数是否是方程的解呢?
人教版七年级数学教案设计(实用18篇)篇十七
用数学语言概括运算性质、
(三)解决办法
增强对三种运算性质的理解,并运用对比的方法强化训练以达到准确地区分、
一课时、
投影仪或电脑、自制胶片、
3、通过举例来说明积的乘方性质应如何正确使用,师生共练以达到熟练掌握、
4、多种题型的设计,让学生能从不同的角度全面准确地理解和运用该性质、
(一)明确目标
本节课重点学习积的乘方的运算性质及其较灵活地运用、
(二)整体感知
(三)教学过程
1、创设情境,复习导入
前面我们学习了同底数幂的乘法、幂的乘方这两个寨的运算性质,请同学们通过完成一组练习,来回顾一下这两个性质:
填空:
人教版七年级数学教案设计(实用18篇)篇十八
了解数轴的概念,能用数轴上的点准确地表示有理数。
【过程与方法】。
通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。
【情感、态度与价值观】。
在数与形结合的过程中,体会数学学习的乐趣。
二、教学重难点。
【教学重点】。
数轴的三要素,用数轴上的点表示有理数。
【教学难点】。
数形结合的思想方法。
三、教学过程。
(一)引入新课。
提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。
(二)探索新知。
学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:
学生活动:画图表示后提问。
提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。
教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。
提问3:你是如何理解数轴三要素的?
师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。
(三)课堂练习。
如图,写出数轴上点a,b,c,d,e表示的数。
(四)小结作业。
提问:今天有什么收获?
引导学生回顾:数轴的三要素,用数轴表示数。
课后作业:
课后练习题第二题;思考:到原点距离相等的两个点有什么特点?
四、板书设计。