通过教学计划,可以为学生提供更加有针对性的教学资源和指导。以下是小编为大家整理的教学计划范文,供大家参考和借鉴。
初中数学函数教学设计(专业15篇)篇一
忠实地执行教材,教材上怎么写,教师就怎么讲,即使发现教材的内容有不合理的地方,也不敢随便处理。虾米事小编整理的关于初中数学教学设计,欢迎大家参考!
1、 本节内容是七年级下第九章《轴对称》中的重点部分,是等腰三角形的第一节课,由于小学已经有等腰三角形的基本概念,故此节课应该是在加深对等腰三角形从轴对称角度的直观认识的基础上,着重探究等腰三角形的两个定理及其应用,如何从对称角度理解等腰三角形是新教材和旧教材完全不同的出发点,应该重新认识,把好入门的第一课。
2、 等腰三角形是在第八章《多边形》中的三角形知识基础上的继续深入,如何利用学习三角形的过程中已经形成的思路和观点,也是对理解“等腰”这个条件造成的特殊结果的重要之处。
3、 等腰三角形是基本的几何图形之一,在今后的几何学习中有着重要的地位,是构成复杂图形的基本单位,等腰三角形的定理为今后有关几何问题的解决提供了有力的工具。
4、 对称是几何图形观察和思维的重要思想,也是解决生活中实际问题的常用出发点之一,学好本节知识对加深对称思想的理解有重要意义。
5、 例题中的几何运算,是数形结合的思想的初步体验,如何在几何中结合代数的等量思想是教学中应重点研究的问题。
6、 新教材的合情推理是一个创新,如何把握合情推理的书写及重点问题,本课中的例题也进一步做了示范,可以认真研究。
7、 本课对学生的动手能力,观察能力都有一定的要求,对培养学生灵活的思维,提高学生解决实际问题的能力都有重要的意义。
8、 本课内容安排上难度和强度不高,适合学生讨论,可以充分开展合作学习,培养学生的合作精神和团队竞争的意识。
1、 授课班级学生基础较差,教学中应给予充分思考的时间,谨防填塞式教学。
2、 该班级学生在平时训练中已经形成了良好的合作精神和合作气氛,可以充分发挥合作的优势,兼顾效率和平衡。
3、 本班为自己任课的`班级,平时对学生比较了解,在解决具体问题的时候可以兼顾不同能力的学生,充分调动学生的积极性。
教学目标: 知识目标: 等腰三角形的相关概念,两个定理的理解及应用。 技能目标: 理解对称思想的使用,学会运用对称思想观察思考,运用等腰三角形的思想整体观察对象,总结一些有益的结论。 情感目标: 体会数学的对称美,体验团队精神,培养合作精神。 |
重点: 1、等腰三角形对称的概念。
2、“等边对等角”的理解和使用。
3、“三线合一”的理解和使用。
难点: 1、等腰三角形三线合一的具体应用。
2、等腰三角形图形组合的观察,总结和分析。
主要教学手段及相关准备:
教学手段: 1、使用导学法、讨论法。
2、运用合作学习的方式,分组学习和讨论。
3、运用多媒体辅助教学。
4、调动学生动手操作,帮助理解。
准备工作: 1、多媒体课件片断,辅助难点突破。
2、学生课前分小组预习,上课时按小组落座。
3、学生自带剪刀,圆规,直尺等工具。
4、每人得到一张印有“长度为a的线段”的纸片。
教学设计策略:依据教学目标和学生的特点,依据教学时间和效率的要求,在此课教学方法和教学模式的设计中我主要体现了以下的设计思想和策略:
1、 回归学生主体,一切围绕着学生的学习活动和当堂的反馈程度安排教学过程。
2、 原则性和灵活性相结合,既要完成教学计划,在教学过程中又可以根据现实的情况,安排问题的难度,体现一些灵活性。
3、 教学的形式上注重个体化,充分给予学生讨论和发表意见的机会,注重学习的参与性,努力避免以教师活动为主体的教学过程。
初中数学函数教学设计(专业15篇)篇二
1.这节的重点为:去括号。因此,本节所学的知识实际上就是对前面所学知识的一个巩固和深化,要突破这个重点,只有在掌握方法的前提下,通过一定的练习来掌握。
2.去括号是整式加减的一个重要内容,也是下一章一元一次方程的直接基础,也是今后继续学习整式的乘除、因式分解、方程,以及分式、函数等的重要基础。
学情分析。
1.去括号法则是教材上的教学内容,学生学习时会经常出现错用法则的现象。实验表明:完全可以用乘法分配律取代去括号法则.这是由于:(1)“去括号法则”,增加了记忆负担和出错的机会,容易出错;(2)去括号的法则增加了解题长度,降低了学习效率;(3)用乘法分配律去括号的学习是同化而非顺应,易于理解与掌握;(4)用乘法分配律去括号是回归本质,返璞归真,且既可减少学习时间,又能提高运算的正确率。
教学目标。
1.熟练掌握去括号时符号的变化规律;
2.能正确运用去括号进行合并同类项;
3.理解去括号的依据是乘法分配律。
教学重点和难点。
重点。
去括号时符号的变化规律。
难点。
括号外的因数是负数时符号的变化规律。
教学过程。
青藏铁路线上,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的形式速度可以达到120千米/时。
解:这段铁路的全长为100t+120()(千米)。
冻土地段与非冻土地段相差100t-120()(千米)。
提出问题,如何化简上面的两个式子?引出本节课的学习内容。
1.回顾:
1你记得乘法分配率吗?怎么用字母来表示呢?
a(b+c)=ab+ac。
2-(-2)=(-1)*(-2)=2+(-3)=(+1)*(-3)=-3。
2.探究。
计算(试着把括号去掉)。
(1)13+(7-5)(2)13-(7-5)。
类比数的运算,去掉下面式子的括号。
(3)a+(b-c)(4)a-(b-c)。
3.解决问题。
100t+120()=100t-120()=。
思考:
去掉括号前,括号内有几项、是什么符号?去括号后呢?
去括号的依据是什么?
去括号法则:
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.。
注意事项。
(2)括号内原有几项去掉括号后仍有几项.。
例4化简下列各式:
课本p68练习第一题.六、课堂小结。
1.今天你收获了什么?
2.你觉得去括号时,应特别注意什么?
课本p71习题第2题。
初中数学函数教学设计(专业15篇)篇三
掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、能力与过程目标。
经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、情感与态度目标。
通过学生自己探索出法则,让学生获得成功的喜悦。
二、教学重点、难点。
重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
创设问题情景,激发学生的求知欲望,导入新课。
学生:26米。
教师:能写出算式吗?学生:……。
教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题。
初中数学函数教学设计(专业15篇)篇四
1、学习方式:
对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。的关系。它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线互相垂练地掌握全等三角形的判定方法,并且灵活的应用。为了使学生更好地掌握这一部分内形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。
2、学习任务分析:
充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己以后的证明打下基础。
3、学生的认知起点分析:
学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边全等的条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作课的操作、探究成为可能。
4、教学目标:
(1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用(2)掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定三角形的全等解决一些实际问题。
(3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验5、教学的重点与难点:
重点:三角形全等条件的探索过程是本节课的重点。
从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将数学。
难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要情况进行讨论,对初一学生有一定的难度。
根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,够全面,因此要充分发挥教师的主导作用,适时点拨、引导,尽可能调动所有学讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。
6、教学过程(略)。
教学步骤教师活动学生活动教学媒体(资源)和教学方式。
7、反思小结。
提炼规律。
电脑显示,带领学生复习全等三角定义及其性质。
电脑显示,小明画了一个三角形,怎样才能画一个三角形与他的三角形全等?我们知道三个角分别对应相等,那麽,反之这六个元素分别对应,这样的两个三角形一定全等.但是能否尽可能少吗?对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和展学生个性思维。
按照三角形“边、角”元素进行分类,师生共同归纳得出:。
1、一个条件:一角,一边。
2、两个条件:两角;两边;一角一边。
3、三个条件:三角;三边;两角一边;两边一角。
按以上分类顺序动脑、动手操作,验证。教师收集学生的作品,加以比较,得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等。
下面将研究三个条件下三角形全等的判定。
(1)已知三角形的三个角分别为40°、60°、80°,画出这个三角形,并与同伴比学生得出结论后,再举例体会一下。举例说明:
如老师上课用的三角尺与同学用的三角板三个角分别对应相等,但一个大一个小,很再如同是:等边三角形,边长不等,两个三角形也不全等。等等。
(2)已知三角形三条边分别是4cm,5cm,7cm,画出这个三角形,并与同伴比较是否板演:三边对应相等的两个三角形全等,简写为“边边边”或“sss”。
由上面的结论可知:只要三角形三边的长度确定了,这个三角形的形状和大小就确实物演示:
类比着三角形,让学生动手操作,研究四边形、五边性有无稳定性。
图形的稳定性与不稳定性在生活中都有其作用,让学生举例说明。
题组练习(略)。
3、(对有能力的学生要求把实际问题抽象成数学问题,根据自己的理解写出推理由,并能说明每一步的根据。)教师带领,回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想在教师引导下回忆前面知识,为探究新知识作好准备。
议一议:
学生分小组进行讨论交流。受教师启发,从最少条件开始考虑,一个条件;两个条件;三个况渐渐明朗,进行交流予以汇总,归纳。
想一想:
对只给一个条件画三角形,画出的三角形一定全等吗?画一画:
剪一剪:
把所画的三角形分别剪下来。
比一比:
学生举例说明。
学生模仿上面的研究方法,独立完成操作过程,通过交流,归纳得出结论。
鼓励学生自己举出实例,体验数学在生活中的应用.学生那出准备好的硬纸条,进行实验,得出结论:四边形、五边形不具稳定性。
学生练习。
学生在教师引导下回顾反思,归纳整理。
z+z平台演示。
z+z平台演示,教师加以分析。学生分组讨论,师生互动合作。
经过对各种情况得分析,归纳,总结,对学生渗透分类讨论的数学思想。结论很显然只需学生想像即可,z+z平台辅助直观演示。学生动手操作,通过实践、自主探索、交流,获得新知。
初中数学函数教学设计(专业15篇)篇五
随着科学技术的发展,教育资源和教育需求也随之增长和变化。我校进行了初中数学分层教学课题研究,而分层次备课是搞好分层教学的关键,教师应在吃透教材、大纲的情况下,按照不同层次学生的实际情况,设计好分层次教学的全过程。本文将结合本人的教学经验,对分层教学教案设计进行初步探讨。
1教学目标的制定。
制定具体可行的教学目标,先要分清哪些属于共同目标,哪些属于层次目标。并在知识与技能、过程与方法、情感态度与价值观三个方面对不同层次的学生制定具体的要求。
2教法学法的制定。
制定教法学法应结合各层次学生的具体情况而定,如对a层学生少讲多练,注重培养其自学能力;对b层学生,则实行精讲精练,注重课本上的例题和习题的处理;对c层学生则要求要低,浅讲多练,弄懂基本概念,掌握必要的基础知识和基本技能。
3教学重难点的制定。
教学重难点的制定也应结合各层次学生的具体情况而定。
4.1情境导向,分层定标。教师以实例演示、设问等多种方法导入新课。要利用各种教学资料创设恰当的学习情境为各层学生呈现适合于本层学生水平学习的内容。
4.2分层练习,探讨生疑。学生对照各自的目标分层自学。教师要鼓励学生主动实践,自觉地去发现问题、探讨问题、解决问题。
4.3集体回授,异步释疑。“集体回授”主要是针对人数占优势的b层学生,为解决具有共性的问题而组织的一种集体教学活动。教师为那些来不及解决的、不具有共性的问题分先后在层内释疑即“异步释疑”。
5练习与作业的设计。
教师在设计练习或布置作业时要遵循“两部三层”的原则。“两部”是指练习或作业分为必做题和选做题两部分;“三层”是指教师在处理练习时要具有三个层次:第一层次为知识的直接运用和基础练习;第二、三两层次的题目为选做题,这样可使a层学生有练习的机会,b、c两层学生也有充分发展的余地。
分层教学下教师不能再“拿一个教案用到底”,而要精心地设计课堂教学活动,针对不同层次的学生选择恰当的方法和手段,了解学生的实际需求,关心他们的进步,改革课堂教学模式,充分调动学生的学习主动性,创造良好的课堂教学氛围,形成成功的激励机制,确保每一个学生都有所进步。
初中数学函数教学设计(专业15篇)篇六
1、了解公式的意义,使学生能用公式解决简单的实际问题;。
2、初步培养学生观察、分析及概括的能力;。
3、通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
一、教学重点、难点。
重点:通过具体例子了解公式、应用公式、
难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析。
人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构。
本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
四、教法建议。
1、对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2、在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3、在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
(一)知识教学点。
1、使学生能利用公式解决简单的实际问题、
2、使学生理解公式与代数式的关系、
(二)能力训练点。
1、利用数学公式解决实际问题的能力、
2、利用已知的公式推导新公式的能力、
(三)德育渗透点。
数学来源于生产实践,又反过来服务于生产实践、
(四)美育渗透点。
二、学法引导。
1、数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点。
2、学生学法:观察分析推导计算。
三、重点、难点、疑点及解决办法。
1、重点:利用旧公式推导出新的图形的计算公式、
2、难点:同重点、
3、疑点:把要求的图形如何分解成已经熟悉的图形的和或差、
四、课时安排。
1课时。
五、教具学具准备。
投影仪,自制胶片。
六、师生互动活动设计。
七、教学步骤。
(一)创设情景,复习引入。
板书:公式。
师:小学里学过哪些面积公式?
板书:s=ah。
(出示投影1)。解释三角形,梯形面积公式。
【教法说明】让学生感知用割补法求图形的面积。
(二)探索求知,讲授新课。
师:下面利用面积公式进行有关计算。
(出示投影2)。
例1如图是一个梯形,下底(米),上底,高,利用梯形面积公式求这个梯形的面积s。
师生共同分析:
1、根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些现在知道吗?
2、题中“m”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作等)。
学生口述解题过程,教师予以指正并指出,强调解题的规范性。
【教法说明】。
1、通过分析,引导学生在一个实际问题中,必须明确哪些量是已知的,哪些量是未知的,要解决这个问题,必须已知哪些量。
2、用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯。
(出示投影3)。
例2如图是一个环形,外圆半径,内圆半径求这个环形的面积。
学生讨论:
1、环形是怎样形成的、
2、如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导。
评讲时注意:
1、如果有学生作了简便计算,则给予表扬和鼓励:如果没有学生这样计算,则启发学生这样计算。
2、本题实际上是由圆的面积公式推导出环形面积公式。
3、进一步强调解题的规范性。
教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径。
测试反馈,巩固练习。
(出示投影4)。
1、计算底,高的三角形面积。
3、已知圆的半径,,求圆的周长c和面积s。
4、从a地到b地有20千米上坡路和30千米下坡路,某车上坡时每小时走千米,下坡时每小时走千米。
(1)求a地到b地所用的时间公式。
(2)若千米/时,千米/时,求从a地到b地所用的时间。
【教法说明】面向全体,分层教学,能照顾两极,使所有的同学有所发展、
八、随堂练习。
(一)填空。
1、圆的半径为r,它的面积________,周长_____________。
(二)一种塑料三角板形状,尺寸如图,它的厚度是,求它的体积v,如果,v是多少?
九、布置作业。
(一)必做题课本第___页x、x、x第___页x组x。
(二)选做题课本第___页___组x。
初中数学函数教学设计(专业15篇)篇七
函数是刻画和研究现实世界变化规律的重要模型,也是初中数学里代数领域的重要内容,它在初中数学中具有较强的综合性。在教学中,学生常常觉得函数抽象深奥,高不可攀,老师也觉得函数难讲,讲了学生也理解不了,理解了也不会解题。事实果真如此难教又难学吗?本文就初中函数教学中三个常见问题,谈谈在教学设计方面一些方法和实践。
数学知识的教学有两条线:一条是明线,即数学知识;一条是暗线,即数学思想方法。单独教授知识无益于课本的复读,利用数学思想进行教学和学习,才能真正实现数学能力的提高。
数学思想方法是对数学的知识内容和所使用方法的本质的认识,它是形成数学意识和数学能力的桥梁,是灵活运用数学知识、数学技能和数学方法解决有关问题的灵魂。日本数学教育家米山国藏在《数学的精神、思想和方法》一文中曾写道:学生在初中、高中等所接受的数学知识,因毕业进入社会后几乎没有什么机会应用这种作为知识的数学,所以,通常是出校门后不到一两年便很快就忘掉了。然而不管他们从事什么业务工作,唯有深深地铭刻于头脑中的数学的精神,数学的思维方法、研究方法、推理方法和着眼点等都随时随地发生作用,使他们受益终身。因此,在函数教学中,我们不仅要在教会函数知识上下功夫,而且还应该追求解决问题的“常规方法”——基本函数知识中所蕴含的思想方法,要从数学思想方法的高度进行函数教学。在函数的教学中,应突出“类比”的思想和“数形结合”的思想。
1.注重“类比教学”
不同的.事物往往具有一些相同或相似的属性,人们正是利用相似事物具有的这种属性,通过对一事物的认识来认识与它相似的另一事物,这种认识事物的思维方法就是类比法,利用类比的思想进行教学设计实施教学,可称为“类比教学”.
有经验的老师都会发现,初中学习的正比例函数、一次函数、反比例函数、二次函数在概念的得来、图象性质的研究、及基本解题方法上都有着本质上的相似。因此采用类比的教学方法不但省时、省力,还有助于学生的理解和应用。是一种既经济又实效的教学方法。下面我就举例说明如何采用类比的方法实现函数的教学。
首先是正比例函数,它是一次函数特例,也是初中数学中的一种简单最基本的函数。但是,我们有些教师却因为正比例函数过于简单,而轻视。匆匆给出概念,然后应用。等到讲到一次函数、反比例函数、二次函数又感到力不从心,学生接受起来概念模糊,性质混乱,解题方法不明确。造成这种困扰的原因是因为忽视正比例函数的基础作用,我们应该借助正比例函数这个最简单的函数载体,把函数研究经典流程完整呈现,正所谓“麻雀虽小,五脏俱全”。再学习其他函数时,在此基础上类比学习,循序渐进,螺旋上升。
初中数学函数教学设计(专业15篇)篇八
教学目标:
1.经历探索二次函数y=ax2的图象的作法和性质的过程,获得利用图象研究函数性质的经验。
2.能够利用描点法作出函数y=ax2的图象,并能根据图象认识和理解二次函数y=ax2的性质,初步建立二次函数表达式与图象之间的联系。
3.能根据二次函数y=ax2的图象,探索二次函数的性质(开口方向、对称轴、顶点坐标)。
教学方法:自主探索,数形结合。
教学建议:
利用具体的二次函数图象讨论二次函数y=ax2的性质时,应尽可能多地运用小组活动的形式,通过学生之间的合作与交流,进行图象和图象之间的比较,表达式和表达式之间的比较,建立图象和表达式之间的联系,以达到学生对二次函数性质的真正理解。
教学过程:
一、认知准备:
1.正比例函数、一次函数、反比例函数的图象分别是什么?
2.画函数图象的方法和步骤是什么?(学生口答)。
你会作二次函数y=ax2的图象吗?你想直观地了解它的性质吗?本节课我们一起探索。
二、新授:
(一)动手实践:作二次函数y=x2和y=-x2的图象。
(同桌二人,南边作二次函数y=x2的图象,北边作二次函数y=-x2的图象,两名学生黑板完成)。
(二)对照黑板图象议一议:(先由学生独立思考,再小组交流)。
1.你能描述该图象的形状吗?
2.该图象与x轴有公共点吗?如果有公共点坐标是什么?
3.当x0时,随着x的增大,y如何变化?当x0时呢?
4.当x取什么值时,y值最小?最小值是什么?你是如何知道的?
5.该图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点。
(三)学生交流:
1.交流上面的五个问题(由问题1引出抛物线的.概念,由问题2引出抛物线的顶点)。
2.二次函数y=x2和y=-x2的图象有哪些相同点和不同点?
3.教师出示同一直角坐标系中的两个函数y=x2和y=-x2图象,根据图象回答:
(1)二次函数y=x2和y=-x2的图象关于哪条直线对称?
(2)两个图象关于哪个点对称?
(3)由y=x2的图象如何得到y=-x2的图象?
(四)动手做一做:
1.作出函数y=2x2和y=-2x2的图象。
(同桌二人,南边作二次函数y=-2x2的图象,北边作二次函数y=2x2的图象,两名学生黑板完成)。
2.对照黑板图象,数形结合,研讨性质:
(1)你能说出二次函数y=2x2具有哪些性质吗?
(2)你能说出二次函数y=-2x2具有哪些性质吗?
(3)你能发现二次函数y=ax2的图象有什么性质吗?
(学生分小组活动,交流各自的发现)。
3.师生归纳总结二次函数y=ax2的图象及性质:
(2)性质。
a:开口方向:a0,抛物线开口向上,a〈0,抛物线开口向下[。
b:顶点坐标是(0,0)。
c:对称轴是y轴。
e:增减性:a0时,在对称轴的左侧(x0),y随x的增大而减小,在对称轴的右侧(x0),y随x的增大而增大,a〈0时,在对称轴的左侧(x0),y随x的增大而增大,在对称轴的右侧(x0),y随x的增大而减小。
4.应用:(1)说出二次函数y=1/3x2和y=-5x2有哪些性质。
(2)说出二次函数y=4x2和y=-1/4x2有哪些相同点和不同点?
三、小结:
通过本节课学习,你有哪些收获?(学生小结)。
1.会画二次函数y=ax2的图象,知道它的图象是一条抛物线。
a:开口方向:a0,抛物线开口向上,a〈0,抛物线开口向下。
b:顶点坐标是(0,0)。
c:对称轴是y轴。
e:增减性:a0时,在对称轴的左侧(x0=,y随x的增大而减小,在对称轴的右侧(x0),y随x的增大而增大,a〈0时,在对称轴的左侧(x0),y随x的增大而增大,在对称轴的右侧(x0),y随x的增大而减小。
初中数学函数教学设计(专业15篇)篇九
1、了解公式的意义,使学生能用公式解决简单的实际问题。
2、初步培养学生观察、分析及概括的能力。
3、通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
一、教学重点、难点。
重点:通过具体例子了解公式、应用公式。
难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析。
人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构。
本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的`先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
四、教法建议。
1、对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2、在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3、在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
(一)知识教学点。
1、使学生能利用公式解决简单的实际问题。
2、使学生理解公式与代数式的关系。
(二)能力训练点。
1、利用数学公式解决实际问题的能力。
2、利用已知的公式推导新公式的能力。
(三)德育渗透点。
数学来源于生产实践,又反过来服务于生产实践。
(四)美育渗透点。
数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美。
二、学法引导。
1、数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点。
2、学生学法:观察d分析d推导d计算。
三、重点、难点、疑点及解决办法。
1、重点:利用旧公式推导出新的图形的计算公式。
2、难点:同重点。
3、疑点:把要求的图形如何分解成已经熟悉的图形的和或。
四、课时安排。
1课时。
五、教具学具准备。
投影仪,自制胶片。
六、师生互动活动设计。
教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式。
初中数学函数教学设计(专业15篇)篇十
三角板、直尺。
教学过程。
一、复习导入:
1、回忆一下,你记得什么叫垂直吗?
板书课题:画垂线。
二、探究新知。
1、过直线上一点画这条直线的垂线。
三角板上有一个角是直角,通常可以用三角尺来画垂线。
1)先画一条直线。
2)把三角板的一条直角边与这条直线重合,沿着另一条直角边画出的直线就是前一条直线的垂线(直角顶点是垂足)。
强调:让三角板的'直角顶点落在给定的这点上。
过直线外一点画这条直线的垂线:
画线前让三角尺的另一条直角边通过这个已知点。
强调:
一般用左手持三角板,右手画线。当要求直线通过其一点时,要考虑到笔画的粗细度,三角板的边与已知点之间可稍留一些空隙。
教师讲解示范后,学生自己动手尝。
试着画一个,然后互相交流一下。
1)过直线外一点画这条直线垂线,该怎么画呢?
学生动手尝试,小组内交流。
2)直线外一点a与直线上任意一点连接起来,可以画出很多条线段。
学生独立的画出几条线段,其中包括一条垂线。
小组内研究交流:这几条线段在长度上有什么特点?
小结:从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。
三、巩固练习。
1、68页4题画一画。
2、69页5题。
我们在测定跳远成绩时,怎样测量比较准确呢?为什么?
3、69页6题。
怎样修路最近呢?
4、你能用一把直尺和一个量角器画一条直线的垂线吗?
四、课堂小结。
通过学习画垂线,你有什么体会?
五、作业。
练习画垂线。
学生回忆所学知识,并汇报。
互相垂直。
学生认真观察,学生尝试画垂线,学生叙述画垂线的步骤,学会画垂线的技巧,学生画垂线并互相交流,学生动手尝试,小组内交流。
全班汇报。
学生独立画出垂线,组内同学互查。
学生组内讨论,全班交流。
学生独立完成。
学生动手画垂线。
复习旧知识,为学习新课做准备。
通过练习,巩固画垂线的方法,初步培养学生空间想象能力。
初中数学函数教学设计(专业15篇)篇十一
1学习方式:
对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两个三角形间最简单,最常见的关系。它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线互相垂直、平行的重要依据。因此必须熟练地掌握全等三角形的判定方法,并且灵活的应用。为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,使学生经历从现实世界抽象出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。
2学习任务分析:
充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。
3学生的认知起点分析:
学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的.条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。
4教学目标:
(1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。
(2)掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。
(3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。
5教学的重点与难点:
重点:三角形全等条件的探索过程是本节课的重点。从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。
根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。
6教学过程。
教学步骤。
教师活动。
学生活动。
教学媒体(资源)和教学方式。
复习过渡。
引入新知。
创设情景。
提出问题。
建立模型。
探索发现。
归纳总结。
得出新知巩固运用。
及其推广。
反思小结。
提炼规律。
电脑显示,带领学生复习全等三角定义及其性质。
对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生个性思维。
初中数学函数教学设计(专业15篇)篇十二
1、让学生了解鄂伦春族的服饰特点、生活习性等简单知识。培养学生热爱少数民族的感情。
2、有感情地演唱歌曲《勇敢的鄂伦春》。
重点:演唱歌曲《勇敢的鄂伦春》。
难点:
1、歌曲中“一呀一杆枪”“日夜巡逻”的音准及咬字吐字。
2、用打击乐器敲打节奏并尝试三个声部的敲击并能为歌曲伴奏。
一、情境引入。
教师头戴小鹿头饰:小朋友们,大家好!我是森林里的小鹿,今天,我想邀请大家到森林里去郊游。(课件:出示森林图片,背景音乐《小鹿,小鹿》。)。
师:森林里有许多可爱的小动物,我们来看看都有谁呀!
(课件:逐一出示各种小动物图片。)。
师:我还给大家带来一首好听的儿歌,请小朋友们轻轻拍手为我伴奏好吗?
(教师拍手读两遍歌词,适当做简单律动。)。
二、学唱歌曲。
师:小朋友快瞧,那里有一群我的小伙伴唱着歌向我们跑过来了。
(课件:出示一群奔跑的小鹿,同时播放歌曲录音。)。
师:现在我们来到了森林游乐园,大家看,这只看门的小鹿好象有话要对我们说。
三、游戏创编。
学生戴上各种小动物的头饰。
(课件:小鹿说:“大家先别着急,我还有要求呢,你们要把歌里唱的小鹿是怎么做的跟自己平时玩的游戏结合起来,教给游乐园里的小动物,怎么样,能做到吗?)。
学生分组创编,教师巡视指导。
四、分组展示。
学生依次展示两到三组,每组展示完可由教师和学生进行评价。
五、集体游戏。
师:小朋友们玩的游戏可真精彩,我也想把自己编的游戏跟大家一起玩,谁愿意上来?(挑选10人左右上台)。下面的小朋友,请你拍手为我们伴奏,学会了这个游戏,下课后可以跟你的小伙伴一起玩呢!
教师讲解游戏规则,与学生进行游戏。
六、结束部分。
(课件:小鹿说:“小朋友们,时间过得真快,我们的郊游要结束了,可我看到咱们玩过的地方有许多小朋友留下的垃圾,如果每个人都这样不爱护环境,我的家会变成什么样子呀!”)。
师:小朋友们,我们该怎么办呢?(学生自由说)。
师:那让我们一起行动起来,还小动物们一个美丽的家吧!
将本文的word文档下载到电脑,方便收藏和打印。
初中数学函数教学设计(专业15篇)篇十三
1、引入新课时,教师从学生的实际出发,关注学生的生活经念和知识基础,从复习有关垂直知识入手,唤起学生的回忆,为新知识的探究学习做了较好的准备。以此来激发学生的参与兴趣,感受由垂线组成图形的规矩之美,从而产生亲近数学的情感。
2、新知探究部分,充分发挥学生的主体性,体现以人为本。先让学生画一条直线,经过直线上一点画一条垂线,学生们画出了不同方位直线的不同侧的垂线,初步体会了用作图工具三角尺画出的垂线比较规范;然后教师演示过直线上一点画已知直线的垂线的方法并同步介绍作图步骤。然后放手让学生画过直线外一点画已知直线的垂线。大家通过动口交流动手操作合作学习,积极主动地投入到垂线画法的探究过程中去,利于了培养学生操作技能的形成和实践能力的培养。既发挥了学生的学习主动性,又体现了教师的指导作用,提高了学生学习的有效性。
3、课上还有许多不足之处:
(1)时间把握的不够好,造成后面的练习题没有足够的时间给学生做一做。
(2)学生在自主探究画法时教师对个别“差生”的关注、指导的作用发挥的欠缺。
今后要继续加强备课、预知好学情,注重教法学法的研究与应用,促进教学的实效性的提高。
初中数学函数教学设计(专业15篇)篇十四
这节课是人教版八年级第十八章第一节的内容,教学内容是勾股定理公式的推导、证明及其简单的应用。本节课是在学生已经掌握了直角三角形有关性质的基础上进行学习的,勾股定理是几何中最重要的定理之一,它揭示的是直角三角形中三条边之间的数量关系,将数与形密切联系起来,为以后学习四边形、圆、解直角三角形等数学知识奠定了基础。它有着丰富的历史背景,在数学的发展中起着重要的作用,在现实生活中也有着广泛的应用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
知识与技能
探索勾股定理的内容并证明,能够运用勾股定理进行简单计算和运用
过程与方法
(1)通过观察分析,大胆猜想,探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。
(2)在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学过程,并体会数形结合和从特殊到一般的思想方法。
情感态度与价值
(1)在探索勾股定理的过程中,培养学生的合作交流意识和探索精神,增进数学学习的信心,感受数学之美,探究之趣。
(2)利用远程教育资源介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。
教学重点
探索和证明勾股定理 ·教学难点
用拼图的方法证明勾股定理
(学法)“引导探索法”
(自主探究,合作学习,采用小组合作的方法。
课件、三角板
教学环节1
(1) 你见过这个图案吗?
(2) 你听说过“勾股定理”吗?
学生活动:学生思考回答
设计意图:目的在于从现实生活中提出“赵爽弦图”,进一步激发学生积极主动地投入到探索活动中,同时为探索勾股定理提供背景材料。
教学环节2 教学过程:实验操作获取新知归纳验证完善新知
教师活动:出示课件,引导学生探索
学生活动:猜想实验合作交流画图测量拼图验证
设计意图:渗透从特殊到一般的数学思想。为学生提供参与数学活动的时间和空间,发挥学生的主体作用;让学生自己动手拼出赵爽弦图,培养他们学习数学的成就感。通过拼图活动,使学生对定理的理解更加深刻,体会数学中的数形结合思想,调动学生思维的积极性,激发学生探求新知的欲望。给学生充分的时间与空间讨论、交流,鼓励学生敢于发表自己的见解,感受合作的重要性。
教学环节3 教学过程:解决问题应用新知
教师活动:出示例题和练习
学生活动:交流合作,解决问题
设计意图:通过运用勾股定理对实际问题的解释和应用,培养学生从身边的事物中抽象出几何模型的能力,使学生更加深刻地认识数学的本质:数学来源于生活,并能服务于生活,顺利解决如何将实际问题转化为求直角三角形边长的问题,培养学生的数学应用意识。
教学环节4 教学内容:课堂小结巩固新知布置作业
教师活动:引导学生小结
学生活动:讨论交流、自由发言
设计意图:既引导学生从面积的角度理解勾股定理,又从能力、情感、态度等方面关注学生对课堂整体感受,在轻松愉快的气氛中体会收获的喜悦。
通过布置课外作业,给学生留有继续学习的空间和兴趣,及时获知学生对本节课知识的掌握情况,适当的调整教学进度和教学方法,并对学习有困难的学生给与指导。
勾股定理:如果直角三角形的两直角边分别为a和b,斜边为c,那么 a2+b2=c2。
如图,将长为10米的梯子ac斜靠在墙上,bc长为6米。
(1)求梯子上端a到墙的底端b的距离ab。
(2)若梯子下部c向后移动2米到c1点,那么梯子上部a向下移动了多少米?
1。收集有关勾股定理的证明方法, 下节课展示、交流。
2。做一棵奇妙的勾股树(选做)
初中数学函数教学设计(专业15篇)篇十五
(1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。
(2)掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。
(3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。
重点:三角形全等条件的探索过程是本节课的重点。
从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。
难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。
点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。
电脑显示,带领学生复习全等三角定义及其性质。电脑显示,小明画了一个三角形,怎样才能画一个三角形与他的三角形全等?我们知道全等三角形三条边分别对应相等,三个角分别对应相等,那麽,反之这六个元素分别对应,这样的两个三角形一定全等。但是,是否一定需要六个条件呢?条件能否尽可能少吗?对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生个性思维。
按照三角形“边、角”元素进行分类,师生共同归纳得出:
1、一个条件:一角,一边。
2、两个条件:两角;两边;一角一边。
3、三个条件:三角;三边;两角一边;两边一角。
按以上分类顺序动脑、动手操作,验证。
教师收集学生的作品,加以比较,得出结论:
只给出一个或两个条件时,都不能保证所画出的三角形一定全等。
下面将研究三个条件下三角形全等的判定。
(1)已知三角形的三个角分别为40°、60°、80°,画出这个三角形,并与同伴比较是否全等。
学生得出结论后,再举例体会一下。举例说明:
再如同是:等边三角形,边长不等,两个三角形也不全等。等等。
(2)已知三角形三条边分别是4cm,5cm,7cm,画出这个三角形,并与同伴比较是否全等。
板演:三边对应相等的`两个三角形全等,简写为“边边边”或“sss”。
由上面的结论可知:只要三角形三边的长度确定了,这个三角形的形状和大小就确定了。
实物演示:
由三根木条钉成的一个三角形框架,它的大小和形状是固定不变的,三角形的这个性质叫三角形的稳定性。
举例说明该性质在生活中的应用。
类比着三角形,让学生动手操作,研究四边形、五边性有无稳定性。
图形的稳定性与不稳定性在生活中都有其作用,让学生举例说明。
题组练习(略)。
3、(对有能力的学生要求把实际问题抽象成数学问题,根据自己的理解写出推理过程。对一般学生要求口头表达理由,并能说明每一步的根据。)。
教师带领,回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律。
在教师引导下回忆前面知识,为探究新知识作好准备。议一议:
学生分小组进行讨论交流。受教师启发,从最少条件开始考虑,一个条件;两个条件;三个条件?经过学生逐步分析,各种情况渐渐明朗,进行交流予以汇总,归纳。
想一想:
对只给一个条件画三角形,画出的三角形一定全等吗?
画一画:
30,一条边为3cm。
剪一剪:
把所画的三角形分别剪下来。
比一比:
学生模仿上面的研究方法,独立完成操作过程,通过交流,归纳得出结论。鼓励学生自己举出实例,体验数学在生活中的应用。学生那出准备好的硬纸条,进行实验,得出结论:四边形、五边形不具稳定性。
学生练习。
学生在教师引导下回顾反思,归纳整理。
z+z平台演示。
z+z平台演示,教师加以分析。学生分组讨论,师生互动合作。
经过对各种情况得分析,归纳,总结,对学生渗透分类讨论的数学思想。结论很显然只需学生想像即可,z+z平台辅助直观演示。学生动手操作,通过实践、自主探索、交流,获得新知。