教学计划的制定应包括教学目标的设定、教学内容的选择和教学方法的设计等内容。如果你正在为教学计划的编写感到困惑,不妨看看下面的范文,或许能给你一些灵感。
比例的意义数学教学设计(汇总18篇)篇一
知识与技能目标:使学生理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。
(一)复习猜想导入,引出问题。
1、成正比例的量有什么特征?什么叫正比例关系?
2、在生活中两个相关联的量有的成正比例关系,还可能成什么关系?学生很自然想到反比例,激发学生的学习欲望,问学生想学反比例的哪些知识,学生大胆猜测,对反比例的意义展开合理的猜想。由此导入新课。
达成目标:猜想导课,激发探究愿望。
(二)共同探索,总结方法。
1、明确这节课的学习目标:(1)理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。(2)经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。
2、情境导入,学习探究。(1)我们先来看一个实验。
高度(厘米)。
底面积(平方厘米)10。
体积(立方厘米)。
提问:根据列表,你从中你发现了什么?
(2)学生讨论交流。
(3)引导学生回答:表中的两个量是高度和底面积。
高度扩大,底面积反而缩小;高度缩小,底面积反而扩大。
每两个相对应的数的乘积都是300.(4)计算后你又发现了什么?
每两个相对应的数的乘积都是300,乘积一定。
教师小结:我们就说水的高度和体积成反比例关系,水的高度和体积是成反比例的量。
教师提问:高底面积和体积,怎样用式子表示他们的关系?板书:高×底面积=水的体积(一定)。
(5)如果用字母x和y表示两种相关联的量,用k表示他们的积一定,反比例关系可以用一个什么样的式子表示?板书:x×y=k(一定)。
小结:通过上面的学习,你认为判断两种相关联的量是否成反比例,关键是什么?
(6)归纳总结反比例的意义。(7)比较归纳正反比例的异同点。
达成目标:比较思想是在小学数学教学中应用十分普遍的数学思想方法,《成反比例的量》是继《成正比例的量》一课后学习的内容,两节课的学习内容和学习方法有相似之处,学生从知识的差别中找到同一,也可以从同一中找出差别,学生学习新知识,进行深化拓展,归纳总结。
(三)运用方法,解决问题。
1、生活中,哪些相关联的量成反比例关系,举例说一说。
2、课后做一做每天运的吨数和运货的天数成反比例关系吗?为什么?
3、出示反比例图像,与正比例图像进行比较学习。
达成目标:学生利用对反比例概念的理解,判断相关联的量是否成反比例,学会分析并进行判断。
(四)反馈巩固,分层练习。
判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
达成目标:使学生体会到数学来源于现实生活,又服务于现实生活的特点,体现数学的应用性。
(五)课堂总结,提升认识。
反比例。
高度(厘米)。
底面积(平方厘米)10。
体积(立方厘米)。
300。
300。
300。
300300高度扩大,底面积反而缩小;高度缩小,底面积反而扩大。高×底面积=水的体积(一定)反比例关系式:x×y=k(一定)。
比例的意义数学教学设计(汇总18篇)篇二
1、结合具体情境,通过计算,能说出比例的意义。
3、通过观察、比较、小组讨论说出比和比例的区别。
比例的意义,应用比例的意义判断两个比是否能构成比例。
教学过程。
一、复习旧知、导入新课。
同学们,以前我们学习了比,现在大家想一想,什么是比?比有几项?比有什么性质?并给我们举出实例。
二、比较分析,探究新知。
1、出示情景图,说一说各幅图的情景。
第一幅:xx前的升国旗仪式。
第二幅:学校每周一的升旗仪式。
第三幅:教室前面的红旗。
第四幅:谈判桌上的红旗。
(对学生进行爱国主义教育)。
问题:
1:你能说一说这四幅图中国旗的相同点和不同点吗?
2:你们想知道这些长和宽是多少吗?
出示国旗的长宽数据。
3:请同学们观察、计算一下,国旗的长和宽的比值是多少?
4:探求共性,概括意义。
师:比较一下,你什么发现?
师:那既然这两个比的比值相等,请你想想用什么符号把这种关系表示出来!
生:用等号(师把左右两个中间板书=)。
生:表示相等的两个比。
生:表示两个比值相等的比。
(师板书:比相等)。
师:像这样表示两个比相等的式子叫做比例。板书。
同桌互相说说。
这个就是今天我们学习的——比例的意义(板书:比例的意义)。
三、合作探究,进一步理解比例。
1、探索组成比例的条件。
师:请同学们再默读一遍比例的意义,思考:想要组成比例必须要具备哪些条件?
(教师再强调:一定是比值相等的两个比才能组成比例。)。
2、寻找比例。
师:你还能从四面国旗中找出哪些比例?(学生写在练习本上,然后汇报。教师板书2.4∶1.6=15∶1060∶40=5∶)。
3、介绍比例的第二种表示方法。
师:我们在学习比的时候,可以把比写成分数的形式,那比例也能写成分数的形式吗?怎么写?(学生口答,教师板书:)。
4、区分比和比例。
师:我们刚才一直在强调比和比例的联系,那么比就是比例吗?(小组交流)。
从形式上区分:比由两个数组成;比例由四个数组成。
从意义上区分:比表示两个数相除;比例表示两个比相等的式子。
四、根据意义,判断比例。
生:看比值是不是相等。
五、总结。
师:这节课,大家都非常积极和认真,老师相信你们的收获肯定很多,那谁来说说本节课有什么收获?(学生自由说)。
比例的意义数学教学设计(汇总18篇)篇三
1.使学生在具体情景中理解比例的意义,掌握组成比例的关键条件;能应用比例的意义判断两个比能否组成比例。
2.使学生感受数学知识的内容联系,学会综合运用所学知识,增强分析问题和解决问题的能力。
:在具体情境中理解比例的意义。
运用比例的意义判断两个比能否组成比例,并能正确组成比例。
教学课件。
(一)复习旧知识导入新课。
同学们,我们已经学了有关比的知识,请大家回忆一下什么叫比?什么叫比值?比的基本性质是什么?看来,同学们对比的知识掌握的不错。今天我们一起来学习与比有关的知识,比例的意义。
(二)探究新知识
1.初步理解比例的意义。
请同学们看一组图片,依次出现三面国旗课件。让学生分别说出都是什么地方的国旗?
请仔细观察这三面国旗有哪些相同的地方和不同的地方?(这三面国旗形状相同,大小不同。)
师:不同场合的国旗大小是不一样的,但是他们是按一定的比制作的,在制作过程中,每面国旗长与宽存在有趣的比,你想知道吗?那就让我们算一算吧。
请大家根据国旗下面的数据,分别算出每面国旗长与宽的比值。
让一名学生在黑板上计算,其余学生写在练习本上。
提问:通过计算你发现了什么?(每面国旗长与宽的比值相等。)
根据这三个比,从中任意选两个比能不能组成一个等式。
让学生分别说出三个等式:0202
5:10/3=3/25:10/3=2.4:1.6
2.4:1.6=3/2=5:10/3=60:40
60:40=3/22.4:1.6=60:40
提问:这些等式有什么相同点?(都有两个比,并且两个比的比值相等。)
像这样的等式,叫做比例?
谁能用自己的话说一说什么叫比例?学生
引导学生看课本40页教材上是怎样定义的?学生齐读。
教师板书:表示两个比相等的式子叫做比例。
在这句话中有哪些字或词最关键:两个比相等。
师:根据比例的意义让学生举一些比例的例子。
生:a:b=c:d或a/b=c/d
2.深化了解比例的意义
刚才我们通过计算发现,国旗长与宽的比值相等。
所以每两面国旗的长与宽可以组成比例。
除此之外,还有哪些比可以组成比例?分别写出来,根据国旗下面长与宽的数据小组合作交流:
师:根据学生汇报,将组成的比例板书。
宽:长=宽:长长:长=宽:宽
10/3:5=40:605:2.4=10/3:1.6
10/3:5=1.6:2.45:60=10/3:40
1.6:2.4=40:602.4:60=1.6:40
老师这里有两个比它们是否相等?强调:只有对应的量之间的比比值才相等。才可以组成比例。板书:第一面的长:第一面的宽和第二面的宽:第二面的长。学生发现不相等,师:为什么不相等。师结合板书归纳(出示课件)师根据学生们找的结果,我们看到这三面国旗的长与宽的比值都相等,所以每面国旗的长与宽的比都可以组成比例。同样,宽与长的比值也都相等,所以每两面国旗宽与长的比可以组成比例。
每两面国旗长与长的比可以和宽与宽的比组成比例。
(三)练习巩固
做一做。
(1)6:10和9:15
(2)20:5和1:4
(3)0.6:0.2和3/4:1/4
(4)4:3和2:1.5
两名同学板书,其他同学写在练习卡上,让学生讲解并纠错。
(四)请同学们看一看比例,比和比例有什么联系和区别?根据学生回答教师课件出示表格。
意义:两个数相除叫做两个数的比。表示两个比相等的式子。
项数:两项四项
联系:比例是由两个比组成的。
(五)当堂训练:
(六)课堂总结:
今天我们学习了比例的意义,你有什么收获?
比例的意义数学教学设计(汇总18篇)篇四
1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。
2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。
3、初步渗透函数思想。
教学重点:引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式。
教学难点:利用反比例的意义,正确判断两个量是否成反比例。
比例的意义数学教学设计(汇总18篇)篇五
教学目的:
1.使学生理解反比例的意义.能够正确判断两种量是不是成反比例。2.使学生进一步认识事物之间的相互联系和发展变化规律。3.初步渗透函数思想。
一、谈话导入:
师:咱们一块做几道题判断一下。出示:
1、除数一定,被除数和商。
2、单产量一定,总产量和面积。
3、加数一定,和和另一个加数。
4、每张纸厚度一定,总厚度和纸的张数指名说并说请判断依据。
师:看来大家对正比例知识理解掌握得不错,学完正比例接下来我们该学习什么了?(生答)是啊,有正就有反,这节课我们就来探究反比例的有关知识(板书:反比例)。
二、学习。
师:既然正与反意义是相反的,大家猜想一下,成反比例的两个量的关系是怎样的呢?(生猜想)。
师:到底同学们的猜想是否正确?我们要用事实来验证。独立填写研究单,然后在组内交流。
学生自己填,在小组活动,师巡视学生台前展示交流。
师:对于这句话大家有什么不理解的吗?判断两个量是否成反比例的要点是什么?
指名说,(大屏幕出示红色字)。
师强调:要想判断两个量是不是成反比例,除了要相关联,最重要的一点就是要保证这两个量乘积一定。
出示表格,明确正比例和反比例的异同点。
师:今天我们学习了反比例关系,对于今天学过的内容,大家还有疑问吗?
三、练习。
1、书上51页8、9、10题,独立写,集体交流。
2、书上51页11题,指名交流,说理。
四、总结。
师:这节课你有什么收获?指名说。
师:我们不仅收获了知识,更重要的是运用学过的知识学习了新的内容,掌握了这种学习方法,并且不断反思,不断总结,相信我们会在数学的道路上越走越远。
比例的意义数学教学设计(汇总18篇)篇六
购买练习本的价钱0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本。
2、成正比例的量有什么特征?
二、探究新知。
1、导入新课:这节课我们继续学习常见的数量关系中的另一种特征成反比例的量。
2、教学p42例3。
(1)引导学生观察上表内数据,然后回答下面问题:
a、表中有哪两种量?这两种量相关联吗?为什么?
b、水的高度是否随着底面积的变化而变化?怎样变化的?
d、这个积表示什么?写出表示它们之间的数量关系式。
(2)从中你发现了什么?这与复习题相比有什么不同?
a、学生讨论交流。
b、引导学生回答:
(3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。
(4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:xy=k(一定)。
三、巩固练习。
1、想一想:成反比例的量应具备什么条件?
2、判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
(6)你能举一个反比例的例子吗?
四、全课小节。
这节课我们学习了成反比例的量,知道了什么样的'两个量是成反比例的两个量,也学会了怎样判断两种量是不是成反比例。
五、课堂练习。
p45~46练习七第6~11题。
比例的意义数学教学设计(汇总18篇)篇七
2、了解比例和比的区别。
3、能根据比例的意义正确判断两个比能否组成比例。
4、探索国旗中蕴含的数学知识,渗透爱国主义教育。
一、创设情境,目标认同。
1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。
教师把学生举的例子板书出来,并注明比的各部分的名称。
2、我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗?教师板书出下面几组比,让学生求出它们的比值。
12:16。
3/4:1/8。
4.5:2.7。
10:6。
学生求出各比的比值后,再提问:你有什么发现?
(4.5:2.7的比值和10:6的比值相等。)。
教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)。
二、自主探究,构建新知。
1、学生观察课本情境图,激发爱国情操。
2、板书国旗的长和宽,并提出问题。
天安门升国旗。
仪式:长5米,宽10/3米。
校园升旗仪式:长2.4米,宽1.6米。
教室场景:长60厘米,宽40厘米。
签约仪式:长15厘米,宽10厘米。
师生交流,得出每面国旗的大小不一,但是它们的长和宽隐含着共同的特点,是什么呢?
3、学生探索,发现问题。
师:每面国旗的大小不一样,但是它的长和宽中却隐含着共同的特点,是什么呢?
学生自主观察、计算,发现国旗的长和宽的比值相等。
(1)比较学校操场上和教室里的国旗长与宽的比值。
2.4:1.6=3/260:40=3/2。
2.4:1.6=60:40。
(2)在这四面国旗的尺寸中,你还能找出哪些比可以组成比例?学生回答,教师板书(说明:四面国旗的大小不同,但因为是按照一定的比制作的,它们的长与宽的比值是相等的。)。
像这样表示两个比相等的式子叫做比例。
4、我们也学过不同的两个量也可以组成一个比,如:
一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:
指名学生读题。
教师:这道题涉及到时间和路程两个量的关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位“时”,第二栏表示路程,单位“千米”。
这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问边填写表格。)。
“你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?”教师根据学生的回答,板书:
第一次所行驶的路程和时间的比是80:2。
第二次所行驶的路程和时间的比是200:5。
让学生算出这两个比的比值。
指名学生回答,教师板书:80:2=40,200:5=40。
让学生观察这两个比的比值。再提问:你们发现了什么?”(这两个比的比值都是40,这两个比相等。)。
教师说明:因为这两个比相等,所以可以把它们用等号连起来组成比例。(板书:80:2=200:5)像这样表示两个比相等的式子叫做比例。
5、比较“比”和“比例”两个概念。
三、练习反馈,巩固新知。
做p33“做一做”。
让学生看书,不抄题,直接把能组成比例的两个比写在练习本上,教师边巡视边批改,对做得不对的,让他们说说是怎样做的,看看自己做得对不对。
四、拓展迁移,升华新知。
比例的意义数学教学设计(汇总18篇)篇八
2、能根据比例的意义,正确判断两个比能否组成比例。
3、在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。
理解比例的意义,能正确判断两个比能否组成比例。
在学生观察、操作、推理和交流的过程中,发展学生的探究能力和精神。
两张照片。
1、预习课本第40页例3,
2、分别写出每张照片长和宽的比,并比较这两个比的关系,知道什么叫做比例。
3、在课本上完成第40页练一练。
一、预习效果检测。
1、昨天学习了图形的放大和缩小?放大或缩小后的图形与原来的图形有什么关系?
2、关于比你有哪些了解?(生答:比的意义、各部分名称、基本性质等。)。
还记得怎样求比值吗?希望这些知识能对你们今天学习的新知识有帮助。
3、什么叫做比例?
二、合作探究。
1、认识比例。
(1)呈现放大请后的两张长方形照片及相关的数据。要求学生分别写出每张照片长和宽的比。
(2)比较写出的两个比,说说这两个比有什么关系?你是怎样发现的?(求比值,或把它们分别化成最简比)。
数学中规定,像这样的式子就叫做比例。(板书:比例)。
(4)你能说说什么叫比例吗?(让学生充分发表意见,在此基础上概括出比例的意义)。
(5)学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。
2、学以致用。
(1)学习比例的意义有什么用呢?(可以判断两个比是否可以组成比例。)。
(2)分别写出照片放大后和放大前的长的比和宽的比,这两个比也能组成比例吗?
学生独立完成,再说说是怎样想的?由此可以使学生对比例意义的丰富感知。
(3)你能根据以上照片提供的数据,再写出两个比,并将它们组成比例吗?
3、交流“练一练”的完成情况。
三、当堂达标检测。
1、做练习九第3题。
先写出符合要求的比,再说清楚相应的两个比是否能够组成比例的理由。
2、做练习九第4题。
独立审题,说说解题步骤,在独立完成。同时找两个同学板演。
3、做练习九第7题。
(1)弄懂什么是“相对应的两个量的比”。如240米是4分钟走的路程,所以240米与4分钟是相对应的两个量。
(2)分组完成,同时四人板书,再讲评。
完成后反馈、引导学生进行汇报交流,及时修正自己的答案。
提出疑问,总结全课。
比例的意义数学教学设计(汇总18篇)篇九
1.联系图形的放大和缩小理解比例的意义,通过练习使学生进一步理解、掌握比例的意义。
2.理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。
3.通过多样化教学,使学生自主获取知识,全面参与教学活动,培养学生分析、概括能力、和数学的思维能力。
4.学生在认识比例的过程中,联系列表策略,初步体会数学领域不同内容的内在联系,建构知识网络,促进有效学习,培养学生对数学的积极情感。
理解比例的意义。
应用比例的意义判断两个比能否组成比例,并能正确地组成比例。
1、求下面比的比值? 90:30 5:10/3 2.4:1.6
(一)学习新知
1.教学比例的意义。
(2). (课件再出示学生照片)师:现在我把这张照片放大,这是放大前后的两张照片。你发现了什么?引导、交流。
生:第二张照片变形了。因为它没有按照一定的比例放大。看!小小的照片就蕴藏着很多数学知识,只要你善于思考,就会有收获!那么今天我们就在比的基础上研究比例——比例的意义。(板书课题)
(3).我们继续看这两张照片,根据所给的数据,你能找出长和宽的比吗?看看有什么发现。
学生独立思考并解答,
生:我发现两个比的比值相等。
师:原来不变形,按比例缩放指的是可以找到两个比值相同的比。因为它们的比值相等,我们可以用等号连接起来,写成这样的一个等式。
师板书,学生在下面写。
师:揭示定义:(板书)像这样表示两个比相等的式子叫做比例。
这就是一个比例。因为比可以写成分数的`形式,所以比例换一种形式写出来。
(板书比例的另一种写法)学生下面写。
师:那么怎么判断两个比是否能组成比例呢?
生:如果两个比化简后的比相同或它们的比值相等,那么这两个比就能组成比例。
2.丰富对比例的感知
师:生活中还有很多“按比例”缩放的现象,(课件出示国旗图)这是在学校出现的两面国旗,国旗是我们中华人民共和国的标志,请你根据长宽的数据,看看能不能组成比例。
学生独立思考,找生汇报。
师:不同场合的国旗大小不一样,但长与宽的比是固定的。除了长与宽的比,你还能组成其它的比例吗?学生交流,汇报。
师:长与宽的比值相等,宽与长的比值相等,长与长宽与宽比值也相等,所以都能组成比例。但是,只有对应量之间的比,比值才相等,才可以组成比例。
谈话:你会判断两个比能否组成比例了吗?下面我们来检验一下。
1.完成练习(课件出示,要求写格式)
学生板演
2、完成表格题,注意学生找出对应的量。
3、三角形找比例,看能找出多少个。
师:其实比例在生活中无处不在,我们一起看一看。
比例的意义数学教学设计(汇总18篇)篇十
1使学生理解什么是相关联的量。
3学会判断两个量是否成正比例关系。
一、导入。
师(板书:关联):知道关联是什么意思吗?
生:指事物之间有联系。
生:也可以指事物之间相互影响。
师:对,关联就是指事物之间发生牵连和影响。
师:能举一些生活中相互关联的例子吗?
生:天气热了,我们身上穿的衣服就少一些;天气冷了,穿的衣服就会多一些,气温与我们穿的衣服是相关联的。
生:我的考试分数多了,爸爸妈妈就很高兴;如果少了,他们的脸上就会阴云密布,所以我的考试分数与家长的脸色也是相关联的。(其他学生大笑)。
生:我想姚明打球时,姚明的动作与防守他的对方队员的动作也是相关联的,即姚明怎么动,对方总有一个相应的对策,不可能永远不变。
这时,一名学生干脆带着他的同桌走到讲台上,两个人当着全班学生的面,做起了学生经常玩的推手游戏,即一人推手,另一人立刻向后闪开。然后这位学生说:“我们刚才的动作也是相关联的。”
生:上星期,我们班举行智力竞赛,每个小组每答对一题就得到10分,答对两题得到20分……答对的题目越多,分数也就越高。因此,我认为答对的题目与最后的成绩也是相关联的。
二、新授。
师:好一个答对的题目与最后的成绩相关联!我们把它们的情况列成下面的表格,可以吗?
师:从这个表格中。你还知道什么?
生:答对一题得10分,答对两题得20分,答对三题得30分……。
师:表中有哪两个量?它们的关系怎样?
生:答对的题目与最后的成绩,它们是两个相关联的量。
师:你们能够从中发现什么规律?
生:从左向右看,答对的题目越多,分数就越高;从右向左看,答对的题目越少,成绩就越低。
师:还能发现什么呢?
生:答对的次数扩大多少倍,得分也随着扩大多少倍;反之,答对的次数缩小多少倍,得分也随着缩小多少倍。
师(小结):也就是说,成绩随着答对的次数变化而变化,像这样的两个量也叫做相关联的量。
(随着学生的回答,师板书:10/1=10、20/2=10、30/3=10、40/4=10……)。
师:刚才这位同学在算出比值的时候,你们发现了什么?
生:不管怎样,它们的比值不变。
师:这个比值实际上就是什么呀?(板书:每题的分数)。
师:你能用一个关系式表示吗?
板书关系式:成绩/答对的题目=每题的分数(一定)。
师:我们再来看一道题目。请每个小组的小组长,将桌上信封中的信息单分给每一位同学。同学们可以根据上面的四个问题进行分析,在小组内讨论交流。如果你们遇到了什么问题,可以举手,老师非常乐意帮助你们。(投影出示例1)。
1表中有()和()两种量。
2路程是怎样随着时间的变化而变化的?
3任意写出三个相对应的路程和时间的比,并算出它们的比值。
4比值实际上表示(),请用式子表示它们的关系。
(学生交流汇报,师板书关系式)。
(结合学生的.发言,教师逐一板书,最后由学生通过看书,归纳出正比例的意义,由此完成概念教学)。
反思:
从学生感兴趣的事情入手,关注学生已有的知识与经验,并通过现实生活中的生动素材引入新课,使抽象的数学知识具有丰富的现实基础,为学生的数学学习创设了生动活泼的情境,课堂气氛活跃。
以往教学此内容时,学生理解相关联的量仅仅局限于“比值一定”,与后面学习“反比例的意义”教学未能形成有效的联系,因而教学收效不大。此次教学,首先从教学目标上进行修改,增加了第一个教学目标,即“理解什么是相关联的量”。教学设计大胆开放,真正关注学生的经验和兴趣。教材的重点并不一定是学生学习的难点在这里得到了充分的体现,给抽象的数学知识赋予了浓厚的现实背景,体现了新课程标准的教学理念,改变了传统教学强调接受、机械训练的学习方式。最后,由学生独立得出结论,培养了学生解决问题的能力。看似在新授之前浪费了不少时间,实则高效地完成了教学任务,使学生有了更多自主、个性探究的机会,值得借鉴与提倡。
比例的意义数学教学设计(汇总18篇)篇十一
人教版六年制第十二册第42~43页的内容。
二、教学目标。
(一)经历探索两种相关联的量的变化过程,发现规律,理解反比例的意义。
(二)根据反比例的意义,正确判断两种量是否成反比例。
(三)渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。
三、教学难点。
正确判断两种相关联的量是否成反比例。
四、教学过程。
(一)情境导入。
1.课前谈话:同学们,你们去过南昌吗?你知道萍乡到南昌需要多长时间吗?(媒体显示:几年前,我乘坐由萍乡开往南昌的k8727次列车需要4小时到达,现在改乘d117次列车,只需2小时5分钟,这是为什么呢?)。
2.学生对上述问题发表意见。
3.师:今天,我们就来研究这种类型的问题。
(二)探索新知。
将本文的word文档下载到电脑,方便收藏和打印。
比例的意义数学教学设计(汇总18篇)篇十二
(1)知识与技能:使学生理解比例的意义,能应用比例的意义判断两个比能否构成比例。
(2)过程与方法:通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。
(3)情感、态度与价值观:培养学生在实际生活中发现数学的存在,并在实际生活中能感受到数学的趣味,提高学生学习数学的积极性。
比例的意义,应用比例的意义判断两个比是否能构成比例。
多媒体课件。
一、创设情境,导入新课。
同学们,当你看到这面迎风飘扬的五星红旗时,你会想到什么?(生自由汇报,师相机引出儿歌《国旗国旗真美丽》)一首《国旗国旗真美丽》仿佛让我们回到了一年级刚刚入学的那会儿,而如今,一转眼我们已经是六年级毕业班的学生了,希望你们能好好珍惜和利用小学阶段的最后一个学期加强学习,为进入初中继续学习数学知识打下良好的基础。
五星红旗是庄严而美丽的,并且它与我们的数学也有着密切的联系,今天就让我们一起去研究国旗中的数学知识:比例(板书课题:比例)。
从课题中我们不难看出,比例和我们以前学过的哪个知识有一定的关系(比)你们还记得比的意义吗?(两个数相除又叫做两个数的比。)如何求比值?(比的前项除以后项所得的商叫做比值。)。
好,下面我们就先来用比的知识解决几道国旗中的`数学问题。
二、以比值为引线,认识比例。
你在哪些地方看见过国旗?
问题:
1:你能说一说这四幅图中国旗的相同点和不同点吗?
2:你们想知道这些国旗的长和宽各是多少吗?
哪个小组研究的是操场上的国旗与教室里的国旗各自长和宽的比?
(请一组学生板演汇报,教师小结板书:两个比相等)。
这两面国旗长和宽的比值相等,我们可以用等号将这两个比连接起来。(板书:2、4∶1、6=60∶40)。
指着这组相等的比说:像这样表示两个比相等的式子就叫做比例。(把定义补充完整)。这就是“比例的意义”(把课题板书完整)请同学们齐读。
请同学们再默读一遍比例的意义,思考:想要组成比例必须要具备哪些条件?(学生回答:等式;有两个相等的比)。
(教师再强调:一定是比值相等的两个比才能组成比例。)。
2、寻找国旗中的其他比例。
师:你还能从四面国旗中找出哪些比例?
(学生写在练习本上,然后汇报。教师点击课件)。
3、介绍比例的第二种表示方法。
师:我们在学习比的时候,可以把比写成分数的形式,那比例也能写成分数的形式吗?怎么写?(学生口答,教师板书:=)。
4、强调比例的计算单位要统一。
出示课件,提出问题,学生判断。
小结:在比例的计算中,单位要统一。
5、区分比和比例。
师:我们刚才一直在强调比和比例的联系,那么比就是比例吗?(小组交流:你觉得比和比例有哪些区别?)。
形式不同:比由两个数组成;比例由四个数组成。
意义不同:比表示两个数相除;比例表示两个比相等的式子。
三、自主尝试,巩固比例。
(一)数的比例。
课本33页“做一做”第1题。(学生汇报比值是否相等,所以成不成比例。教师板书比例式)。
(二)形的比例。
(三)生活中的比例。
师:通过刚才的几组题,我们进一步弄清了比例的意义,现在让我们一起来看看生活中的比例吧!
课本36页第1题(学生独立完成,小组订正交流。)。
(四)拓展中的比例。
写出比值是5的两个比,并组成比例。
四、全课小结。
通过这节课的学习,你了解了比例的哪些知识?你还想研究比例的什么知识?
比例的知识在我们生活中的应用非常广泛,法国著名的建筑物埃菲尔铁塔,希腊雕像断臂维纳斯,还有闪烁的五角星,这些事物之所以能给我们美感,是因为它们的构造都和一个词“黄金比例”有关。希望你们课后能从生活中找到更多的“比例”,发现更多的数学知识,到那时,相信你们能够更深刻的感受到数学知识在我们的生活中真的是无时不在,无处不在。
比例的意义数学教学设计(汇总18篇)篇十三
人教版义务教育课程标准实验教科书数学六年级下册第32—33页的内容。
1、结合具体情境,通过计算,能说出比例的意义。
3、通过观察、比较、小组讨论说出比和比例的区别。
比例的意义,应用比例的意义判断两个比是否能构成比例。
教学过程。
一、复习旧知、导入新课。
同学们,以前我们学习了比,现在大家想一想,什么是比?比有几项?比有什么性质?并给我们举出实例。
二、比较分析,探究新知。
1、出示情景图,说一说各幅图的情景。
第一幅:xx前的升国旗仪式。
第二幅:学校每周一的升旗仪式。
第三幅:教室前面的红旗。
第四幅:谈判桌上的红旗。
(对学生进行爱国主义教育)。
问题:1:你能说一说这四幅图中国旗的相同点和不同点吗?
2:你们想知道这些长和宽是多少吗?
出示国旗的长宽数据。
3:请同学们观察、计算一下,国旗的长和宽的比值是多少?
3板书:2.4:1.6=2360:40=2。
4、探求共性,概括意义。
师:比较一下,你什么发现?
师:那既然这两个比的比值相等,请你想想用什么符号把这种关系表示出来!
生:用等号(师把左右两个中间板书=)。
生:表示相等的两个比。
生:表示两个比值相等的比。
(师板书:比相等)。
师:像这样表示两个比相等的式子叫做比例。板书。
同桌互相说说。
这个就是今天我们学习的——比例的意义(板书:比例的意义)。
三、合作探究,进一步理解比例。
1、探索组成比例的条件。
师:请同学们再默读一遍比例的意义,思考:想要组成比例必须要具备哪些条件?
(教师再强调:一定是比值相等的两个比才能组成比例。)。
2、寻找比例。
师:你还能从四面国旗中找出哪些比例?(学生写在练习本上,然后汇报。教师板书2.4∶1.6=15∶1060∶40=5∶)。
3、介绍比例的第二种表示方法。
师:我们在学习比的时候,可以把比写成分数的形式,那比例也能写成分数的形式吗?怎么写?(学生口答,教师板书:)。
4、区分比和比例。
师:我们刚才一直在强调比和比例的联系,那么比就是比例吗?(小组交流)。
从形式上区分:比由两个数组成;比例由四个数组成。
从意义上区分:比表示两个数相除;比例表示两个比相等的式子。
四、根据意义,判断比例。
生:看比值是不是相等。
1、完成“做一做”。
下面哪组中的两个比可以组成比例?把组成的比例写出来(见书上做一做)。
3、反馈:(1)你给5:8找的朋友是(),组成的比例是(),向大家介绍你用了什么方法找到的。
4、想一想,能与5:8组成比例的朋友能找几个?你认为这无数个朋友有什么共同特点?
5、处理做一做第二题。
6、处理练习六第一题。
四、目标检测。
1、判断:
(1)、有两个比组成的式子叫做比例。
()。
(2)、如果两个比可以组成比例,那么这两个比的比值一定相等。
()。
(3)、比值相等的两个比可以组成比例。
()。
(4)、0.1:0.3与2:6能组成比例。
()。
(5)、组成比例的两个比一定是最简的整数比。
()。
2、写出比值是5的两个比,并组成比例。
3、练习六第二题。
五、总结。
师:这节课,大家都非常积极和认真,老师相信你们的收获肯定很多,那谁来说说本节课有什么收获?(学生自由说)。
操场上的国旗:2.4∶1.6=1.5。
教室里的国旗:60∶40=1.5。
2.4∶1.6=60∶40也可以写成。
表示两个比相等的式子就叫做比例。
比例的意义数学教学设计(汇总18篇)篇十四
1.理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。
2.通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。
教学难点:应用比例的意义判断两个比能否组成比例,并能正确地组成比例。
师:同学们,每周一的早上我们学校都要举行庄严的升国旗仪式,那么,你们对国旗都有哪些了解呢?(生自由回答)。
师:同学们都说出了自己的想法,说明你们都很热爱我们的国家,希望你们以后一定要好好学习,做一个有用的人,把我们的国家建设的更加美好!五星红旗是庄严而美丽的,并且它与我们数学也有着密切的联系,这也就是我们今天所要研究的内容:比例(板书课题:比例)。
师手指课题:从课题中我们不难看出,比例和比有一定的关系,你们还记得比的.意义吗?(学生回答)。
好,那下面我们就先来用比的知识解决几道题。(出示四幅图在一起的)。
(一)数的比例。
课本.40页练一练。(学生汇报比值是否相等,所以成不成比例。教师板书比例式)。
(二)形的比例。
出示两个具有放大关系的三角形。
师:哪位同学能分析一下这个图形?(学生讲这是两个相似的三角形,几个数字分别是它们的底和高。然后汇报比例)。
(三)生活中的比例。
师:通过刚才的几组题,我们进一步弄清了比例的意义,现在让我们一起来看看生活中的比例吧!
1、课本41页第3题(学生独立完成,小组订正交流。)。
2、小明买了3本笔记本花了9元钱,李刚买了5本同样的笔记本花了15元。(你能根据题中的数据写出几组比例式吗?并说出理由。)。
师:这节课,大家都非常的积极和认真,老师相信你们的收获肯定很多,那谁来说说本节课有什么收获?(学生自由说)。
师总结:同学们说的很好,通过这节课的学习,我们认识了比例,并会判断两个比能否组成比例,还会自己根据数据组比例,看来同学们这节课真是掌握了不少的知识。
比例的意义数学教学设计(汇总18篇)篇十五
反比例。(教材第47页例2)。
1。使学生理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。
2。让学生经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。
引导学生总结出成反比例的量的特点,进而抽象概括出反比例的关系式。利用反比例的意义,正确判断两个量是否成反比例。
投影仪。
1。让学生说说什么是正比例,然后用投影出示下面的题。
下面各题中哪两种量成正比例?为什么?
(1)每公顷产量一定,总产量和公顷数。
(2)一袋大米的重量一定,吃了的和剩下的。
(3)修房屋时,粉刷的面积和所需涂料的数量。
教师:如果加工零件总数一定,每小时加工数和加工时间会成什么变化?关系怎样?这就是我们这节课要学习的内容。
1。教学例2。
创设情境。
教师:把相同体积的水倒入底面积不同的杯子,高度会怎样变化?
出示教材第47页例2的情境图和表格。
请学生认真观察表中数据的变化情况,组织学生分小组讨论:
(1)水的高度和底面积变化有关系吗?
(2)水的高度是怎样随着底面积变化的?
(3)水的高度和底面积的变化有什么规律?
学生不难发现:底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。
教师板书配合说明这一规律:
30×10=20×15=15×20=……=300。
教师根据学生的汇报说明:高度和底面积有这样的变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。
组织学生小组内讨论:反比例的意义是什么?
学生小组内交流,指名汇报。
教师总结:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
3。用字母表示。
学生探讨后得出结果。
x×y=k(一定)。
4。师:生活中还有哪些成反比例的量?
在教师的引导下,学生举例说明。如:
(1)大米的`质量一定,每袋质量和袋数成反比例。
(2)教室地板面积一定,每块地砖的面积和块数成反比例。
(3)长方形的面积一定,长和宽成反比例。
5。组织学生将例1与例2进行比较,小组内讨论:
正比例与反比例的相同点和不同点有哪些?
学生交流、汇报后,引导学生归纳:
相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。
不同点:正比例关系中比值一定,反比例关系中乘积一定。
6。你还有什么疑问。
如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗?”中的图像。
反比例关系也可以用图像来表示,表示两个量的点不在同一条直线上,点所连接起来的图像是一条曲线,图像特征不要求掌握。
1。教材第48页的“做一做”。
2。教材第51页第9、10题。
答案:1。(1)每天运的吨数和所需的天数两种量,它们是相关联的量。
(2)300×1=150×2=100×3=300(答案不唯一),积都是300。积表示货物的总量。
(3)成反比例,因为每天运的吨数变化,需要的天数也随着变化,且它们的积一定。
2。第9题:成反比例,因为每瓶的容量与瓶数的乘积一定。
第10题:5010012。
说一说成反比例关系的量的变化特征。
1。完成练习册中本课时的练习。
2。教材51~52页第8、14题。
答案:
2。第8题:成反比例,因为教室的面积一定,而每块地砖的面积与所需数量的乘积都等于教室的面积54m2。
第14题:
(1)斑马和长颈鹿的奔跑路程和奔跑时间成正比例。
(2)分析:可以通过图像直接估计,先在横轴上找到18分的位置,然后在两个图像中找到相应的点,再分别在竖轴上找到与这个点对应的数值;也可以通过计算找到。
解答:从图像中可以知道斑马10min跑12km,那么1min跑1。2km,18min跑1。2×18=21。6(km)。
从图像中可以知道长颈鹿5min跑4km,1min跑0。8km,18min跑0。8×18=14。4(km)。
(3)斑马跑得快。
第3课时反比例。
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
用x和y表示两种相关联的量,x和y成反比例关系用字母表示为:x×y=k(一定)。
正比例与反比例的相同点和不同点:
相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。
不同点:正比例关系中比值一定,反比例关系中乘积一定。
比例的意义数学教学设计(汇总18篇)篇十六
1.知识与技能。
理解反比例函数的意义;根据已知条件确定反比例函数的解析式。
2.过程与方法。
学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际问题;发展学生的抽象思维能力,提高数学化意识。
3.情感态度与价值观。
经历反比例函数的形成过程,体会数学学习的重要性,提高学生学习数学的兴趣;在学习过程中进行分组讨论,培养学生的合作交流意识和探索精神,体验学习的快乐与成就感。
教学重点。
理解反比例函数的意义;根据已知条件确定反比例函数的解析式。
教学难点。
反比例函数解析式的确定。
教学过程。
一、创设情境,导入新课。
问题1:(课件展示)。
问题2:(课件展示)。
问题3:(课件展示)。
下列问题中,变量间的`对应关系可用怎样的函数关系式表示?
(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化。
(2)某住宅小区要种植一个面积为1000o的矩形草坪,草坪的长y(单位m)随宽x(单位m)的变化而变化。
(3)已知某市的总面积为1.68×10平方千米,人均占有的土地面积s(单位:平方千米/人)会随全市人口n(单位:人)的变化而变化。
二、观察思考,明晰概念。
1.这些关系式都体现了函数关系,它们是我们曾学习过的正比例函数或一次函数吗?
2.这些函数关系式与正比例函数、一次函数有何不同?
3.这些函数关系式有什么共同的特征?
4.各关系式中两变量之间有什么关系?
5.你能归纳出反比例函数的概念吗?
通过回答以上问题,师生共同总结反比例函数的概念。
三、小组讨论,领悟概念。
1.反比例函数关系式中有几个变量?
2.变量之间存在什么关系?
3.反比例函数还有其他形式吗?若有请指出。
4.反比例函数中,变量x、y和常数k有什么具体要求?为什么?
四、内化新知,拓展应用。
1.下列函数中哪些是反比例函数?请指出反比例函数中的k值。
2.已知y是x的反比例函数,且当x=2时,y=6。
(1)写出y与x的函数关系式。
(2)求当x=4时,y的值。
3.当x为何值时函数y=x-2a-4是反比例函数?
4.已知函数y=y1+y2,与x成正比例,y2与x成反比例,且当x=1时,y=4;当x=2时,y=5。
(1)求y与x的函数关系式。
(2)当x=-2时,求函数y的值。
五、课堂练习。
师生共同完成教课书第40页的练习题。
六、课堂小结。
1.通过本节课的学习你对反比例函数有怎样的认识?
2.反比例函数与正比例函数的区别有哪些?
七、作业布置。
教材中本节习题17.1第1、2、4题。
(责任编辑赵永玲)。
比例的意义数学教学设计(汇总18篇)篇十七
本堂课是在学生学习了正比例的基础上学习反比例,由于学生有了前面学习正比例的基础,加上正比例与反比例在意义上研究的时候存在有一定的共性,因此学生在整堂课的学习上与前面学习的正比例相比有明显的提高,而且在课时的安排上,在学习正比例的安排了2个课时,这里只是安排了1个课时,紧随着课之后教材安排了一堂正反比例比较、综合的一堂课,对学生在出现正反比例有点模糊的时候就及时地加以纠正。
反比例关系和正比例关系一样,是比较重要的一种数量关系,学生理解并掌握了这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的正、反比例方面的实际问题。同时通过反比例的教学,可以进一步渗透函数思想,为学生今后学习中学数学和物理、化学打下基础。反比例的意义这部分内容是在学生理解并掌握比和比例的意义、性质的基础上进行教学的,但概念比较抽象,学习难度比较大,是六年级教学内容的一个教学重点也是一个教学难点。
比例的意义数学教学设计(汇总18篇)篇十八
教学内容:义务教育课程标准实验教科书六年级下册数学第32至33页“比例的意义”。
教学目标:
2、掌握组成比例的必要条件和方法。
3、会运用比例的意义组成比例,检验组成的比例是否正确,能用两种形式写比例。
4、在比例意义的学习探究中,培养学生的观察、比较、分析、推理、概括能力和勇于探索的精神。
5、进行爱国主义教育。教学重点:理解比例的意义;
教学难点:掌握组成比例的条件,能正确组成比例;教学关键:会运用比例的意义检验两个比是否能组成比例。教具准备:多媒体课件教学过程:
(一)复习准备。
1、谈话导入。
师:同学们,上学期我们学习了比,这节课我们继续学习和比有关的知识——比例。在学习之前,我们先来复习有关比的一些知识。
2、学生回忆:什么是比值?怎么求一个比的比值?
3、计算下面每组中两个比的比值。
6:10和9:156:4和:0.6:0.2和:20:5和1:4师:观察以上几组比中有没有比值相等的比?如果有请找出来。教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们可以用等号连起来。
(板书:6:10=9:156:4=:)。
(二)探究比例的意义出示例1插图。
师:同学们,看这四副图,你们发现了吗?在不同的场合国旗的大小一样吗?(不一样)。
师:请同学们写出每面国旗长和宽的比,并计算出比值。
121312133414。
(每面国旗宽和长的比;每两面国旗的长之比;每两面国旗的宽之比等。)。
这些比能组成比例吗?学生写比,并写出比例。
1、思考:比例由几个比组成?任意两个比都能组成比例吗?为什么?
两个比能否组成比例的关键是什么?
2、判断练习:
(1)、下面每组中两个比能组成比例吗?为什么?1∶5和3∶1210∶20和30∶60(2)、判断下面每个式子是不是比例,为什么?10∶11„„„„„„„„„„„()8∶10=0.8„„„„„„„„„()7∶14<28∶14„„„„„„„()。
3、写出两个比值是3的比,并组成比例。
4、比例是由比组成的,小组同学说一说比和比例有什么区别?小结:从形式上区分,比由两个数组成,是一个式子;比例由四个数组成,是一个等式。