教案模板应该灵活运用各种教学方法和手段,满足不同学生的学习需求。下面是一些教学设计的案例,希望能够帮助大家更好地理解和运用教案模板。
平行四边形的判定说课稿(专业21篇)篇一
经历探索平行四边形判别条件的过程,培养学生操作、观察和说理能力;掌握两组对边分别相等的四边形是平行四边形这一判别条件。
二、教材分析。
本节课是在学生学习了平行四边形的两个判定定理之后即将学习的第三个判定定理——两组对边分别相等的四边形是平行四边形。
三、教学重难点。
四、教学准备。
两根长40厘米和两根长30厘米的木条。
五、教学设计。
首先复习近平行四边形的定义,然后通过学生活动发现平行四边形的另一判定定理,然后借助各种方法加以验证。最后依靠课本所设计的“做一做”,“议一议”以及“随堂练习”加深对平行四边形判定定理的理解。
六、教学过程。
1、复习近平行四边形的定义。(旨在为证明一个四边形是平行四边形做铺垫)。
2、小组活动。
用两根长40厘米和两根30厘米的木条作为四边形的四条边,能否拼成平行四边形?与同伴进行交流。
(通过小组活动,学生亲自动手操作,得出结论——当两组对边相等时,四边形是平行四边形;对边不相等时,所围成的四边形不是平行四边形)。
3、课本91页的“做一做”
(其目的是巩固和应用“两组对边相等的四边形是平行四边形”的判定定理。)。
4、“议一议”
问题1、一组对边平行,另一组对边相等的四边形一定是平行四边形吗?说说你的想法。
(先鼓励学生自主探索,再分组讨论,最后全班交流得出正确结论)。
问题2、要判别一个四边形是平行四边形,你有哪些方法?
5、通过课本的“随堂练习”,使学生对平行四边形的判别条件加以应用和巩固。
平行四边形的判定说课稿(专业21篇)篇二
《平行四边形的判定》紧接《平行四边形的性质》一节。纵观整个初中平面几何教材,它是在学生掌握了平行线、三角形及简单图形的平移和旋转等平面几何知识,并且具备了初步的观察、操作等活动经验的基础上讲授的。这一节课既是前面所学知识的继续,又是后面学习菱形、矩形及正方形等知识的基础,起着承前启后的作用。
根据学生已有的认识基础及本课教材的地位和作用,依据新课程标准确定本课教学目标为:
知识与技能:
通过探索平行四边形常用的判定条件的过程,掌握平行四边形常用的判定方法。
数学思考:
1、通过观察、实验、猜想、验证、推理、交流等数学活动,发展学生的合情推理能力和动手操作能力及应用数学的意识和能力。
2、使学生掌握证明与举反例是判断一个数学命题是否成立的基本方法。
解决问题:
通过平行四边形判别条件的探索过程,丰富学生从事数学活动的经验与体验,感受感受数学思考过程的条理性及解决问题的策略的多样性,发展学生的实践能力及创新意识。
情感态度与价值观:
培养学生合情推理能力,以及严谨的书写表达,体会几何思维的真正内涵。
行四边形的判定方法涉及平行四边形元素的各方面,同时它又与平行四边形的性质联系,判定一个四边形是否为平行四边形是利用平行四边形性质解决其他问题的基础,所以平行四边形的判定定理是本节的重点。平行四边形的判定方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点。因此在例题讲解时,采用启发式教学模式,根据题目中具体条件结合图形引导学生根据分析法解题程序从条件或结论出发,由学生自己去思考,去分析,充分发挥学生的主体作用,对学生灵活掌握熟练应用各种判定定理会有帮助。
鉴于教材特点及八年级学生的年龄特点、心理特征和认知水平,在教学过程中引导学生通过观察、思考、探索、交流获得知识,形成技能,在教学过程中注意创设思维情境,坚持二主方针(学生为主体,教师为主导),让学生在老师的引导下自始至终处于一种积极思维、主动探究的学习状态。使课堂洋溢着轻松和谐的气氛,探索进取的气氛,而教师在其中当好课堂教学的组织者、决策者、创造者和参与者。同时借助实物教具进行演示,以增加课堂容量和教学的直观性。
本堂课立足于学生的“学”,要求学生多动手,多观察,让学生经历发现,说明,完善的过程,培养其操作说理、观察归纳的能力。从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体验参与的乐趣,成功的喜悦。
在复习了平行四边形定义和性质,提出判定平行四边形的方法引导学生探究。
设计意图:从旧知识问题引入新课,提出具有启发性的问题,能够调动学生的积极思维,激起学生的学习欲望,也为下面探究平行四边形的判定方法打下基础。著名教育家苏霍姆林斯基曾经说过:如果教师不想方设法使学生进入情绪高昂和智力振奋的内心状态,就急于传授知识,那么这种知识只能使人产生冷漠的态度,而不动感情的脑力劳动就会带来疲惫。
提出问题后我安排了如下两组探索题。
探索一、将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;你能说出这种方法的道理吗?并与同伴交流。
探索二、若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形。你能说出这种方法的道理吗?与同伴交流。
这两个问题,让学生分小组展开讨论,此时课堂上营造一种和谐、热烈的气氛,在小组讨论中教师可鼓励学生用度量、旋转、证三角形全等等多种方方法来证明所得四边形是平行四边形。教师还要指导学生进行总结、归纳、在探索过程中鼓励学生力求寻找多种方法来解决问题,同时还可组织组与组之间的评比,这样也能培养他们的竞争意识。然后由一名学生代表发言,让学生锻炼自己的语言表达能力,让学生的个性得到充分的展示。最后教师和大家一起总结归纳。
1、两组对边分别平行的四边形是平行四边形;
2、两组对边分别相等的四边形是平行四边形;
3、两条对角线互相平分的四边形是平行四边形。
这一教学活动的设计意图:确保学生主体作用得到充分发挥,让学生从被动学习到主动学习、自主学习,让学生从接受知识到探究知识,从个人学习到合作交流。这样的活动教学将会真正焕发出课堂教学的活力,从而在课堂教学中注入一种新课程理念:给学生一个空间,让他们自己往前走;给学生一个时间,让他们自己去安排;给学生一个问题,让他们自己去找答案。
为了进一步落实教学目标,让学生在学懂学会的基础上融会贯通,我安排了坡度适中,题型多样的系列题组:
例1、abcd的对角线ac,bd交于点o,e、f是ac上的两点,并且ae=cf。求证四边形bfde是平行四边形。
设计意图:此题作为本课的例题,要求学生不仅找出判定平行四边形的,而且能有条理的写出证明过程,教师要及时查缺补漏,规范解题格式,让学生着重讲清判断的理由,起到及时巩固判别方法的作用。同时也锻炼学生的语言表达能力。
(机动)演练题:在四边形abcd中,e、f分别是ab、cd的中点,四边形aecf是平行四边形吗?证明你的结论。
设计意图:此题作为本课的机动题,时间允许就在课堂完成。本题要求学生不仅找出平行四边形判定,而且能有条理的写出证明过程,让学生反复认识,学会分析,此题完成后,学生已顺利达到教学目标。
1、课本p97“练习”1。
设计意图:题1的综合性,灵活性比较强,学生能够顺利解决,对培养他们学好数学的信心大有好处。
1、课本:p100习题19,14,5。
2、选做:p100习题19,110,12。
证明:两组对角分别相等的四边形是平行四边形。
3、预习:探究:还有什么方法可以判定一个四边形是平行四边形?
设计意图:根据新课标精神,“人人学有用的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。”在作业时给出有梯度的练习,以满足不同层次学生学习的需要。而且通过题2的探究,让学生发现平行四边形更多的判定方法。为下节课进一步探究平行四边形的其他判定法方法奠定基础。
本节课教学过程中通过问题设置,引发学生学习的兴趣,引导学生主动探索,通过对平行四边形判别方法的讨论发现新知,归纳总结,得出结论。本节内容逻辑性较强,对学生的逻辑思维能力要求较高,学生在说理上存在一定困难是正常的。但在问题讨论、引导发现、巩固训练的过程中,师生的信息交流畅通,反馈评价及时,学生与学生积极交流、讨论、思维活跃,教学活动始终处于教师的期盼控制中。
平行四边形的判定说课稿(专业21篇)篇三
根据平行四边形的定义:在同一个二维平面内,由两组互相平行的对边组成的闭合图形叫平行四边形。
长方形和正方形都具有平行四边形的特征,长方形是四个角都是直角的特殊平行四边形,正方形是四个角都是直角,四条边长相等的特殊平行四边形。
长方形:长方形也叫矩形,是有一个角是直角的平行四边形,也可以定义为四个角都是直角的平行四边形。
判定方法。
1、对角线相等的菱形是正方形。
2、有一个角为直角的菱形是正方形。
3、对角线互相垂直的矩形是正方形。
4、一组邻边相等的矩形是正方形。
5、一组邻边相等且有一个角是直角的`平行四边形是正方形。
6、对角线互相垂直且相等的平行四边形是正方形。
7、对角线相等且互相垂直平分的四边形是正方形。
8、一组邻边相等,有三个角是直角的四边形是正方形。
9、既是菱形又是矩形的四边形是正方形。
平行四边形的判定说课稿(专业21篇)篇四
本节课选自人教版初中数学八年级下册第十八章18.1.2的内容《平行四边形的判定》。本课主要让学生掌握平行四边形判定的四种方法,会应用平行四边形的判定方法。在此之前,学生已经学习过平行四边形的性质,为本节课的学习打下了良好的基础。同时,本节课的学习也为今后进一步学习特殊的平行四边形等相关知识起到了铺垫的作用。
教学。
过程相对而言比较顺畅。
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能。
理解并掌握平行四边形的四条判定定理,会用判定定理解决相应问题。
(二)过程与方法。
经历探究和证明平行四边形判定定理的过程,提升逻辑推理能力和解决问题的能力。
(三)情感、态度与价值观。
体会方法的多样性,激发学习兴趣,感受几何思维的真正内涵。
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:平行四边形的判定定理。教学难点是:平行四边形判定定理的证明和应用。
依据新课程改革精神与学生认知发展现状,突破难点有效实现知识的巩固,我将采用讲解法、启发引导法、练习法等教学方法,并在教学过程中有意识的培养学生的合作探究能力、自主探究能力,使之真正意义上成为学会学习的人。
下面我将重点谈谈我对教学过程的设计。
(一)导入新课。
首先是导入环节。我采用复习导入的方法,请学生回忆平行四边形的定义及性质,然后提问怎么样的一个图形是平行四边形呢?除定义之外还有没有其它的方法来判定一个四边形是平行四边形呢?由此引出今天学习的内容《平行四边形的判定》。
从简单的回顾中引入新课,既复习了旧知,又为探索新知做好铺垫,同时使学生感受到知识之间的联系。
(二)探索新知。
接下来是教学中最重要的新知探索环节,我主要采用讲解法、启发法等。
接下来组织学生进行实验验证。实验一:取两长两短的四根木条用小钉钉在一起,做成一个四边形,其中两根长木条长度相等,两根短木条长度相等。如果等长的木条成为对边,那么无论如何转动这个四边形,它的形状都是平行四边形;实验二:取两根长短不一的细木条,将它们的中点重叠,并用小钉钉在一起,用橡皮筋连接木条的顶点,做成一个四边形。转动两根木条,这个四边形是平行四边形。通过动手操作直观感受,学生能初步得出结论:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
紧接着继续提问学生:你能根据平行四边形的定义证明它们吗?如何证明“对角线互相平分的四边形是平行四边形”?先请学生将命题翻译成符号语言,指出已知和待证结论。接着我给出提示:观察两条对角线将平行四边形分割成什么样的图形?如何判定其中一组对边平行?判定平行需要的条件怎么得到?给出思路引导后,组织学生小组合作完成证明。学生完成后,我规范证明过程的书写。由于时间所限,我会直接告诉学生两组对边分别相等或两组对角分别相等的四边形也是平行四边形,证明留给学生课后完成,并明确平行四边形的判定定理与相应的性质定理互为逆定理。
接着我会提出一个思考题:如果只考虑四边形的一组对边,它们满足什么条件时这个四边形能成为平行四边形呢?并给出思路引导:先想想平行四边形的一组对边有什么性质?写出逆命题是否成立,能否作为判定方法?请学生稍作讨论,得出猜想:一组对边平行且相等的四边形是平行四边形。然后继续小组合作证明。我会鼓励学生使用不同方法,可以直接应用前三条判定定理。学生不难完成证明并得到平行四边形的第四个判定定理:一组对边平行且相等的四边形是平行四边形。紧接着我会引导学生分别从边、角、对角线等方面梳理平行四边形的判定方法,及时巩固。
在本环节中,引导学生合作探讨,再结合老师的适时引导以及讲解,帮助学生深刻的理解。全面发挥了学生的主观能动性,提高了学生的学习兴趣。
平行四边形的判定说课稿(专业21篇)篇五
今天学习《平行四边形判定》,主要内容是让学生推理三个判定方法和对判定方法的运用.这节课有以下三个启示:
1.目标指导要明确.在八班布置三个判定定理的讨论时,结果有些同学过了几分钟竟然不知道该如何处理问题.所以在七班我设法把问题更加明确化,而且指明努力的方向,结果表明效果好很多.所以要充分估计问题的难度,要让学生能明了思考的方向。
2.在学生讨论中,要指导学生注意讨论的效率,帮助学生学习如何沟通,如何倾听.这是传统课堂所不能训练的内容.老师除了关心教学内容外,更重要的是要关心学生的一些非智力因素的培养.协调小组同伴之间的关系,帮助提高学习效率。
3.当有同学上台展示自学成果的时候,老师要关注学生是否认真倾听,而且允许学生在讲解过程中询问为什么.这样,既可以让讲解者能及时梳理清晰自己的思路,语言表达更加准确,而且也能让更多的人跟上节奏,让讲解者和倾听者都能在交流中受益.其实,听比讲更加需要专注力。
平行四边形的判定说课稿(专业21篇)篇六
本节课充分利用小组合作学习,在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨。判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手。在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,学生在不同题目的对比中,在一题不同证法的对比中,能力真正得到提高。
一题多变,有利于学生抓住问题的本质或者说是核心,从变化的题目中抓住不变的东西为核心问题。从课前小练变到典型例题,还是比较合理的。
一题多解,有利于培养学生思维的发散性,对学生提升解题能力颇有帮助,而且能够让学生顺利建立起知识结构,起到事半功倍的效果。用典型例题覆盖了几乎所有判定方法,使学生各种方法进行了合理分析,既可以牢固记住这些方法,又可以进行对比,理清他们的联系和区别,同时提升解题能力,避免了“题海战术”。
多题一法,从课前小练到例题再到练习题,虽然题目各不相同,但解法却都是相通的:即根据条件,选择一种判定方法进行判定。这有利于学生“悟”出解题的思路,找到数学的乐趣。
总之,尝试了生活数学、问题探究模式等教学方式和理念在自己课堂上的运用,并充分意识到多媒体教学的辅助手段对于增进学生学习兴趣、提高课堂效率起到的积极推进作用。在以后的日常教学中,要有自己的思想和独创。
将本文的word文档下载到电脑,方便收藏和打印。
平行四边形的判定说课稿(专业21篇)篇七
一、教学目标。
问题解决:通过观察、实验、交流等数学活动,让学生掌握平行四边形常用的判定方法情感态度:在操作活动和观察、分析过程中培养学生的主动探索、质疑和独立思考的习惯。
二、教学重点及难点。
教学难点:平行四边形判定方法的寻找及掌握平行四边形常用的判定方法。
三、教具准备。
尺子、量角器、吸管、剪刀、大头针等。
四、教学过程。
(一)创设情境,引入新知。
学校计划在操场边上建一个平行四边形的花圃,工人师傅该怎样画出这个平行四边形呢?你能利用平行四边形的定义解决这个问题吗?试一试,并说说你的想法和做法。这个情境是引导学生用定义判别平行四边形,即作两组相交的平行线所围成的图形就是平行四边形。以实际问题为切入点引入新课,不仅自然,而且反映了数学来源于生活,来源于人的实际需要的基本观点。由学生独立思考后再以三人一小组讨论并提出发言申请,说出本组讨论结果,最后将实验方案在电子白板上展示出来。
(二)、新知探索及内化。
提出问题:1.平行四边形有哪些性质?
6.内角和为360度;7.外角和为360度。(等等)教师:上述性质中,哪些是平行四边形特有的?你能把它们的逆命题写出来吗?并猜测这些逆命题的真假性。
本活动引导学生写出它们的逆命题,为探究平行四边形的判定条件埋下伏笔。由学生独立思考,并口答。用课堂讨论相互交流写出的逆命题及真假性的猜测。逆命题及真假性:1.两组对边分别平行的四边形是平行四边形;2.两组对边分别相等的四边形是平行四边形;3.两组对角分别相等的四边形是平行四边形;4.对角线互相平分的四边形是平行四边形。(都是真命题。)等等。
出示活动:大家按三人一组,用学具做一做,看看还能用什么方法画出平行四边形?把你的想法和做法记下来,并将实验方案在电子白板上展示出来。比比哪个小组得到的方法更多、更好!教师:你能类比平行四边形性质定理的逆命题设计出实验方案吗?大家三人为一组用学具做一做,验证自己的想法。
学生进行小组讨论并动手做实验。
教师:请各组选一名代表说出你们的实验方案,并简要说明自己做法的依据。学生口答,教师课件展示。
教师:你们能将实验方案在电子白板上展示出来吗?学生展示。
这部分是本课重点和难点,应放手让学生充分地进行实验与交流,教师参与其中加以指导。学生若得出不正确方案,可通过实验、证明、举反例等方式来验证。我在课件中准备了三种不同的方案给学生参考,并提供了相应的证明过程。
(三)、新知运用。
例1:已知:ab=cd,ad=bc求证:四边形abcd是平行四边形(提示:利用三角形的全等,根据平行四边形的定义证明)证明:
例2:已知:oa=oc,ob=。
求证:四边形abcd是平行四边形证明:
adbcad。
obc。
(四)、归纳小结。
(五)、布置作业。
基础题。
变式训练题。
综合运用题。
(六)、板书设计。
(七)、教学反思。
平行四边形的判定说课稿(专业21篇)篇八
本节课是平行四边形判定的第二节课,上一节课已经学习了判定方法1和判定方法2,再结合平行四边形的定义,同学们已经掌握了3种平行四边形的判定方法。本节课在上节课的基础上,平行四边形的判定方法3的学习,使同学们会运用这些方法进行几何的推理证明,并且通过本节课的学习,继续培养学生的分析问题、寻找最佳解题途径的能力。
本节课的知识点不难,教材内容也较少,但学生灵活运用判定定理去解决相关问题并不容易,基于此,在本设计中加强了一题多解和寻找最佳解题方法的训练教学,丰富了课堂活动。
由于本节已经完成了平行四边形的教学,因此本设计中注意了平行四边形判定方法的及时归纳,从边、角、对角线三个角度进行盘点,思路清晰,便于存贮、提取、应用。同时通过题目训练,让学生了解平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题。例如求角的度数线段的长度,证明角相等或线段相等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再用平行四边形的性质去解决某些问题。
将本文的word文档下载到电脑,方便收藏和打印。
平行四边形的判定说课稿(专业21篇)篇九
在欧几里德几何中,平行四边形是具有两对平行边的简单(非自相交)四边形。平行四边形的相对或相对的`侧面具有相同的长度,并且平行四边形的相反的角度是相等的。
相比之下,只有一对平行边的四边形是梯形。平行四边形的三维对应是平行六面体。
两组对边分别平行的四边形是平行四边形;
两组对边分别相等的四边形是平行四边形;
一组对边平行且相等的四边形是平行四边形;
两条对角线互相平分的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形。
平行四边形的判定说课稿(专业21篇)篇十
【原创】没有最好,力求更好――《平行四边形判定》课后反思。
昨天下午,我上了一节数学电教课《平行四边形的判定》第一课时,本节课在引入的环节上,我采用复习引入的方式。首先复习了平行四边形的定义和性质,唤起学生对已有知识的回忆,接着通过探究逆命题的真假直接引出本节课的学习内容和任务。同时,让学生初步感受平行四边形的性质与判定的区别与联系,为平行四边形的性质和判定的综合运用作了铺垫。
一、本节课对教材内容进行了重组和编排。
教材中平行四边形的判定的第一课时学习的判定定理是:两组对边分别相等的四边形是平行四边形,对角线互相平分的四边形是平行四边形。因为平行四边形的性质是从边、角、对角线三个方面研究的,所以,我将判定方法也从这三个方面入手,将教材内容进行调整,本节课从边进行研究判定方法。
二、充分利用小组合作学习。
在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨。判定方法是学生自己探讨发现的`,因此,应用也就成了学生自发的需要,用起来更加得心应手。在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上。学生在不同题目的对比中,在一题不同证法的对比中,能力真正得到提高。
三、本节课题量不算太大,但做到了几点:
(1)一题多变。
一题多变,有利于学生抓住问题的本质或者说是核心,从变化的题目中抓住不变的东西---核心问题。本课的核心问题就是,平行四边形的判定方法的选择。自认为从课前小练变到典型例题,还是比较合理的。因为,前面的练习其实就是为例题做了一定铺垫,学生可以建立起知识联系,寻求解题突破口。但从典型例题变到能力训练题,并不理想,没有紧扣“平行四边形的判定”而变。
(2)一题多解。
一题多解,有利于培养学生思维的发散性,对学生提升解题能力颇有帮助,而且能够让学生顺利建立起知识结构,起到事半功倍的效果。本课中,典型例题覆盖了几乎所有判定方法,使学生各种方法进行了合理分析,既可以牢固记住这些方法,又可以进行对比,理清他们的联系和区别,同时提升解题能力,避免了“题海战术”。
(3)多题一法。
本课从课前小练到例题再到练习题,虽然题目各不相同,但解法却都是相通的:即根据条件,选择一种判定方法进行判定。这有利于学生“悟”出解题的思路,找到数学的乐趣。
四、在对课案的反复打磨期间,自己也收获颇丰。
尝试了生活数学、问题探究模式等教学方式和理念在自己课堂上的运用,并充分意识到多媒体教学的辅助手段对于增进学生学习兴趣、提高课堂效率起到的积极推进作用。在以后的日常教学中,要有意识地进一步尝试和运用,真正使学生能力得以培养,技能逐步形成,数学素质得到提高。
教学永远是一门遗憾的艺术,吹尽黄沙始现金。让我们以“没有最好,力求更好”来不断改进我们的教学,实现真正意义上的与时俱进。
平行四边形的判定说课稿(专业21篇)篇十一
平行四边形的判定是新人教版八年级数学下册第十八章第一节第二部分内容,是在学习关于平行四边形的性质的基础上进一步探究学习的,这一部分内容主要探究平行四边形的四条判定以及判断和性质的综合运用,培养学生的探究精神、创新精神和应用意识,也为后期学习特殊的平行四边形探索方法和奠定基础。
在教学时我主要采用了以下方法:
1、实验操作法。为了探索平行四边形的判定方法,我引导学生从实验入手,通过亲自动手操作,在操作中从感官上获取认识。
2、引导发现法。在学生实验的过程中,及时引导,细致观察,探索并发现判定一个四边形为平行四边形的条件,猜测平行四边形的判定方法,为归纳平行四边形的判定方法的可行性提供先决条件。
3、探究讨论法。在猜测得出平行四边形的判定方法后,引导学生在小组内充分进行讨论,从不同角度验证方法的正确性,进而归纳出平行四边形的判定方法。
4、练习法。采用讲练结合的方式让学生不仅学会探究,更要能够灵活运用,增强应用意识。
5、加强了变式训练。通过一题多变、一题多证、多题同证等变式训练,既巩固了学生对知识的灵活运用,也训练和发展学生的逻辑思维。
反思自己的教学,还是获得了一些成功之处:
1、培养了学生的动手能力。通过多媒体、生活问题、实验教具等方式呈现问题情境,给学生足够时间亲自动脑、动手、动口参与教学,与老师共同探究判别方法,感悟知识的发生、发展过程。
2、训练了学生的思维能力。引导学生从不同角度、不同方面进行相互讨论、彼此交流,是他们的思维能力的得到了极大的发展和提升。
3、培养学的探究精神和创新精神。通过多层次、多角度例题及练习变式,培养学生思维的广阔性和深刻性,提升探究能力、开拓创新精神。
4、增强应用意识。通过对实际生活中的一些实例和问题进行探究解决,使学生进一步认识到数学应用于生活的重要性,增强学生的数学应用意识。
当然,在教学中也还存在许多不足:
1、对教学设计与时间地分配还不够合理,还要做更好的思考,以增强对时间控制地敏感度,更好地分配好每一环节所花的时间。
2、课教学的节奏把握还不到位,需要在以后的教学中,争取让更多的学生消化好课堂新知,理解好知识点与例题。
3、学生的主体作用彰显不够,在课堂上要放心地让学生去尝试错误,多些让学生自主思考,充分发挥学生的主体作用。
4、对学生的学习与练习的方法指导还不足,应该多些方法性的引导。
总之,在以后的教学中要充分激发学生学习数学的兴趣,让学生积极参与、讨论,导中有练、有思、有研,改进教师先讲知识,然后再进行强化训练的`做法,使讲、练、思、研融合在一起,让学生充分体验数学学习的乐趣,积累数学活动经验,体会数学推理的意义,让学生在做中学,逐步形成创新意识。
平行四边形的判定说课稿(专业21篇)篇十二
一、教学目标。
经历探索平行四边形判别条件的过程,培养学生操作、观察和说理能力;掌握两组对边分别相等的四边形是平行四边形这一判别条件。
二、教材分析。
本节课是在学生学习了平行四边形的两个判定定理之后即将学习的第三个判定定理——两组对边分别相等的四边形是平行四边形。
三、教学重难点。
难点:对平行四边形判别条件的理解及说理的基本方法的掌握。
四、教学准备。
两根长40厘米和两根长30厘米的木条。
五、教学设计。
首先复习近平行四边形的定义,然后通过学生活动发现平行四边形的另一判定定理,然后借助各种方法加以验证。最后依靠课本所设计的“做一做”,“议一议”以及“随堂练习”加深对平行四边形判定定理的理解。
六、教学过程。
1、复习近平行四边形的定义。(旨在为证明一个四边形是平行四边形做铺垫)。
2、小组活动。
用两根长40厘米和两根30厘米的木条作为四边形的四条边,能否拼成平行四边形?与同伴进行交流。
(通过小组活动,学生亲自动手操作,得出结论——当两组对边相等时,四边形是平行四边形;对边不相等时,所围成的四边形不是平行四边形)。
平行四边形的判定定理——两组对边相等的四边形是平行四边形。
3、课本91页的“做一做”
(其目的是巩固和应用“两组对边相等的四边形是平行四边形”的判定定理。)。
4、“议一议”
问题。
1、一组对边平行,另一组对边相等的四边形一定是平行四边形吗?说说你的想法。
(先鼓励学生自主探索,再分组讨论,最后全班交流得出正确结论)。
问题。
2、要判别一个四边形是平行四边形,你有哪些方法?
5、通过课本的“随堂练习”,使学生对平行四边形的判别条件加以应用和巩固。
平行四边形的判定说课稿(专业21篇)篇十三
【原创】没有最好,力求更好――《平行四边形判定》课后反思。
昨天下午,我上了一节数学电教课《平行四边形的判定》第一课时,本节课在引入的环节上,我采用复习引入的方式。首先复习了平行四边形的定义和性质,唤起学生对已有知识的回忆,接着通过探究逆命题的真假直接引出本节课的学习内容和任务。同时,让学生初步感受平行四边形的性质与判定的区别与联系,为平行四边形的性质和判定的综合运用作了铺垫。
一、本节课对教材内容进行了重组和编排。
教材中平行四边形的判定的第一课时学习的判定定理是:两组对边分别相等的四边形是平行四边形,对角线互相平分的四边形是平行四边形。因为平行四边形的性质是从边、角、对角线三个方面研究的,所以,我将判定方法也从这三个方面入手,将教材内容进行调整,本节课从边进行研究判定方法。
二、充分利用小组合作学习。
在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨。判定方法是学生自己探讨发现的`,因此,应用也就成了学生自发的需要,用起来更加得心应手。在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上。学生在不同题目的对比中,在一题不同证法的对比中,能力真正得到提高。
三、本节课题量不算太大,但做到了几点:
(1)一题多变。
一题多变,有利于学生抓住问题的本质或者说是核心,从变化的题目中抓住不变的东西---核心问题。本课的核心问题就是,平行四边形的判定方法的选择。自认为从课前小练变到典型例题,还是比较合理的。因为,前面的练习其实就是为例题做了一定铺垫,学生可以建立起知识联系,寻求解题突破口。但从典型例题变到能力训练题,并不理想,没有紧扣“平行四边形的判定”而变。
(2)一题多解。
一题多解,有利于培养学生思维的发散性,对学生提升解题能力颇有帮助,而且能够让学生顺利建立起知识结构,起到事半功倍的效果。本课中,典型例题覆盖了几乎所有判定方法,使学生各种方法进行了合理分析,既可以牢固记住这些方法,又可以进行对比,理清他们的联系和区别,同时提升解题能力,避免了“题海战术”。
(3)多题一法。
本课从课前小练到例题再到练习题,虽然题目各不相同,但解法却都是相通的:即根据条件,选择一种判定方法进行判定。这有利于学生“悟”出解题的思路,找到数学的乐趣。
四、在对课案的反复打磨期间,自己也收获颇丰。
尝试了生活数学、问题探究模式等教学方式和理念在自己课堂上的运用,并充分意识到多媒体教学的辅助手段对于增进学生学习兴趣、提高课堂效率起到的积极推进作用。在以后的日常教学中,要有意识地进一步尝试和运用,真正使学生能力得以培养,技能逐步形成,数学素质得到提高。
教学永远是一门遗憾的艺术,吹尽黄沙始现金。让我们以“没有最好,力求更好”来不断改进我们的教学,实现真正意义上的与时俱进。
将本文的word文档下载到电脑,方便收藏和打印。
平行四边形的判定说课稿(专业21篇)篇十四
本节课是平行四边形判定的第二节课,上一节课已经学习了判定方法1和判定方法2,再结合平行四边形的定义,同学们已经掌握了3种平行四边形的判定方法。本节课在上节课的基础上,学习平行四边形的判定方法3,使同学们会运用这些方法进行几何的推理证明,并且通过本节课的`学习,继续培养学生的分析问题、寻找最佳解题途径的能力。
本节课的知识点不难,教材内容也较少,但学生灵活运用判定定理去解决相关问题并不容易,基于此,在本设计中加强了一题多解和寻找最佳解题方法的训练教学,丰富了课堂活动。
平行四边形的判定说课稿(专业21篇)篇十五
本节课是平行四边形判定的第二节课,上一节课已经学习了判定方法1和判定方法2,再结合平行四边形的定义,同学们已经掌握了3种平行四边形的判定方法。本节课在上节课的基础上,平行四边形的判定方法3的学习,使同学们会运用这些方法进行几何的推理证明,并且通过本节课的学习,继续培养学生的分析问题、寻找最佳解题途径的能力。
本节课的知识点不难,教材内容也较少,但学生灵活运用判定定理去解决相关问题并不容易,基于此,在本设计中加强了一题多解和寻找最佳解题方法的训练教学,丰富了课堂活动。
由于本节已经完成了平行四边形的教学,因此本设计中注意了平行四边形判定方法的及时归纳,从边、角、对角线三个角度进行盘点,思路清晰,便于存贮、提取、应用。同时通过题目训练,让学生了解平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题。例如求角的度数线段的长度,证明角相等或线段相等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再用平行四边形的性质去解决某些问题。
平行四边形的判定说课稿(专业21篇)篇十六
(第一课时)。
一、素质教育目标。
(一)知识教学点。
1.掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用.。
2.使学生理解判定定理与性质定理的区别与联系.。
3.会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理.。
(二)能力训练点。
1.通过“探索式试明法”开拓学生思路,发展学生思维能力.。
(三)德育渗透点。
通过一题多解激发学生的学习兴趣.。
(四)美育渗透点。
通过学习,体会几何证明的方法美.。
二、学法引导。
构造逆命题,分析探索证明,启发讲解.。
三、重点・难点・疑点及解决办法。
2.教学难点:综合应用判定定理和性质定理.。
四、课时安排。
2课时。
五、教具学具准备。
投影仪,投影胶片,常用画图工具。
六、师生互动活动设计。
复习引入,构造逆命题,画图分析,讨论证法,巩固应用.。
七、教学步骤。
【复习提问】。
1.平行四边形有什么性质?学生回答教师板书。
2.将以上性质定理分别用命题的形式叙述出来.。
【引入新课】。
用投影仪打出上述命题的逆命题.。
那么其它逆命题是否正确呢?如果正确就可得到另外的判定方法(写出命题).。
【讲解新课】。
平行四边形的判定说课稿(专业21篇)篇十七
平行四边形在实际生活和工作中具有广泛的应用,因此它的性质和判定是本章的重点内容。性质和判定的学习是一个互逆的过程,性质是判定学习的基础。在设计《平行四边形的判定》一节内容时我在第一课时主要探讨平行四边形的判定的四种方法,在探讨时按照性质的探讨思路:从边、角、平分线三点来分别探讨,有了性质作为基础,因此对于判定的方法学生理解起来比较容易。在课堂上我要求学生将每种判定的数学语言和符号语言都按照格式书写出来,这样有利于他们数学习惯的培养。第二课时我主要是利用判定来证明平行四边形以及进行计算。
利用性质与判定的互逆,学生对四个判定的掌握比较好,而且由于要求学生对每一个判定都进行了数学语言和符号语言的书写练习,因此提高了学生的书写能力,在习题课上大部分的学生都能写出比较完整的证明过程。
几何证明题一直是学生的一个弱点。初二的学生按照课标不要求些规范的证明过程,但是考试却要求书写严格的过程,由于没有规范的例题示范以及有关习题,所以学生的几何证明题仍然是一个弱项,因此习题课上有部分学生仍然存在会分析,但是书写不规范的情况,这在今后的学习中是一个需要改变和提高部分。
平行四边形的判定说课稿(专业21篇)篇十八
《平行四边形的判定》是学生学习平行四边形的重要知识。一共分为4个课时。在学习平行四边形的判定,同时,让学生初步感受平行四边形的性质与判定的区别与联系,为平行四边形的性质和判定的综合运用作了铺垫。在设计教学的.亮点是充分利用小组合作学习、一题多变、一题多解、多题一法。
充分利用小组合作学习,在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨。判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手。在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,学生在不同题目的对比中,在一题不同证法的对比中,能力真正得到提高。
一题多变,有利于学生抓住问题的本质或者说是核心,从变化的题目中抓住不变的东西为核心问题。从课前小练变到典型例题,还是比较合理的。
一题多解,有利于培养学生思维的发散性,对学生提升解题能力颇有帮助,而且能够让学生顺利建立起知识结构,起到事半功倍的效果。用典型例题覆盖了几乎所有判定方法,使学生各种方法进行了合理分析,既可以牢固记住这些方法,又可以进行对比,理清他们的联系和区别,同时提升解题能力,避免了“题海战术”。
多题一法,从课前小练到例题再到练习题,虽然题目各不相同,但解法却都是相通的:即根据条件,选择一种判定方法进行判定。这有利于学生“悟”出解题的思路,找到数学的乐趣。
总之,尝试了生活数学、问题探究模式等教学方式和理念在自己课堂上的运用,并充分意识到多媒体教学的辅助手段对于增进学生学习兴趣、提高课堂效率起到的积极推进作用。在以后的日常教学中,要有自己的思想和独创。
平行四边形的判定说课稿(专业21篇)篇十九
本节课是小学义务教育教科书五年级上册第五单元的内容,是在学生(四年级)学习了面积单位和长、正方体的面积的认知基础上展开教学的。本节课既是培养学生空间图形中平面几何观念的奠基课之一,更是给学生渗透“等积转化”重要思想的开启课。
本节课的教学紧扣教材,紧紧贴合教材的呈现顺序,重难点突出,使学生经历了“猜测———验证———得出结论————应用结论————再次论证”的科学探究过程,程序符合学生的认知规律。首先从教材中呈现的生活情境图中提出问题:
1、你能找到那些平面图形?
2、你学过那些平面图形的面积计算?并给两组数据让学生计算,说说计算公式。由此引发学生的认知记忆,找到学生的认知原点或起点,找到学生学习新知识的有效生长点。然后再来认识平行四边形的形、底和相对应的高、邻边等。引发猜想,提出大问题:平行四边形的面积与它的什么有关?有怎样的关系?让学生在保留自己猜想的基础上进行多方法、多角度的探究,用数格子法、割补转化法(等积转化法)等方法来验证自己的猜想,并得出统一的结论或推翻自己原先不合理的猜想,然后再总结提炼计算公式,并及时应用(套公式计算)。最后,再通过拉一拉的方法,让学生观察拉的前后什么没变?什么变了,再一次验证了割补转化法(等积转化法)的合理性与存在的意义。本堂课的半数设计简洁、合理、美观、重难点突出。
从本节课中可以看出,贾老师很注重对孩子阅读教材的能力的培养。只是本节课自始至终老师都让学生看书:
1、看书上的情境图找平面图形;
3、探究出公式后读书例1;
4、练习完成书上的做一做等过程都是看书,在师的一句一句细致的引导下如长方形的长占几格?宽占几格?面积占几格?平行四边形的底是几格?高是几格,面积占几格……一节课就那么35分钟,如何保证大班额下每个同学都能紧跟老师的指导,跟随老师的思路,在翻书与观察老师的演示和板书交替中,回过神来细细品读教材和理解教材的用意呢?本节课有很多好的课件可以借用,为什么老师只有在复习长、正方体面积计算给出两组数据时才应用了课件?课件的辅助教学功能没有体现出来。
平行四边形的判定说课稿(专业21篇)篇二十
《平行四边形的判定》是学生学习了平行四边形的重要知识。一共分为4个课时。在学习了平行四边形的判定,同时,让学生初步感受平行四边形的性质与判定的区别与联系,为平行四边形的性质和判定的综合运用作了铺垫。在设计教学的亮点是充分利用小组合作学习、一题多变、一题多解、多题一法。
充分利用小组合作学习,在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨。判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手。在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,学生在不同题目的对比中,在一题不同证法的对比中,能力真正得到提高。
一题多变,有利于学生抓住问题的本质或者说是核心,从变化的题目中抓住不变的东西为核心问题。从课前小练变到典型例题,还是比较合理的。
一题多解,有利于培养学生思维的发散性,对学生提升解题能力颇有帮助,而且能够让学生顺利建立起知识结构,起到事半功倍的效果。用典型例题覆盖了几乎所有判定方法,使学生各种方法进行了合理分析,既可以牢固记住这些方法,又可以进行对比,理清他们的联系和区别,同时提升解题能力,避免了“题海战术”。
多题一法,从课前小练到例题再到练习题,虽然题目各不相同,但解法却都是相通的:即根据条件,选择一种判定方法进行判定。这有利于学生“悟”出解题的思路,找到数学的乐趣。
总之,尝试了生活数学、问题探究模式等教学方式和理念在自己课堂上的运用,并充分意识到多媒体教学的辅助手段对于增进学生学习兴趣、提高课堂效率起到的积极推进作用。在以后的日常教学中,要有自己的思想和独创。
平行四边形的判定说课稿(专业21篇)篇二十一
各位领导、数学界的专家们:
大家好!今天我们xx小学因为大家的莅临又一次满校生辉。我们向各位表示衷心的感谢!
感谢教科院的领导给我们提供了这一能和各位专家共同切磋有关数学教学的宝贵机会,也谢谢各位专家对我们数学教学的指导!
今天我对徐老师这节课作评析是班门弄斧,不当之处敬请各位领导、专家们指正:
首先,徐老师对这节课的教学目标的设计,既有知识技能目标又有过程性目标,充分体现了《课程标准》对学生在数学思考、解决问题以及情感与态度等方面的要求。
在教学过程中,徐老师一开始有一个谈话:每个小组有四个不同的图形,你们会计算它们的面积吗?小组合作选择一个计算一下。这一谈话实际就是设置了一个开放性的问题,这个问题参与性很强,激起了学生急于探究的欲望。在此徐老师给了学生充分的活动时间,在学生已有的知识经验基础之上,激发学生的学习积极性,向学生提供充分从事数学活动的机会,使他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得了广泛的数学活动经验,利用学生手中的纸片让他们自己先观察、再剪一剪、拼一拼,然后比较,讨论,分析,归纳,总结,多边形的面积,计算就解决了,而且还使学生初步认识了转化这种数学方法的利用,在此基础上再学习的平行四边形的面积计算就水到渠成,迎刃而解了。《数学课程标准》指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”这也是新课改的重要思想。徐老师在数学教学的过程中充分体现了这一点,发挥了学生的主体作用,引导他们动手、动脑,进行探索、分析、归纳,降低了难度和坡度,使不同的学生都获得了成功的体验,使学生体验到数学活动充满着探索性的创造性,为学生的发展创造了一种宽松的环境。这也正是我们新课程标准所提倡的。在整个教学过程中,徐老师始终鼓励学生自己去发现,自己去思考,自己找到最好的解决办法,这样激发了学生学习的积极性,激活了学生的思维,让学生最大限度的参与到探索新知识的.教学过程中。概括说徐老师这节课体现了以下两大特点:
1、加强操作,让学生自主探索平行四边形面积计算公式,让学生经历平行四边形面积计算公式的探索过程是本节课的重要目标。本节课在平行四边形面积公式推导这一环节中,让学生采用动手实践、合作学习等多样化的学习方式去自主发现平行四边形的面积计算公式。在共同操作中,学生积极动手、动脑,从不同角度思考,将平行四边形转化成一个长方形,并通过观察讨论,发现了长方形与平行四边开之间的关系。这样既充分张扬了学生的创造个性,也为概括平行四边形面积计算公式提供了丰富的感性活动。
2、练习设计重视层次性,体现了对公式的利用和实践能力的培养。
这节课在练习反馈这一节上安排了5道题,总体上说,体现了对平行四边形面积计算公式的理解,既有层次性、实践性,又做到了前后照应;既重视让学生直接利用公式计算平行四边形的面积,更重视让学生计算一些没有直接告诉底和高或近似的平行四边形的面积,不但加强了学生的动手操作,也有利于让学生综合利用知识解决问题,培养学生的实践能力。从现实生活中发现和明确提出数学问题,然后找出解决问题的有效方法,体会数学在现实生活中的应用价值。
总的来说,徐老师在教学环节的安排上,既考虑了数学学科的特点,也考虑了学生的心理特征,能让学生充分利用已有知识经验去探索新知识,在教学环节的处理上有详有略,有扶有放,把教学的重心落在让学生对平行四边形面积计算公式的探索理解上,重视让学生经历知识的形成过程,有利于培养学生的学习能力。
徐老师这堂课是精彩的,因为她留给了学生充分的时空,使学生的思维之翼在科学的轨道上展翅翱翔,她教给了学生思想,重视了学生的学法。
谢谢大家!