作为一位杰出的教职工,总归要编写教案,教案是教学活动的总的组织纲领和行动方案。怎样写教案才更能起到其作用呢?教案应该怎么制定呢?那么下面我就给大家讲一讲教案怎么写才比较好,我们一起来看一看吧。
初中数学教案初中生物实验操作视频篇一
(一)教学知识点
1.经历探索弧长计算公式及扇形面积计算公式的过程;
2.了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题.
(二)能力训练要求
(三)情感与价值观要求
1.经历探索弧长及扇形面积计算公式的过程.
2.了解弧长及扇形面积计算公式.
3.会用公式解决问题.
1.探索弧长及扇形面积计算公式.
2.用公式解决实际问题.
学生互相交流探索法
2.投影片四张
第一张:(记作a)
第二张:(记作b)
第三张:(记作c)
第四张:(记作d)
一、复习
1.圆的周长如何计算?
2.圆的面积如何计算?
3.圆的圆心角是多少度?
二、探索弧长的计算公式
投影片(a)
如图,某传送带的一个转动轮的半径为10cm.
(1)转动轮转一周,传送带上的物品a被传送多少厘米?
(2)转动轮转1,传送带上的物品a被传送多少厘米?
(3)转动轮转n,传送带上的物品a被传送多少厘米?
(2)转动轮转1,传送带上的物品a被传送 cm;
(3)转动轮转n,传送带上的物品a被传送n =cm.
[师]表述得非常棒.
l= .
下面我们看弧长公式的运用.
三、例题讲解
投影片(b)
解:r=40mm,n=110.
的长= r= 4076.8mm.
因此,管道的展直长度约为76.8mm.
四、想一想
投影片(c)
(1)这只狗的最大活动区域有多大?
(2)如果这只狗只能绕柱子转过n角,那么它的最大活动区域有多大?
[师]请大家互相交流.
[生](1)如图(1),这只狗的最大活动区域是圆的面积,即9;
[师]请大家根据刚才的例题归纳总结扇形的面积公式.
五、弧长与扇形面积的关系
[生]∵l= r,s扇形= r2,
r2= rr.s扇形= lr.
六、扇形面积的应用
投影片(d)
扇形aob的半径为12cm,aob=120,求 的长(结果精确到0.1cm)和扇形aob的面积(结果精确到0.1cm2)
解: 的长= 1225.1cm.
s扇形= 122150.7cm2.
随堂练习
本节课学习了如下内容:
1.探索弧长的计算公式l= r,并运用公式进行计算;
2.探索扇形的面积公式s= r2,并运用公式进行计算;
3.探索弧长l及扇形的面积s之间的关系,并能已知一方求另一方.
习题节选
解:设oa=r,oc=r+12,o=n,根据已知条件有:
得 .
3(r+12)=5r,r=18.
oc=18+12=30.
s=s扇形cod-s扇形aob= 1030- 18=96 cm2.
所以阴影部分的面积为96 cm2.
27.4弧长及扇形的面积
一、1.复习圆的周长和面积计算公式;
2.探索弧长的计算公式;
3.例题讲解;
4.想一想;
5.弧长及扇形面积的关系;
6.扇形面积的应用.
二、课堂练习
三、课时小结
四、课后作业
初中数学教案初中生物实验操作视频篇二
【知识与技能】
了解运用公式法分解因式的意义,会用平方差分解因式;知道提公因式法分解因式是首先考虑的方法,再考虑用平方差分解因式。
【过程与方法】
通过对平方差特点的辨析,培养观察、分析能力,训练对平方差公式的应用能力。
【情感态度价值观】
在逆用乘法公式的过程中,培养逆向思维能力,在分解因式时了解换元的思想方法。
【教学重点】
运用平方差公式分解因式。
【教学难点】
灵活运用公式法或已经学过的提公因式法分解因式;正确判断因式分解的彻底性。
(一)引入新课
大家先观察下列式子:
他们有什么共同的特点?你可以得出什么结论?
(二)探索新知
学生独立思考或者与同桌讨论。
引导学生得出:①有两项组成,②两项的符号相反,③两项都可以写成数或式的平方的形式。
提问1:能否用语言以及数学公式将其特征表述出来?
初中数学教案初中生物实验操作视频篇三
生1:意思是说做人做事要讲规矩,不讲规矩是不行的。
生2:我想,它的意思是不用圆规画不出圆来,不用矩尺画不出方形来。
师:说得很好。你们见到过矩尺吗?
生1:没有见过,可能是我们用的三角板吧?
生2:我爸爸是木匠,我见过他用过的曲尺,可能这个曲尺就是矩尺吧?
师:是的,木匠用的曲尺就是这里所说的矩尺。这个矩尺是做什么用的呢?
老师拿出自制的矩尺,如图一:
生1:可以用它画直角。
生2:可以用它画长方形或正方形。
生1:是长方形。
生2:是矩形。
师:说得对!这是我们小学学过的长方形。从这里可以看出,长方形与矩尺有关,所以我们又把它叫做矩形。即有一个角是直角的平行四边形叫做矩形。
(板书课题----矩形,并且板书矩形的定义)
(用俗语“不以规矩不能成方圆”引入新知,创设了问题情景。这个俗语不仅贴近学生生活,符合学生的认知基础,也突出了矩形的一个基本特征----四个角都是直角。一句俗语使学生对数学学习产生了浓厚的兴趣,激起了学生强烈的求知欲望和对所学内容的高度专注。)
师:你们从演示过程看,矩形与平行四边形有什么关系?
生:矩形是特殊的平行四边形。
师:那么它有什么性质呢?请同学们讨论后回答。
(分组讨论,气氛活跃)
生1:矩形两组对边分别平行且相等。
生2:矩形的两组对角分别相等。
生3:矩形的对角线互相平分。
生:由矩形的定义可以知道,矩形的四个角都是直角。
师:请你结合图4,说说为什么?
生:□abcd中,如果∠abc=90°,那么,∠bad=90°,
∠bcd=90°(平行四边形两邻角互补),∠adc=90°(平行四边形对角相等)。
(教师板书:矩形的四个角都是直角)
师:请同学们拿出准备的平行四边形活动框架或矩形纸片试一试,看它还有什么特殊性质。
(有的小组的学生拿出平行四边形活动框架,互相协作,用两根橡皮筋分别套在相对的两个顶点上,拉动一对不相邻的顶点,改变平行四边形的形状,量对角线的长度;有的`小组的学在叠矩形纸片。教师参与其中生。)
师:说说看,你们还发现了什么性质?
生1:随着平行四边形一个内角的变化,两条对角线的长度也在发生变化,当平行四边形变成矩形时,通过度量发现,两条对角线的长度相等。
生2:老师,我通过叠矩形纸片,发现了矩形的对角线不仅互相
平分而且相等。
(学生上台叠纸演示,图5是学生沿虚线折叠后展开的图形,其中oa=ob=oc=od,即ac=bd。)
师:很好,大家通过度量、折叠纸片,用不同的方法得到了同样的结论,矩形的对角线相等。
(教师板书:矩形的对角线相等。)
生-1:由于矩形的对角线互相平分且相等,还可得到直角三角形斜边上的中线等于斜边的一半。
生2:老师,我还发现矩形的一条对角线把矩形分成两个全等的直角三角形;两条对角线把矩形分成两对全等的等腰三角形。
生3:老师,我还发现矩形沿着两对边中点所在的直线对折,能够互相重合,所以它是轴对称图形,有两条对称轴。
(这里,老师提出问题后,充分放手,让学生去探索,学生通过动手实验、度量、叠纸,采用合情推理得到矩形的性质。学生积极性高、参与度高,学生探索不止,余兴未尽。)
师:刚才,我们探究了矩形的性质,有的同学好象还有新的发现,课后继续讨论吧。现在,请大家思考这样一个问题:反过来满足什么条件的图形是矩形呢?联系矩形的性质想一想,思考后回答。
生:有一个角是直角的平行四边形是矩形。
师:回答正确,这是矩形的定义。
生:四个角都是直角的四边形是矩形。
师:需要四个角都是直角吗?
生:只需要三个角是直角就可以了。因为三个角是直角,则两邻角互补,得出两组对边分别平行,这个四边形是平行四边形,由矩形定义就可以判别它是矩形。所以,三个角是直角的四边形是矩形。
(教师板书:三个角是直角的四边形是矩形)
生1:因为oc=oa,od=ob,所以,四边形abcd是平行四边形。
生2:因为oa=ob=oc=od,所以,ac=bd。
生3:它是矩形,因为∠oba=∠oab,∠oad=∠oda,所以∠bao+∠oad=90°,可知,∠bad=90°。即对角线相等的平行四边形是矩形。
(教师板书:对角线相等的平行四边形是矩形。)
(“对角线相等的平行四边形是矩形”这一判别方法是本节课的难点之一,老师通过引导学生画图,让学生从画图过程中得到启示,从而突破了教学难点。)
师:今天,同学们学得很开心,很愉快。我们研究了矩形的性质及什么样的图形是矩形。如何应用这些知识来解决问题呢?请同学们完成下面几道题(屏幕显示)。
1.如图6:在矩形abcd中,两条对角线ac、bd相交于点o,ab=oa=4cm。求bd与ad的长。
(学生讨论后写解答过程,放在投影仪上显示,师生共评.)
2.怎样检验教室门框是不是矩形?
(此题让学生自己动手,用工具测量,说明测量方法和结果。)
3.以矩形和其他图形为基本图形,设计一个组合装饰图案。
(此题让学生课后完成,然后在小组内交流,各小组评出优秀作品,并在全班交流。)
(学生用所学知识解决问题,在解决问题的过程中加深对所学知识的理解,从而培养学生解决问题的能力,让学生获得成功的体验。)
本节课我在教学中力求做到了以下几点:一是“新”。利用学生熟知的俗语“不以规矩不能成方圆”,引入新课,创设问题情景。“矩尺”即“曲尺”是木匠常用的画图工具,由它激发学生强烈地求知欲望,从而调动学生学习数学的积极性。二是“活”。我注重引导学生自主探索与合作交流。通过设置问题,引导学生开展小组讨论,学生通过测、叠、画等动手实践活动进行探索,用不同的学习方式来理解矩形的性质和四边形是矩形的条件,为学生提供了参与活动与交流的空间。三是“实”。通过三个练习,让学生理解并会应用矩形知识来解决问题,把所学知识和运用知识结合起来,培养了学生的创新意识和实践能力。这节课若能运用现代信息技术,将有些内容做成课件进行演示,教学效果会更好。
《基础教育课程改革纲要》提倡学生主动参与、乐于探究、交流与合作的学习方式,要求教师在教学过程中与学生交往互动,共同发展。老师在这节课上力求落实课程改革目标,作了一些有益的尝试。概括起来主要有以下两方面的特点。
俗语----把学生引入求知的胜地。数学知识来源于生产和生活实践,又服务于生产和生活实践。“不以规矩不能成方圆”是人们所熟知的一句俗语,其中蕴含着数学知识,矩尺引起学生的回忆与联想。一个木匠师傅的小孩回答了矩尺和它的作用。矩尺和矩形有着内在的联系,用矩尺可以画出矩形,矩形的四个角都是直角。一句俗语引发学生的思考,激发了学生的求知欲,把学生带入求知的胜地。
活动----为学生创造参与机会。教学过程应该是师生交往互动的过程。这种交往互动是以教学活动为载体的,教学活动为师生互动搭起了平台。这节课中,老师有目的、有计划地设计了四个教学活动,即情景引入、探究性质、识别矩形、解决问题。在这四个活动活动内容含盖了《矩形》一节的全部知识,形式灵活多样。活动为不同性格、不同爱好、不同层次的学生创造了可以参与的机会。在教学活动的始终,教师都作为教学活动的组织者、参与者和引导者。教师成了学生式的教师,学生成了教师式的学生,师生真正成为了一个“学习的共同体”。
初中数学教案初中生物实验操作视频篇四
2、通过对实际问题的分析,培养关注生活,进一步体会方程是刻画现实世界的有效数学模型,培养良好的数学应用意识。
重点:二元一次方程的概念及二元一次方程的解的概念。
但不是任意的两个数是它的解。
2、把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。
次方程的特点,体会到二元一次方程的引入是解决实际问题的需要。
空间,自主探讨,了解二元一次方程的解的不唯一性和相关性。
3、通过学练结合,以游戏的形式让学生及时巩固所学知识。
1、一个数的3倍比这个数大6,这个数是多少?
思考:这个问题中,有几个未知数?能列一元一次方程求解吗?
如果设黄卡取x张,蓝卡取y张,你能列出方程吗?
(板书:二元一次方程)
根据它们的共同特征,你认为怎样的方程叫做二元一次方程?(二元一次方程的定义:含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。)
判断下列各式是不是二元一次方程
(1)什么是方程的解?(使方程两边的值相等的未知数的值,叫做方程的解。)
知数的值,叫做二元一次方程的一个解。)
?若未知数设为x,y,记做x?,若未知数设为a,b,记做
?y?
(1)检验下列各组数是不是方程2a?3b?20的解:(学生感悟二元一次方程解的不唯一性)
a?4a?5a?0a?100
b?3b??1020b??b?6033
(2)你能写出方程x-y=1的一个解吗?(再一次让学生感悟二元一次方程的解的不唯一性)
请找出这个方程的一个解,并写出你得到这个解的过程。
学生在解二元一次方程的过程中体验和了解二元一次方程解的不唯一性。
独立完成课本第81页课内练习2
比较一元一次方程和二元一次方程的相同点和不同点
相同点:方程两边都是整式
含有未知数的项的次数都是一次
如何求一个二元一次方程的解
10?xx?10①x?5?4y②x?10?4y③y?④y?44
(3x?7是方程2x?y?15的解。()(2)多选题:方程
y?1
x?7
(4)判断题:方程2x?y?15的解是。()y?1
是方程2x?3y?5的一个解,求a的值。(1)已知x??2
y?a
y?1
初中数学教案初中生物实验操作视频篇五
本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。
关键信息:
1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。
2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。
1、在学习本课之前应具备的基本知识和技能:
①同类项的定义。
②合并同类项法则
③多项式乘以多项式法则。
2、学习者对即将学习的内容已经具备的水平:在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。
(一)教学目标:
1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。
2、会推导完全平方公式,并能运用公式进行简单的计算。
(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、方程、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、方程、不等式、函数等进行描述。
(三)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。
(四)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解,能从交流中获益。
1.教师是学生学习的组织者、促进者、合作者,学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。教学是师生交往、积极互动、共同发展的过程。当学生迷路的时候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。
2.采用“问题情景―探究交流―得出结论―强化训练”的模式展开教学。
3.教学评价方式:
(1)通过课堂观察,关注学生在观察、总结、训练等活动中的主动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。
(2)通过判断和举例,给学生更多机会,在自然放松的状态下,揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。
(3)通过课后访谈和作业分析,及时查漏补缺,确保达到预期的教学效果。
多媒体
[引入]同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?(2m+3n)2=_______________,(-2m-3n)2=______________,(2m-3n)2=_______________,(-2m+3n)2=_______________。
1.[学生回答]分组交流、讨论
(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。(1)原式的特点。(2)结果的项数特点。
1.口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)
2.判断:
()①(a-2b)2=a2-2ab+b2()
②(2m+n)2=2m2+4mn+n2()
③(-n-3m)2=n2-6mn+9m2()
④(5a+0.2b)2=25a2+5ab+0.4b2()
⑤(5a-0.2b)2=5a2-5ab+0.04b2()
⑥(-a-2b)2=(a+2b)2()
⑦(2a-4b)2=(4a-2b)2()
⑧(-5m+n)2=(-n+5m)2
3.小试牛刀
①(x+y)2=______________;
②(-y-x)2=_______________;
③(2x+3)2=_____________;
④(3a-2)2=_______________;
⑤(2x+3y)2=____________;
⑥(4x-5y)2=______________;
⑦(0.5m+n)2=___________;
⑧(a-0.6b)2=_____________.
你认为完全平方公式在应用过程中,需要注意那些问题?
(1)公式右边共有3项。
(2)两个平方项符号永远为正。
(3)中间项的符号由等号左边的两项符号是否相同决定。
(4)中间项是等号左边两项乘积的2倍。
[小结]通过本节课的学习,你有什么收获和感悟?
本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。
p34随堂练习
p36习题
本节课虽然算不上课本中的难点,但在整式一章中是个重点。它是多项式乘法特殊形式下的一种简便运算。学生需要熟练掌握公式两种形式的使用方法,以提高运算速度。授课过程中,应注重让学生总结公式等号两边的特点,让学生用语言表达公式的内容,由于语言缺陷的原因,这一点对聋生来说比较困难,让学生说明运用公式过程中容易出现的问题和特别注意的细节。然后再通过逐层深入的练习,巩固完全平方公式两种形式的应用,为完全平方公式第二节课的.实际应用和提高应用做好充分的准备。
3.教学媒体使用适时、适量、适度、有效。
4.教学结构组合优化,优质高效。