通过研究范文范本,我们可以掌握写作的技巧和方法,提高我们的表达能力和文字功底。接下来,小编为大家提供了一些优秀的范文范本,希望能够给大家带来一些帮助。
最小公倍数说课稿人教版(模板13篇)篇一
《最小公倍数》是浙教版小学数学第十册的教学内容,是最小公倍数的第一课时,是引导学生在自主参与、发现、归纳的基础上认识并建立最小公倍数的概念的过程。新课标要求教材选择具有现实性和趣味性的素材,由浅入深地促使学生在探索与交流中建立公倍数与最小公倍数的概念。在此之前,学生已经了解了整除、倍数、约数以及公约数和最大公约数。例1通过写出几个数的倍数,找出公有的倍数,再从公有的倍数中找出最小的一个,从而引出公倍数与最小公倍数的概念。接着用集合图形象地表示出6的倍数、9的倍数与它们公倍数之间的关系,这一内容的学习也为今后的通分、约分学习打下了基础,具有科学的、严密的逻辑性。
本节课的教学目标是:
1、建立公倍数与最小公倍数的概念。使学生理解公倍数和最小公倍数的含义。
2、学会用列举法找两个数的公倍数和最小公倍数。
3、初步培养学生的数学应用意识与解决简单实际问题的能力。
4、培养学生主动探究的意识和能力,培养学生的比较推理与抽象概括能力。
本堂课的教学重点在于公倍数与最小公倍数的概念建立。教学难点在于运用“公倍数与最小公倍数”的知识解决简单的生活实际问题。
最小公倍数说课稿人教版(模板13篇)篇二
我说课的内容是:人教版五年级下册第88~90页的《最小公倍数》一课。最小公倍数是在学生掌握了倍数、因数和公因数概念的基础上进行教学的,主要是为了以后学习通分做准备。在生活实际中也存在它自身的的意义和作用,这节课是一节以概念为本的教学。教材的编写意图是使抽象的数学知识与生活实际相联系,建立概念;用自己想到的方法尝试求两个数的最小公倍数,体现算法的多样化。
在不同的学校、班级进行前测,直接让不同认知水平的学生,用模拟的小长方形墙砖铺成正方形。在动手操作中,由于受密铺的影响,横拼竖摆,不但耗时过长,而且很难有效的构建公倍数内在的结构关系。因此在设计操作环节时,我搭建“脚手架”。通过构建公倍数内在的结构关系和构建公倍数体系两个环节进行有效教学。成功搭建起教学内容与学生求知心理之间的桥梁。
(1)建立公倍数与最小公倍数的概念,会用集合图表示。掌握求100以内两个数最小公倍数的方法。
(2)通过动手操作、独立思考、合作探究、合作交流等方式,建立公倍数和最小公倍数的概念,培养发现问题、解决问题的能力。
(3)学会用数学的眼光观察生活、思考问题。积极参与到对数学问题的探究活动中。真真切切地体验到学习数学的快乐和价值。
教学重点:建立公倍数与最小公倍数的概念。
教学难点:掌握求100以内两个数最小公倍数的方法。
游戏卡片一套,模拟墙壁的平面图、模拟长方形墙砖多套,作业纸多张和多媒体课件一套。
加点理念课堂上我采用尝试教学法和启发教学法。
学生通过动手操作、独立思考、合作探究、合作交流等方法进行学习。
这节课我按照下面五个环节进行教学:初步感知,建立表象;动手操作,建立概念;自主探究,归纳方法;实际应用,回归生活;全课总结,延伸课外。
(一)、初步感知,建立表象。
首先我从游戏中引入,我把枯燥的倍数复习设计成“抢倍数的游戏”。让学生初步感悟公倍数。(预设5-6分钟)。
具体操作:
首先我手里拿着数字卡片,给学生说,今天老师给大家带来一个风靡我们全班的游戏—抢倍数游戏。面对全体同学讲一下规则:找两个同学上来,一个负责抢3的倍数,一个负责抢2的倍数。老师把卡片放到黑板上,过了抢的时间老师会把卡片收起来。最后抢的多的同学获胜。
然后把全班分成两大组,要求每组快速派一名代表上来。当两名学生上台进行游戏,其他学生做裁判共同参与。
接下来游戏,当第7张卡片出来的时候,两个同学会同时抢6这个数字。如果没有出现抢的局面。我会再出示12这个数字。学生很容易发现并说出:数字6是决定游戏胜负的关键,因为6既是2的倍数,又是3的倍数。
紧跟着追问:“为什么都来抢6这张卡片”。先让这两个代表说说,再让其他同学说说。
然后揭示出公倍数的概念。6既是2的倍数,又是3的倍数,也就是说6是3和2公有的倍数,我们把6叫做3和2的公倍数.(板书公倍数及概念。)。
引导学生想想:那你还知道哪个数是3和2的公倍数?
学生答出12、18、24等数,并用这些数完整的表述出公倍数的概念。
及时表扬说的对,说的完整的同学。多让几个同学说说,并让同桌说说,强化公倍数的概念。
(二)、动手操作,建立概念。
这一大环节是深刻理解公倍数,建立最小公倍数的重点内容,为此我分两个层次进行教学。
(1)固定的正方形边长,选择长方形墙砖。(预设6-7分)。
首先在前面通过游戏感悟公倍数的基础上,过渡到生活中。让学生体验公倍数能在生活中帮我们做什么。
(出示生活情境,课件显示。)。
当学生明白题意后,要求学生利用模拟的长方形墙砖和墙壁正方形平面图,
分小组活动进行动手操作。学生通过摆一摆,画一画,得到不同的方案。
在汇报方案时,学生都会选择长3分米,宽2分米的墙砖。让学生说说自己的想法。适时进行追问:“正方形墙面墙壁的边长所用墙砖的长和宽有什么关系?”
让学生自主发现:按照要求进行,所铺成的正方形边长必须是小长方形长和宽的公倍数这一结论。
这个时候多让几个学生说说这一结论。
其次我再追问:“大家为什么都不选择长5分米,宽3分米的墙砖?”
学生很容易答出,因为12不是5和3的公倍数。
最后我作课堂小结:“看来所铺正方形墙壁的边长必须是长方形墙砖长3分米,宽2分米的公倍数。”
(2)用固定的长方形墙砖,铺多个的正方形。(预设6-7分)。
从上个环节直接过渡到问题中。“同学们,真了不起,通过动手操作,获得很有价值的发现。(课件出示情境)用这种长3分米宽2分米的长方形墙砖,整块整块的铺,还可以铺成边长是多少分米的正方形?”
然后先让学生独立思考。当有的同学有想法后,请同学们拿出表格,填写完整。
让学生填出表格,空间想象能力好的学生能直接想到这些正方形的边长都是2和3的公倍数,想象不出来的,允许动手摆一摆,画一画。
其次把两个同学的表格用实物投影仪打出。让学生交流这样填的想法。
学生有可能答出:发现这些正方形的边长必须是所铺长方形墙砖长和宽的公倍数。及时表扬:“你能用今天所学的公倍数知识解决问题,这了不起”
还可能发现:其他公倍数都是6的倍数;最小的公倍数;公倍数是有很多个…。
如果没有学生说出来,及时追问:“察这些公倍数,最小的是几?”学生很容易。
说出6是公倍数中最小的。揭示出:6是最小的公倍数。叫做3和2的最小公倍数。(板书:最小)。
及时强化最小公倍数的概念。让多个学生说说6是3和2的什么数?同桌也互相说说。
再次追问:3和2有没有最大的公倍数?这些公倍数能写完吗?让学生说出公倍数是无限的。
首先让学生用数学上的集合圈的形式表示3的倍数和2的倍数。并把3和2的公倍数画出来。(课件出示两个空白的集合圈)。学生写完后,汇报结果。同时课件显示出答案。
然后利用课件使集合圈重叠一部分。给学生问题:如果这两个集合圈这样放在一起,该怎样填呢?(课件出示空白的交叉的集合圈)。
让学生思考、交流。明白各部分填什么,怎样填。让学生在作业纸上。
完成后汇报结果。(课件出示答案)并让学生说说3和2的公倍数和最小公倍数,再次理解公倍数和最小公倍数。
(三)、自主探究,归纳方法。(预设7-8分钟)。
这一环节是让学生自主探究出找两个数的最小公倍数的方法。
直接出示问题:那给你两个数6和8,怎样求这两个数的最小公倍数。(板书:怎样求6和8的最小公倍数。)。
这时候给学生独立思考的时间。当学生有了想法后,让学生拿出作业纸,把过程写出来。
然后让学生小组可以互相交流一下。
接下来让学生进行汇报。(找几个不同的方法,用实物投影仪展示出来。)。
在展示过程中,让学生交流、争辩,在交流各种方法的同时,可能发现:两个数相乘方法和倍数关系时找最大数的局限性。认识到列举法的普遍性。
在学生交流各自的方法后。我会说:老师非常欣赏大家的方法。我这也。
有个方法。我们可以把这些数在有方向的直线上表示出来。上面表示6的倍数,下面表示8的倍数。所圈重叠的线段是6和8的公倍数。
(教材中出现了数轴上表示倍数的方法,考虑到学生想不到这种方法,我参与活动中,最后展示这种图形结合的方法。)。
(四)、实际应用,回归生活。(预设3-4分钟)。
做一个课堂小结,转到学生解决问题中。“大家通过自己的努力,认识了公倍数和最小公倍。掌握了求两个数的最小公倍数的方法。相信大家一定有很深的收获。让我们带着收获进行下面的练习。相信你一定没有问题。”
课件出示一道生活情境题)。
2、学生交流汇报得出:全班可能有48人或24人,最少为24人。
(五)、全课总结,延伸课外。(预设3分钟)。
告诉学生在天文学中也有最小公倍数的知识,让学生边听边看屏幕:
(随着音乐的响起,播放图片。)。
我朗诵:中国人对日食现象的记载,已有将近四千年的历史。在汉代就发现日食出现具有一定的周期。月球从月初到下一次月初是一个朔望月,平均约长30天。太阳从月球轨道的升交点再回到升交点是一交点年,平均约长347天。朔望月与交点年的最小公倍数就和日食的周期有关。
课堂结语:“奇妙吧!如果大家还想继续了解,回去可以上网查找一下相关的资料。让我们带着收获,下课!”
最小公倍数说课稿人教版(模板13篇)篇三
“最小公倍数”这部分内容是在学生掌握了倍数的概念和分解质因数的基础上进行教学的。本节课的教学设想如下:
1、尊重教材并创造性地使用。
教材是知识的载体,是教与学的中介,但教材不是一成不变的,我们在深挖教材后,可以结合教学和学生实际创造性地使用教材,充分发挥教材的指导作用。所以在充分分析教材上最小公倍数这部分内容后,我抓住倍数这个生长点发现公倍数和最小公倍数,抓住分解质因数这个生长点研究最小公倍数的算理,大胆地把最小公倍数的意义和多种计算方法进行了有机的整合,力求学生知识体系的有机地自然地生长。
2、让学生亲历知识的形成过程。
现代教育观点认为:学习不是为了占有知识,而是为了生长知识。因此教学中,我们不要教给学生现成的数学,而是让学生自己观察、思考、探索研究出来的数学。因此在研究最小公倍数的意义时,我让学生亲历知识的形成过程。设计看到这列数你想说些什么,看到这两列数你想说些什么?等开放的数学问题,让学生在高度的思维状态下,调动大量的原有知识参与新知识的构建。
3、让情境作为课堂教学的主线。
《新课程标准》指出数学教学要紧密联系学生的生活环境,从学生的经验和已有的知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳等活动,获得基本的数学知识和技能,进一步发展思维能力,激发学生的学习兴趣,增强学生学好数学的信心。因此,课伊始从学生熟知的驷驱车引出倍数这一前卫知识。课中又再次利用两辆驷驱车同时从起点出发至少多少分钟再次同时经过起点这个问题情境,使学生体会到最小公倍数在实际生活中的运用。课后又利用驷驱车赛这个情境进行延伸为求三个数的最小公倍数设为伏笔。
4、算理的教学是课堂教学的主旨。
求两个数的最小公倍数的算理是教学的重点和难点,因此教学中我一直把算理的教学作为课堂教学最小公倍数方法的线索,同时,把算法的多样化作为教学中的另外一个目标。从自然生长起来的列举法到发现特殊关系的两个数的最小公倍数的规律,又从特殊关系的两个数的最小公倍数的规律研究到一般的算法,走一条从一般到特殊,又从特殊到一般的思路,且抓根本的最小公倍数与两个数质因数的关系为方向。从而深入研究分解质因数的方法,并使短除法成为学生又一次知识的升华。
从教学的实践过程来看,学生学习的积极性较高,知识的掌握也较为自然而扎实,学生的思维也在呈螺旋式上升趋势,取得了良好的教学效果。通过本节课的教学,有以下两点感悟最深刻。
1、情境的创设有效地激发了学生的学习兴趣,提高了课堂效率。
课伊始,趣亦生。学生的注意力被驷驱车吸引,围绕驷驱车展开了知识的联想,为最小公倍数的理解铺垫了很好的基础。课中的再利用不仅使知识与生活加以联系,而且使学生的思维能有的放矢。课后的情境延伸更使知识体系更完善。
2、抓住学生思维的生长点,重视算理的教学,使算法多样化。
教学中,教师以“学生的思维发展为中心”研究不同的环节如何使学生的思维自然生长。从概念倍数为基础而生长的公倍数和最小公倍数的意义,从列举法而生长的规律,从分解质因数的方法而生长的短除法,几次的生长都很自然。同时轻结论重算理体现的较为突出,成为了算法的多样化的前提。
2、需要进一步研究的问题。
(1)学生的数学学习活动应当是一个生动活泼的、主动的富有个性的过程。而且激发学生的兴趣不止是一时之效,如何从学生的角度出发进行预案的设计,课堂中顺学而导保持学生的学习积极性是一个值得思考的问题。
(2)教师有意识让学生体会亲历知识的研究过程,如:看到数列给学生发散的空间进行思维,但如何恢复最原始的研究状态在课堂中再现,怎样引导学生观察、研究、发现,如:独有倍数的出示时机,最小公倍数与质因数的关系,更需要再深入的研究。真正使数学课堂成为为探究的课堂。
最小公倍数说课稿人教版(模板13篇)篇四
公倍数和最小公倍数这部分内容,是在学生理解了倍数的基础上教学的。
本节课需要完成的教学目标有:
1、使学生在具体的操作活动中,认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数。
2、使学生学会用列举的方法找到10以内两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。
3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。
本课的教学重点是公倍数与最小公倍数的概念建立。教学难点是运用“公倍数与最小公倍数”解决生活实际问题。
在教学公倍数的概念时,让学生经历操作、思考的过程,认识公倍数。如例1安排了用长3厘米、宽2厘米的长方形纸片分别铺边长是6厘米和8厘米的正方形的操作活动,通过学生的操作,引导学生观察正方形的边长与长方形的长、宽之间的关系,让学生看看正方形每条边各铺了几次?怎样用算式表示?,来说明为什么长3厘米,宽2厘米的长方形能铺满边长6厘米的正方形,不能铺满边长8厘米的正方形,接下来让学生思考这样的长方形纸片还能铺满边长是多少厘米的正方形?学生思考后,回答12厘米、18厘米、24厘米,从而引出公倍数的概念,再强调因为一个数的倍数的个数是无限的,所以两个数的公倍数的个数也是无限的,用省略号表示,最后让学生说明8是2和3的公倍数吗?为什么?让学生在自主参与、发现、归纳的基础上认识并建立公倍数的概念的过程。
学生在已经掌握公倍数的概念的基础上,让学生学习怎样找两个数的公倍数,学以致用。教学例2时,让学生独立思考,自主探索解决问题的方法,然后小组交流。通过具体的运用,巩固公倍数的概念。让学生说说怎样找6和9的公倍数,学生说了三种方法,一是先找9的倍数,从9的倍数中找6的倍数;二是分别找出6和9的倍数,再从中找出公有的倍数;三是先找6的倍数,再从中找出9的倍数,通过比较三种方法,让学生感受哪种方法比较简捷。在此基础上,揭示最小公倍数的含义,并介绍用集合圈的形式来表示6和9的倍数和公倍数,通过学生自主学习,弄清怎样用集合图来表示两个数的公倍数。帮助学生更加直观地理解概念,感受数学方法的严谨性。
一、说教材。
(一)教材分析:
1、教学内容:
最小公倍数第一课时。是引导学生在自主参与、发现、归纳的基础上认识并建立并理解最小公倍数的概念的过程。
2、结合学情与新课程标准对本环节的要求,分析教材编写意图:
五年级学生的生活经验和知识背景更为丰富,新课程标准要求教材选择具有现实性和趣味性的素材,采取螺旋上升的方式,由浅入深地促使学生在探索与交流中建立公倍数与最小公倍数的概念。
在此之前,学生已经了解了整除、倍数、因数以及公因数和最大公因数。通过写出几个数的倍数,找出公有的倍数,再从公有的倍数中找出最小的一个,从而引出公倍数与最小公倍数的概念。接着用集合图形象地表示出4和6的倍数,以及这两个数公有的倍数,这一内容的学习也为今后的通分、约分学习打下的基础,具有科学的、严密的逻辑性。
(二)对教材的处理意见。
1、教材中铺砖对于理解公倍数与最小公倍数的意义,比较抽象,不利于建立对概念的理解。所以把“原来铺墙砖”的题目改为“找两人的共同休息日”来建立概念。原因有三:首先,学生的学习内容应该是现实的、有意义的、富有挑战性的;其次,有效的数学活动必须建立在学生的认知发展水平和已有的知识经验基础之上;再者,课堂中最有效的时间是前15钟,做好这段时间的教学,有利于提高学习效率。从而把这一比较难理解的环节放在后面。
2、新授课中补充生活实例,引导学生从意义的理解来,解决实际问题,通过解决问题来理解意义。理由是:数学教学应密切联系学生的现实生活,使学生感到数学就在自己身边。
3、课堂习题进行了有明确针对性与目的性的改变。(后述)。
(三)教学目标及教学重、难点。
1、教学目标。
(1)理解两个数的公倍数和最小公倍数的意义。
(2)通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的某些应用,体验解决问题策略的多样化。
(3)渗透集合思想,培养学生的抽象概括能力。
2、教学重点。
公倍数与最小公倍数的概念建立。理由是:《标准》中要求4—6年级的学生能找出10以内任意两个自然数的公倍数与最小公倍数,因此,本节课的重点应放在学生对数的概念的认识上。
3、教学难点。
运用“公倍数与最小公倍数”的知识解决简单的生活实际问题。理由是:《标准》中指出人人学有价值的数学,让学生通过观察、操作、反思等活动获得基本的数学技能。但小学生的生活实际问题的解决能力普遍较低,所以要达到《标准》中的要求这无疑是重点中的难点。
二、说学法。
1、学情分析。
小学生的动手欲较强,学生认识数的概念时更愿意自主参与,自己发现。再者,学生个人的解题能力有限,而小组合作则能更好地激发他们的数学思维,通过交流获得数学信息。
2、学法指导。
通过动手,让学生在月历纸的上动手找一找,圈一圈;通过动口,在概念揭示前,学生动口说一说。给学生机会说动手之后的感悟,还可以在个人表达的同时倾听他人的说法。
三、说教法。
为了实现教学目标,达到《标准》中的要求,也为了更好的解决教学重、难点,我将本节课设计成寓教于乐的形式,将教学内容融入一环环的学生自主探索发现的过程中。
1、利用情境引入新课,通过月历探索新知。
学生在月历上找日期,清楚形象的看到两个数的倍数关系
2、顺其自然地渗透概念,初步理解公倍数和最小公倍数。
学生探索后,用自己的语言梳理新知,学生便能在环环相扣的教学进程中顺理成章的理解概念,沟通二者之间的联系。
3、创设问题情境,尝试应用,方法提炼。
结合教学内容特征,创设富有生活情趣的问题情境,利用学生的生活经验与知识背景,鼓励学生解决简单的实际问题,激活学生的数学思维,提高解题技能。
4、巩固练习、不断刺激,不断巩固提升。
四、教学具准备:印有月历纸、多媒体。
五、具体的教学过程:
我设计的总体理念:让学生在自主参与的基础上感悟、理解、应用、巩固。将直观演示与抽象思维相结合。我的教学流程如下:
(一)、利用学具,导入新课(本环节为解决教学重点)。
1、学生在预先发放的月历纸上按照老师的要求,在上面找出4和6的倍数的日期。
2、引导学生观察所找出的日期数,有意识地引导学生发现日历上的有特征的数,从而引出公倍数与最小公倍数。
3、把生活问题提炼为数学问题,学生用自己的语言概括公倍数与最小公倍数的概念。
(二)、创设情境,应用知识:(本环节为解决教学难点)。
1、出示同学排队的题目。理由是:用富有生活问题的情境,激发学习兴趣,再次打通生活与数学的屏障。
2、合作交流解决问题,方法提炼。
(三)、练习巩固(讲清练习的层次)。
1、学会用最基本的方法求两个数的最小公倍数。
2、用这样的知识解决生活中的问题。
(1)找生日。基本——拓展。
(2)铺墙砖。用数学方法来解释生活现象,隐含着求公因数与求公倍数的联系。
(四)、课堂小结。
学生回忆整堂课所学知识。学生通过这一环节可以将整个学习过程进行回顾、按一定的线索梳理新知,形成整体印象,便于知识的理解记忆。
最小公倍数说课稿人教版(模板13篇)篇五
各位评委老师:
大家好!今天我执教的五年级下册《最小公倍数》一课,下面开始上课。
同学们,你们喜欢做游戏吗?今天我们一起做一个非常有趣的找位置游戏,好不好?请听游戏规则:老师会请7位同学参与,每人发一个号码代表自己,然后听老师的口令快速找到自己的位置,找对位置的同学继续参与游戏,找错位置的同学则被淘汰,另换一名同学参加。听明白了吗?好,这个游戏考验大家的反应能力,谁愿意参加?我会把这7张卡片分给7位同学。
现在开始游戏。其他学生来做裁判。第一次找位置,请奇数号码的同学站这边,偶数号码的同学站这边。站对了吗?请归位。第二次找位置开始,请是2的倍数的同学站这边,是3的倍数的同学站这边。这时候号码是6的同学会站到一边或不知道往哪边站。我会问:他站的位置对吗?他应该往哪边站?其他同学会说:他即应该往左边站,也应该往右边站。为什么呀?因为6既是3的倍数,又是2的倍数。
学生会答出12、18、24,还有吗?能数完吗?那后面用“…”号表示。这些数都是3和2公有的倍数,就叫做3和2的公倍数。(板书:公倍数)谁来说说:什么叫做3和2的公倍数?说的不错,还有谁?说的很完整,还有吗?同桌也互相说说。
同学们,愿意帮助老师解决这个问题吗?
为了方便大家操作,请每个小组打开1号学具袋,里面有模拟的长方形墙砖和正方形墙壁平面图。大家可以拼一拼,摆一摆,看能得到什么结果?下面分小组活动,进行动手操作。
谁来展示一下:你们小组选择的是长几分米,宽几分米的墙砖,能正好铺满吗?
1号小组:我们小组选择的是长3分米、宽2分米的墙砖,整块整块的铺,正好能铺满。
2号小组:我们小组选择的是长5分米、宽3分米的墙砖,整块整块的铺,不能正好铺满。
那选哪一种砖合适呢?为什么选1号砖?因为1号砖整块整块的铺,正好能铺满。为什么不选2号砖?因为2号砖整块整块的铺,不能正好铺满。
1号砖为什么能正好铺满?这位同学:因为墙的边长12是3的倍数,也是2的倍数,也就是3和2的公倍数,所以,能正好铺满。是这样吗?还有谁来说说?抽3至4人回答。
为什么2号砖不能正好铺满?因为12不是5和3的公倍数。
分析的很正确。我们一起看一下,1号砖铺上去,漂亮吗?(课件出示)。
课堂小结:“看来所铺正方形墙壁的边长必须是长方形墙砖长3分米,宽2分米的公倍数。”大家通过动手操作,帮助老师解决了铺墙砖的问题,谢谢你们!在这个过程中,我们还获得了很有价值的发现。你们真了不起!(课件出示情境)如果用这种长3分米宽2分米的长方形墙砖,整块整块的铺,还可以铺成边长是多少分米的正方形?”
大家先猜一猜?6分米、15分米、18分米…。
同学们,合理的猜想是成功的一半,大家的猜想是否正确呢?请大家从2号学具袋中拿出表格,可以再次利用学具拼一拼、摆一摆,进行验证,把得到的结果填写到表格中。填写完毕后我会有代表性的展示表格。
你发现了什么?我们发现这些正方形的边长就是所铺长方形墙砖长和宽的公倍数。“你能用今天所学的公倍数知识解决问题,真了不起!”
其他组的发现一样吗?谁再来说说?3和2的公倍数都是6的倍数(贴板书);3和2最小的公倍数是6(贴板书);3和2公倍数是有很多个…,大家真善于思考,把这些发现给你的同桌说一说。
刚才我们发现了6是3和2最小的公倍数,叫做3和2的最小公倍数(贴板书)。(板书:最小)。
谁来说说6是3和2的什么数?说的不错,还有谁?
我们刚才找出了3和2的公倍数和最小公倍数,在数学上我们还可以用集合圈来表示。(课件出示两个空白的集合圈)。
3的倍数有?2的倍数有?学生齐说,课件出示答案。3和2的公倍数有?
如果这两个集合圈这样放在一起,该怎样填呢?(课件出示空白的交叉的集合圈)。
同桌互相交流一下,各部分应该填什么?怎样填?
谁来说说?这位同学:中间的部分填3和2的公倍数,左边的部分只是3的倍数,右边的部分只是2的倍数。
明白了吗?大家从2号学具袋中拿出作业纸独立完成。
完成后随着学生汇报出示答案。(课件出示答案)。
那给你两个数你会求它们的最小公倍数吗?相信你一定行。(课件出示:怎样求6和8的最小公倍数。)。
大家先想一想,然后拿出作业纸,把过程写出来。谁来给大家展示一下你的方法?可能会出现这几种方法,分别进行展示。这几种方法都求出了6和8的最小公倍数是24。谁用的是第一种方法?你们分别写出了6和8的倍数,然后圈出了6和8的公倍数,第一个公倍数就是6和8的最小公倍数。这种方法是把6和8的倍数都列了出来,就是列举法。
我们用这么多方法求出了6和8的最小公倍数,从中选出你喜欢的方法给同桌说一说。
这位同学:当两个数成倍数关系时,这两个数的最小公倍数就是较大的数。当两个数成互质关系时,它们的最小公倍数是它俩的乘积。说的太好了!同桌互相说说。
大家通过自己的努力,认识了公倍数和最小公倍数,掌握了求两个数的最小公倍数的方法。这些内容在我们的数学书88—90页,请大家打开书,认真看一遍。
还有问题吗?相信大家一定有很大的收获,让我们带着收获进行下面的练习。相信你一定没有问题!
课件出示练习题一,下面的说法对吗?说一说你的理由。第一道,你来说:错,比如说4和8,8就是它们的最小公倍数,但并不比8大。同意吗?第二道,这位同学:我认为这道题是对的。同意吗?那这两个数的积一定是这两个数的最小公倍数吗?不一定。
大家对今天所学的知识掌握的非常扎实,其实在天文学中也有最小公倍数的知识,请看:
朗诵:这颗美丽的慧星是著名的哈雷彗星,哈雷彗星是最著名的短周期彗星,每隔75或76年才能从地球上看见一次,它上一次回归是在20xx年,而下一次回归将在20xx年。它回归的时间就和它的公转周期与地球公转周期的最小公倍数有关。
“奇妙吧!如果大家还想继续了解,回去可以上网查找一下相关的资料。让我们带着收获,下课!”
板书:
6、12、18…是2和3公有的倍数,叫它们的公倍数。6是2和3的最小公倍数。
最小公倍数说课稿人教版(模板13篇)篇六
各位评委老师:
大家好!
今天我执教的五年级下册《最小公倍数》一课,下面开始上课。
同学们,你们喜欢做游戏吗?今天我们一起做一个非常有趣的找位置游戏,好不好?请听游戏规则:老师会请7位同学参与,每人发一个号码代表自己,然后听老师的口令快速找到自己的位置,找对位置的同学继续参与游戏,找错位置的同学则被淘汰,另换一名同学参加。听明白了吗?好,这个游戏考验大家的反应能力,谁愿意参加?我会把这7张卡片分给7位同学。
现在开始游戏。其他学生来做裁判。第一次找位置,请奇数号码的同学站这边,偶数号码的同学站这边。站对了吗?请归位。第二次找位置开始,请是2的倍数的同学站这边,是3的倍数的同学站这边。这时候号码是6的同学会站到一边或不知道往哪边站。我会问:他站的位置对吗?他应该往哪边站?其他同学会说:他即应该往左边站,也应该往右边站。为什么呀?因为6既是3的倍数,又是2的倍数。
学生会答出12、18、24,还有吗?能数完吗?那后面用“…”号表示。这些数都是3和2公有的倍数,就叫做3和2的公倍数。(板书:公倍数)谁来说说:什么叫做3和2的公倍数?说的不错,还有谁?说的很完整,还有吗?同桌也互相说说。
同学们,愿意帮助老师解决这个问题吗?
为了方便大家操作,请每个小组打开1号学具袋,里面有模拟的长方形墙砖和正方形墙壁平面图。大家可以拼一拼,摆一摆,看能得到什么结果?下面分小组活动,进行动手操作。
谁来展示一下:你们小组选择的是长几分米,宽几分米的墙砖,能正好铺满吗?
1号小组:我们小组选择的是长3分米、宽2分米的墙砖,整块整块的铺,正好能铺满。
2号小组:我们小组选择的是长5分米、宽3分米的墙砖,整块整块的铺,不能正好铺满。
那选哪一种砖合适呢?为什么选1号砖?因为1号砖整块整块的铺,正好能铺满。为什么不选2号砖?因为2号砖整块整块的铺,不能正好铺满。
1号砖为什么能正好铺满?这位同学:因为墙的边长12是3的倍数,也是2的倍数,也就是3和2的公倍数,所以,能正好铺满。是这样吗?还有谁来说说?抽3至4人回答。
为什么2号砖不能正好铺满?因为12不是5和3的公倍数。
分析的很正确。我们一起看一下,1号砖铺上去,漂亮吗?(课件出示)。
课堂小结:“看来所铺正方形墙壁的边长必须是长方形墙砖长3分米,宽2分米的公倍数。”大家通过动手操作,帮助老师解决了铺墙砖的问题,谢谢你们!在这个过程中,我们还获得了很有价值的发现。你们真了不起!(课件出示情境)如果用这种长3分米宽2分米的长方形墙砖,整块整块的铺,还可以铺成边长是多少分米的正方形?”
大家先猜一猜?6分米、15分米、18分米…。
同学们,合理的猜想是成功的一半,大家的猜想是否正确呢?请大家从2号学具袋中拿出表格,可以再次利用学具拼一拼、摆一摆,进行验证,把得到的结果填写到表格中。填写完毕后我会有代表性的展示表格。
你发现了什么?我们发现这些正方形的边长就是所铺长方形墙砖长和宽的公倍数。“你能用今天所学的公倍数知识解决问题,真了不起!”
其他组的发现一样吗?谁再来说说?3和2的公倍数都是6的倍数(贴板书);3和2最小的公倍数是6(贴板书);3和2公倍数是有很多个…,大家真善于思考,把这些发现给你的同桌说一说。
刚才我们发现了6是3和2最小的公倍数,叫做3和2的最小公倍数(贴板书)。(板书:最小)。
谁来说说6是3和2的什么数?说的不错,还有谁?
我们刚才找出了3和2的公倍数和最小公倍数,在数学上我们还可以用集合圈来表示。(课件出示两个空白的集合圈)。
3的倍数有?2的倍数有?学生齐说,课件出示答案。3和2的公倍数有?
如果这两个集合圈这样放在一起,该怎样填呢?(课件出示空白的交叉的集合圈)。
同桌互相交流一下,各部分应该填什么?怎样填?
谁来说说?这位同学:中间的部分填3和2的公倍数,左边的部分只是3的倍数,右边的部分只是2的倍数。
明白了吗?大家从2号学具袋中拿出作业纸独立完成。
完成后随着学生汇报出示答案。(课件出示答案)。
那给你两个数你会求它们的最小公倍数吗?相信你一定行。(课件出示:怎样求6和8的最小公倍数。)。
大家先想一想,然后拿出作业纸,把过程写出来。谁来给大家展示一下你的方法?可能会出现这几种方法,分别进行展示。这几种方法都求出了6和8的最小公倍数是24。谁用的是第一种方法?你们分别写出了6和8的倍数,然后圈出了6和8的公倍数,第一个公倍数就是6和8的最小公倍数。这种方法是把6和8的倍数都列了出来,就是列举法。
我们用这么多方法求出了6和8的最小公倍数,从中选出你喜欢的方法给同桌说一说。
这位同学:当两个数成倍数关系时,这两个数的最小公倍数就是较大的数。当两个数成互质关系时,它们的最小公倍数是它俩的乘积。说的太好了!同桌互相说说。
大家通过自己的努力,认识了公倍数和最小公倍数,掌握了求两个数的最小公倍数的方法。这些内容在我们的数学书88—90页,请大家打开书,认真看一遍。
还有问题吗?相信大家一定有很大的收获,让我们带着收获进行下面的练习。相信你一定没有问题!
课件出示练习题一,下面的说法对吗?说一说你的理由。第一道,你来说:错,比如说4和8,8就是它们的最小公倍数,但并不比8大。同意吗?第二道,这位同学:我认为这道题是对的。同意吗?那这两个数的积一定是这两个数的最小公倍数吗?不一定。
大家对今天所学的知识掌握的非常扎实,其实在天文学中也有最小公倍数的知识,请看:
朗诵:这颗美丽的慧星是著名的哈雷彗星,哈雷彗星是最著名的短周期彗星,每隔75或76年才能从地球上看见一次,它上一次回归是在20__年,而下一次回归将在20__年。它回归的时间就和它的公转周期与地球公转周期的最小公倍数有关。
“奇妙吧!如果大家还想继续了解,回去可以上网查找一下相关的资料。让我们带着收获,下课!”
最小公倍数说课稿人教版(模板13篇)篇七
今天参加了县小学数学研究班下各组的业务培训活动,王薇薇老师上的《最小公倍数》(五下)一课给我留下了较深的印象。合理清晰的思路、简洁明亮的风格、灵活有效的调控,取得了较好的教学效果。
1.从春游话题引入信息:小兰想让爸爸妈妈带她去春游,四月一日起,妈妈每4天休息一天,爸爸每6天休息一天。
2.讨论“每4天休息一天”的意思。
3.出示问题:在这一个月里,他们可以选哪些日子去呢?
这一情境的创设至少有三点好处:一是适时,三月底,正是春游的好时候;二是激趣,一家子出游是学生感兴趣的事件;三是切题,爸爸妈妈共同的休息日就是4和6的公倍数。
1.(一学生回答是12日或24日)问:你是怎样找到的?
2.师生共同寻找:
30以内4的倍数有:4、8、12、16、20、24、28(问:为什么要加“30以内”)。
30以内6的倍数有:6、12、18、24、30。
30以内4和6的公倍数有:12、24。
3.根据上面的信息,她们最早可以哪一天去?(这一生活问题对应的数学问题是“最小公倍数”是多少。)。
4.(4和6的最小公倍数有:12)在这里为什么不用加“30以内”?
5.尝试用集合图来表示黑板上的内容。
30以内4的倍数30以内6的倍数。
这一环节之后是否要拓展?如果把“30以内”去掉,集合图里的数据该怎样修改?省略号表示什么?(两个数的公倍数是无限的)。
努力引导学生主动参与两个数最小公倍数的探究过程,重视数学技能的形成。特别是倍数关系和互质关系的两个数的最小公倍数的求法,让学生经历了猜测——举例验证——归纳的学习过程,学生思维活跃,如在找对象11和13的最小公倍数时,11的倍数从1倍找到11倍还能口算,老师问12倍不能口算怎么办,一生能够提出只要再加上11就行了。在求一般关系两数的最小公倍数时,引导学生归纳步骤:首先多写其中某一数的倍数,然后再写第二个数的倍数,当出现和第一个数相同时就是这两数的最小公总数了。
其外,老师也非常重视书写格式的规范,虽会多花了点时间,也是一种好习惯。
探讨一个问题:练习的侧重点应该是一般关系还是特殊关系两个数最小公倍数的求法?
特殊关系两数的最小公倍数探究过程费时费力,但规律出来之后是容易掌握的,关键是在求之前先判断。一般关系在概念教学时就已完整呈现了方法,理解较方便,但从我们平时经验看,出错的往往是这一类。
另外,照应开头,回归生活,也有补一些应用性的解决问题。
最小公倍数说课稿人教版(模板13篇)篇八
《最小公倍数》是浙教版小学数学第十册的教学内容,是最小公倍数的第一课时,是引导学生在自主参与、发现、归纳的基础上认识并建立最小公倍数的概念的过程。新课标要求教材选择具有现实性和趣味性的素材,由浅入深地促使学生在探索与交流中建立公倍数与最小公倍数的概念。在此之前,学生已经了解了整除、倍数、约数以及公约数和最大公约数。例1通过写出几个数的倍数,找出公有的倍数,再从公有的倍数中找出最小的一个,从而引出公倍数与最小公倍数的概念。接着用集合图形象地表示出6的倍数、9的倍数与它们公倍数之间的关系,这一内容的学习也为今后的通分、约分学习打下了基础,具有科学的、严密的逻辑性。
1、建立公倍数与最小公倍数的概念。使学生理解公倍数和最小公倍数的含义。
2、学会用列举法找两个数的公倍数和最小公倍数。
3、初步培养学生的数学应用意识与解决简单实际问题的能力。
4、培养学生主动探究的意识和能力,培养学生的比较推理与抽象概括能力。
本堂课的教学重点在于公倍数与最小公倍数的概念建立。教学难点在于运用“公倍数与最小公倍数”的知识解决简单的生活实际问题。
这部分的教材是这样的:例1通过写出几个数的倍数,找出公有的倍数,再从公有的倍数中找出最小的一个。这部分的知识对学生来说比较容易掌握。接着教材用集合图形象地表示出6的倍数、9的倍数与它们公倍数之间的关系,出示公倍数和最小公倍数的概念。然后教材安排了试一试,让学生在学会找两个数的公倍数和最小公倍数的基础上,用同样的方法找三个数的公倍数和最小公倍数。在此之后,提示学生想一想:1.有没有最大公倍数,为什么?2.倍数,公倍数和最小公倍数有什么区别?最后教材安排了练习,1.找6和8的倍数,公倍数和最小公倍数。2.找50以内的3和7的倍数,公倍数和最小公倍数。3.用集合图表示4和6的公倍数,并找出它们的最小公倍数。4和5在给定的数里找公倍数和最小公倍数。
根据教材的安排意图和学生的实际情况,我对教材进行了一定的处理。围绕本节课的教学目标和重难点,我是这样设计我的教学过程的。
1.师:我们已经学习过一个数的倍数,谁来说一说倍数的三个特性?
(通过复习倍数的特性,为解决公倍数的特性作铺垫)。
2.师:我们分别来找一找4和6的倍数。观察4和6的倍数,你有什么发现?
(观察4和6的倍数,发现有些数既是4的倍数,也是6的倍数,从而引出公倍数这个概念)。
(通过这一连串的问题的深入,使学生明白公有的倍数就是他们的公倍数)。
4.师:象公约数一样用集合图来表示4与6的倍数和它们公倍数之间的关系。
(通过知识的迁移,让学生借助集合图进一步感受倍数和公倍数之间的关系,明确公倍数是公有的倍数,使学生理解公倍数和最小公倍数的含义)。
5.师:观察这些公倍数,你发现了公倍数有什么特性?
(通过观察,明确两个知识点,公倍数的个数是无限的,没有最大的公倍数,有一个最小的公倍数)。
6.师:根据自己的理解,说一说什么是公倍数和最小公倍数?
(通过上面的学习,学生对公倍数和最小公倍数的概念已经有了深入的认识,适时地提问什么是公倍数,用语言把公倍数的概念表达出来,建立公倍数与最小公倍数的概念。明了公倍数的概念,解决这堂课的教学重点)。
2、师生共同小结方法。
(小结寻找两个数的公倍数和最小公倍数的方法,为学生独立寻找三个数的公倍数和最小公倍数提供方法指导,学会用列举法找几个数的公倍数和最小公倍数。)。
(讨论它们的.关系,使学生能够分清倍数和公倍数。)。
(课堂练习,巩固上一部分的知识,通过观察,明确大数是小数的倍数,大数就是它们的最小公倍数,并学会简单的应用。)。
(掌握所有的公倍数都是最小公倍数的倍数,并会在实际的操作中运用。通过1和2这两个练习,培养学生主动探究的意识和能力,培养学生的比较推理与抽象概括能力。)。
3.判断。
2.18是a的倍数()。
3.b是18的约数()。
两个数的公倍数的个数是无限的,而最小公倍数只有一个。()。
(出示这些判断题的用意在于帮学生理清公倍数和最小公倍数)。
师:用你掌握的知识,来帮小兰解决她遇到的困难。
从今年7月1日开始,小兰的爸爸妈妈就要去新公司上班了。根据新公司的规定,小兰的妈妈每4天休息一天,小兰的爸爸每5天休息一天,小兰很希望等爸爸妈妈一起休息时,全家一块儿去公园玩。
(1)由故事引出问题一:爸爸和妈妈能有机会一起休息吗?
(2)由故事引出问题二:爸爸妈妈的第一次一起休息是在第几天?
(3)由故事引出问题三:爸爸妈妈的第3次一起休息是在几月几日?
(第一个问题是应用了公倍数的知识,第二个问题应用最小公倍数的知识,第三个问题是综合运用知识,初步培养学生的数学应用意识与解决简单实际问题的能力。)。
最小公倍数说课稿人教版(模板13篇)篇九
今天参加了县小学数学研究班下各组的业务培训活动,王薇薇老师上的《最小公倍数》(五下)一课给我留下了较深的印象。合理清晰的思路、简洁明亮的风格、灵活有效的调控,取得了较好的教学效果。
1.从春游话题引入信息:小兰想让爸爸妈妈带她去春游,四月一日起,妈妈每4天休息一天,爸爸每6天休息一天。
2.讨论“每4天休息一天”的意思。
3.出示问题:在这一个月里,他们可以选哪些日子去呢?
这一情境的创设至少有三点好处:一是适时,三月底,正是春游的好时候;二是激趣,一家子出游是学生感兴趣的事件;三是切题,爸爸妈妈共同的休息日就是4和6的公倍数。
1.(一学生回答是12日或24日)问:你是怎样找到的?
2.师生共同寻找:
30以内4的倍数有:4、8、12、16、20、24、28(问:为什么要加“30以内”)。
30以内6的倍数有:6、12、18、24、30。
30以内4和6的公倍数有:12、24。
3.根据上面的信息,她们最早可以哪一天去?(这一生活问题对应的数学问题是“最小公倍数”是多少。)。
4.(4和6的最小公倍数有:12)在这里为什么不用加“30以内”?
5.尝试用集合图来表示黑板上的内容。
这一环节之后是否要拓展?如果把“30以内”去掉,集合图里的数据该怎样修改?省略号表示什么?(两个数的公倍数是无限的)。
努力引导学生主动参与两个数最小公倍数的探究过程,重视数学技能的形成。特别是倍数关系和互质关系的两个数的最小公倍数的求法,让学生经历了猜测——举例验证——归纳的学习过程,学生思维活跃,如在找对象11和13的最小公倍数时,11的倍数从1倍找到11倍还能口算,老师问12倍不能口算怎么办,一生能够提出只要再加上11就行了。在求一般关系两数的最小公倍数时,引导学生归纳步骤:首先多写其中某一数的倍数,然后再写第二个数的`倍数,当出现和第一个数相同时就是这两数的最小公总数了。
其外,老师也非常重视书写格式的规范,虽会多花了点时间,也是一种好习惯。
探讨一个问题:练习的侧重点应该是一般关系还是特殊关系两个数最小公倍数的求法?
特殊关系两数的最小公倍数探究过程费时费力,但规律出来之后是容易掌握的,关键是在求之前先判断。一般关系在概念教学时就已完整呈现了方法,理解较方便,但从我们平时经验看,出错的往往是这一类。
另外,照应开头,回归生活,也有补一些应用性的解决问题。
骆老师能找准学生的知识起点,激活学生的学习经验。创设的情境合理:既能符合儿童心理有趣味,又能启发学生深入思考:这个活动或游戏隐藏了什么数学问题?能获得什么解决问题策略?每节课,学生都积极动手,主动合作,踊跃交流…。智慧的火花在课堂中不时闪现,愉悦的神情在小脸上洋溢。骆奇老师的教学内容是五年级的“最小公倍数”,通过设计生动有趣的智力游戏“动物尾巴重新接回”创设情境激发兴趣,寻找公倍数与最小公倍数的奥秘。课堂围绕主要问题“尾巴重新接回的奥秘到底是什么?”引导学生展开积极的思考、热烈的讨论。老师以“为什么重新接回的次数就正好是多边形边数的公倍数呢?”激发学生创新思维,引导学生汇报交流,课堂结束后,学生与现场观众还沉浸在对“奥秘”的进一步思考中。
最小公倍数说课稿人教版(模板13篇)篇十
各位评委老师:
大家好!今天我执教的五年级下册《最小公倍数》一课,下面开始上课。
同学们,你们喜欢做游戏吗?今天我们一起做一个非常有趣的找位置游戏,好不好?请听游戏规则:老师会请7位同学参与,每人发一个号码代表自己,然后听老师的口令快速找到自己的位置,找对位置的同学继续参与游戏,找错位置的同学则被淘汰,另换一名同学参加。听明白了吗?好,这个游戏考验大家的反应能力,谁愿意参加?我会把这7张卡片分给7位同学。
现在开始游戏。其他学生来做裁判。第一次找位置,请奇数号码的同学站这边,偶数号码的同学站这边。站对了吗?请归位。第二次找位置开始,请是2的倍数的同学站这边,是3的倍数的同学站这边。这时候号码是6的同学会站到一边或不知道往哪边站。我会问:他站的位置对吗?他应该往哪边站?其他同学会说:他即应该往左边站,也应该往右边站。为什么呀?因为6既是3的倍数,又是2的倍数。
学生会答出12、18、24,还有吗?能数完吗?那后面用“…”号表示。这些数都是3和2公有的倍数,就叫做3和2的公倍数。(板书:公倍数)谁来说说:什么叫做3和2的公倍数?说的不错,还有谁?说的很完整,还有吗?同桌也互相说说。
同学们,愿意帮助老师解决这个问题吗?
为了方便大家操作,请每个小组打开1号学具袋,里面有模拟的长方形墙砖和正方形墙壁平面图。大家可以拼一拼,摆一摆,看能得到什么结果?下面分小组活动,进行动手操作。
谁来展示一下:你们小组选择的是长几分米,宽几分米的墙砖,能正好铺满吗?
1号小组:我们小组选择的是长3分米、宽2分米的墙砖,整块整块的铺,正好能铺满。
2号小组:我们小组选择的是长5分米、宽3分米的墙砖,整块整块的铺,不能正好铺满。
那选哪一种砖合适呢?为什么选1号砖?因为1号砖整块整块的铺,正好能铺满。为什么不选2号砖?因为2号砖整块整块的铺,不能正好铺满。
1号砖为什么能正好铺满?这位同学:因为墙的边长12是3的倍数,也是2的倍数,也就是3和2的公倍数,所以,能正好铺满。是这样吗?还有谁来说说?抽3至4人回答。
为什么2号砖不能正好铺满?因为12不是5和3的公倍数。
分析的很正确。我们一起看一下,1号砖铺上去,漂亮吗?(课件出示)。
课堂小结:“看来所铺正方形墙壁的边长必须是长方形墙砖长3分米,宽2分米的公倍数。”大家通过动手操作,帮助老师解决了铺墙砖的问题,谢谢你们!在这个过程中,我们还获得了很有价值的发现。你们真了不起!(课件出示情境)如果用这种长3分米宽2分米的长方形墙砖,整块整块的铺,还可以铺成边长是多少分米的正方形?”
大家先猜一猜?6分米、15分米、18分米…。
同学们,合理的猜想是成功的一半,大家的猜想是否正确呢?请大家从2号学具袋中拿出表格,可以再次利用学具拼一拼、摆一摆,进行验证,把得到的结果填写到表格中。填写完毕后我会有代表性的展示表格。
你发现了什么?我们发现这些正方形的边长就是所铺长方形墙砖长和宽的公倍数。“你能用今天所学的公倍数知识解决问题,真了不起!”
其他组的发现一样吗?谁再来说说?3和2的公倍数都是6的倍数(贴板书);3和2最小的公倍数是6(贴板书);3和2公倍数是有很多个…,大家真善于思考,把这些发现给你的同桌说一说。
刚才我们发现了6是3和2最小的公倍数,叫做3和2的最小公倍数(贴板书)。(板书:最小)。
谁来说说6是3和2的什么数?说的不错,还有谁?
我们刚才找出了3和2的公倍数和最小公倍数,在数学上我们还可以用集合圈来表示。(课件出示两个空白的集合圈)。
3的倍数有?2的倍数有?学生齐说,课件出示答案。3和2的公倍数有?
如果这两个集合圈这样放在一起,该怎样填呢?(课件出示空白的交叉的集合圈)。
同桌互相交流一下,各部分应该填什么?怎样填?
谁来说说?这位同学:中间的部分填3和2的公倍数,左边的部分只是3的倍数,右边的部分只是2的倍数。
明白了吗?大家从2号学具袋中拿出作业纸独立完成。
完成后随着学生汇报出示答案。(课件出示答案)。
那给你两个数你会求它们的最小公倍数吗?相信你一定行。(课件出示:怎样求6和8的最小公倍数。)。
大家先想一想,然后拿出作业纸,把过程写出来。谁来给大家展示一下你的方法?可能会出现这几种方法,分别进行展示。这几种方法都求出了6和8的最小公倍数是24。谁用的是第一种方法?你们分别写出了6和8的倍数,然后圈出了6和8的公倍数,第一个公倍数就是6和8的最小公倍数。这种方法是把6和8的倍数都列了出来,就是列举法。
我们用这么多方法求出了6和8的最小公倍数,从中选出你喜欢的方法给同桌说一说。
这位同学:当两个数成倍数关系时,这两个数的最小公倍数就是较大的数。当两个数成互质关系时,它们的最小公倍数是它俩的乘积。说的太好了!同桌互相说说。
大家通过自己的努力,认识了公倍数和最小公倍数,掌握了求两个数的最小公倍数的方法。这些内容在我们的数学书88—90页,请大家打开书,认真看一遍。
还有问题吗?相信大家一定有很大的收获,让我们带着收获进行下面的练习。相信你一定没有问题!
课件出示练习题一,下面的说法对吗?说一说你的理由。第一道,你来说:错,比如说4和8,8就是它们的最小公倍数,但并不比8大。同意吗?第二道,这位同学:我认为这道题是对的。同意吗?那这两个数的积一定是这两个数的最小公倍数吗?不一定。
大家对今天所学的知识掌握的非常扎实,其实在天文学中也有最小公倍数的知识,请看:
朗诵:这颗美丽的慧星是著名的哈雷彗星,哈雷彗星是最著名的短周期彗星,每隔75或76年才能从地球上看见一次,它上一次回归是在20xx年,而下一次回归将在20xx年。它回归的时间就和它的公转周期与地球公转周期的最小公倍数有关。
“奇妙吧!如果大家还想继续了解,回去可以上网查找一下相关的资料。让我们带着收获,下课!”
6、12、18…是2和3公有的倍数,叫它们的公倍数。6是2和3的最小公倍数。
最小公倍数说课稿人教版(模板13篇)篇十一
今天汤老师执教的是苏教版国标本小学数学第十册《公倍数和最小公倍数》的内容,是引导学生在自主参与、发现、归纳的基础上认识并建立公倍数和最小公倍数的概念的过程。
本节课需要完成的教学目标有:
1.在具体的操作活动中,认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和他们的公倍数。
2.学会用列举的方法找到10以内的两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简洁的方法,进行有条理的思考。
3.在自主探索和合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。
五年级学生的生活经验和知识背景更为丰富,课标要求教材选择具有现实性和趣味性的素材,由浅入深地促使学生在探索与交流中建立公倍数与最小公倍数的概念。如今的新教材与以往老教材的编排顺序大不一样了,我想这样的教学更注重的是学生对知识产生过程和概念意义的理解,以及解决问题方法的掌握。所以对于一些规律性的东西,教材注重的是让学生感悟渗透,无需归纳成文。本课的教学,对于学生的后续学习和发展,具有举足轻重的作用。鉴于前述本课承上启下的教材地位,依据课标,我认为本课的教学重点是公倍数与最小公倍数的概念建立。教学难点是运用“公倍数与最小公倍数”解决生活实际问题。
以下几个方面是我对本节课的认识:
1、能把握教材,教学设计科学合理,符合学生认知过程。通过让学生找找2和3的倍数,让学生仔细观察,自主探究,从而引出公倍数。并通过发现它们最小的公倍数揭示出最小公倍数的概念。汤老师在教学时设计问题导入公倍数的概念以及设计摆图形时,需精心组织安排,切不可草草行事。
2、能够重视在解决问题的过程中主动探索简洁的方法。本课要求学会用列举的方法找到两个数的'公倍数和最小公倍数,教师认真细致的讲解使学生熟练地掌握一般算法,在此基础上,教师还鼓励学生主动探索更简便的其它方法,在此建议留出时间让学生讨论交流一下,或许掌握的人更多。
3、能注重讲练结合,练习有层次,形式多样化。练习中有一般基础题,有求一定范围内的两数的公倍数,还有根据自身学习经验判断两数最小公倍数的拓展题,学生在练习中获得对新知的巩固和强化。建议练习时不仅要关注学生会不会做,更重要的是关注怎么做,你有什么发现。当学生反馈时,我觉得可以让学生自己来讲讲自己的考虑过程,暴露自己的想法,培养学生的应用能力。我觉得是蛮重要的。
以上是我对这堂课的认识,有不恰当之处,请大家指正。谢谢!
文档为doc格式。
最小公倍数说课稿人教版(模板13篇)篇十二
该内容是在学生已经学习了约数和倍数的意义、质数和合数、分解质因数、最大公约数等的基础上进行教学的,既是对前面知识的综合运用,同时又是学生学习通分所必不可少的知识基础。因而是本单元的教学重点,是本册教材的核心内容。本课的教学,对于学生的后续学习和发展,具有举足轻重的作用。借鉴前面的学习方法学习后面的`内容是本课设计中很重要的一个教学特色,这样设计不仅使教学变得轻松,而且能使学生在学习知识的同时掌握一些学习方法,这些学习策略和方法的掌握,对于今后的学习是很有帮助的。
五年级学生的生活经验和知识背景更为丰富,动手欲较强,学生认识数的概念时更愿意自主参与,自己发现。再者,学生个人的解题能力有限,而小组合作则能更好地激发他们的数学思维,通过交流获得数学信息。
1、让学生通过具体的操作和交流活动,认识公倍数和最小公倍数,会用列举法求两个数的最小公倍数。
2、让学生经历探索和发现数学知识的过程,积累数学活动的经验,培养学生自主探索合作交流的能力。
3、渗透集合思想,培养学生的抽象概括能力。
为了实现教学目标,达到《标准》中的要求,也为了更好的解决教学重、难点,我将本节课设计成寓教于乐的形式,将教学内容融入一环环的学生自主探索发现的过程中,引导学生动手、动脑、动口。
师:课前我们来做个报数游戏,看谁的反应最快。请两大组的同学参加。
师:请报到3的倍数的同学起立,报到4的倍数的同学起立。你们发现了什么?他们为什么要起立两次?(因为他们报到的号数既是3的倍数又是4的倍数)是吗?我们一起来验证一下。
师:像这些数既是3的倍数,又是4的倍数,我们就把这些数叫做3和4的公倍数。(板书:公倍数)今天这节课我们一起来研究公倍数。
最小公倍数说课稿人教版(模板13篇)篇十三
看了骆老师的短片首先感受到了他的恒心与毅力。就很想听他的课。在这节课李他创设了“尾巴重新接回”的游戏情境,引领学生探索位于正多边形上猴子的.身体和尾巴重新接回的奥秘。
首先老师出示了一组正六边形和一个正方形。正六边形里是一只猴子,正方形里画的是猴子的尾巴。
老师让学生猜测,如果正六边形不动,正方形按一个方向转动,转动几次才能让尾巴重新接回。学生猜测6次。老师就根据学生提供的数据进行演示。6次没有让尾巴重新接回,孩子又马上猜12次。通过老师演示,孩子们发现真的是12次让猴子的尾巴重新接回了。
这一环节,学生最初认为是6次,现在又发现是12次,有了这样的认知冲突,老师并没有解释为什么。
紧接着,孩子们又经历第二次猜想并验证。老师问:“如果再玩一次这个游戏,你们有没有信心把它猜对?”学生大声齐说:“有。”
老师出示一组新图形:一个正八边形和一个正五边形。正八边形里是一只公鸡,正五边形里是公鸡的尾巴。
第三次猜想,让孩子亲历猜想、验证、记录过程。两组图形,一个是正五边形里有一只老鼠,另一个正方形里是老鼠的尾巴。另一组图形是一个正八边形里画了一只金鱼,另一个正方形里画的是金鱼的尾巴。
情境巧妙、引人入胜,学生趣味盎然。“尾巴重新接回的奥秘到底是什么?”学生紧紧围绕这一问题展开了积极的思考、热烈的讨论,老师在学生独立思考的基础上巧妙引导他们进行汇报交流,学生热情高涨,“为什么重新接回的次数就正好是多边形边数的公倍数呢?”课终,学生与现场观众还沉浸在对“奥秘”的进一步思考中。