在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。相信许多人会觉得范文很难写?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。
复数的概念教学反思篇一
集合这节课的特点是概念多,符号多,要使学生了解集合的含义,体会集合元素与集合的属于关系,知道数集及其专用符号,了解集合中元素的确定性、互异性、无序性,会用集合语言表示数学对象。
概念部分可以请同学们看书回答下列问题
1. 集合与元素的概念是怎样叙述的?它们之间的关系是什么?用什么符号表示?
2. 集合元素的三个特征是什么?你能不能举出集合的例子?
3. 集合的表示法有哪三种?
4. 常见的是哪几种数集?它们分别用什么字母表示的?
5. 集合是按什么分类的?分为那两类?
6. 单元素集、空集、点集、解集是怎样定义的?
作为新生入学的第一节课,树立学生学习数学的信心非常重要,在讲授这节课内容的时候宜多举些例子,让学生感受这一原始的概念,慢慢带领学生进入数学语言的王国。讲授时,可通过数学史,让学生更深入地去了解数学和为数学而献身的数学家,体现数学的人文教育功能,在教学过程中不宜过分强调细枝末节的讲解和训练。以免在第一节课就令学生产生好怕和抵触心理。
复数的概念教学反思篇二
学生进入高中,学习数学的第一课,就是集合。集合不仅与高中数学的许多内容有着紧密的联系,而且已经渗透到自然科学的众多领域,应用十分广泛。掌握好集合的知识既是数学学习本身的需要,也是全面提高数学素养的一个必不可少的内容。而由于集合单元的概念抽象,符号术语多,研究方法跟学习初中数学时有着明显的差异,致使部分同学初学集合时,感到难以适应,常常因为这样那样的原因造成解题失误,形成思维障碍,甚至影响整个高中数学的学习。为了帮助同学们解决这一问题,在集合教学中值得注意的几个事项
概念抽象、符号术语多是集合单元的一个显着特点,例如交集、并集、补集的概念及其表示方法,集合与元素的关系及其表示方法,集合与集合的关系及其表示方法,子集、真子集和集合相等的定义等等。这些概念、关系和表示方法,都可以作为求解集合问题的依据、出发点甚至是突破口。因此,要想学生学好集合的内容,就必须在准确地把握集合的概念,熟练地运用集合与集合的关系解决具体问题上下功夫。
众所周知,集合可以看成是一些对象的全体,其中的每一个对象叫做这个集合的元素。集合中的元素具有“三性”:
(1)确定性:集合中的元素应该是确定的,不能模棱两可;
(2)互异性:集合中的元素应该是互不相同的,相同的元素在集合中只能算作一个;
(3)无序性:集合中的元素是无次序关系的。
集合的关系、集合的运算等等都是从元素的角度予以定义的。因此,求解集合问题时,抓住元素的特征进行分析,就相当于牵牛抓住了牛鼻子。
布鲁纳说过,掌握数学思想可使得数学更容易理解和记忆,领会数学思想是通向迁移大道的“光明之路”。集合单元中,含有丰富的数学思想内容,例如数形结合的思想、分类讨论的思想、等价转化的思想、正难则反的思想等等,显得十分活跃。在学习过程中,注意对这些数学思想进行挖掘、提炼和渗透,不仅可以有效地掌握集合的知识,驾驭集合问题的求解,而且对于开发智力、培养能力、优化思维品质,都具有十分重要的意义。
空集是一个十分重要的特殊集合,它具备“空集虽空,但空有所为”的功能。在解题的过程中,要时刻注意有无可能存在空集的情况,否则极易导致解题失误。这一点,必须引起我们的高度重视。