在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。那么我们该如何写一篇较为完美的范文呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。
解决问题的策略假设听课反思篇一
教学完一一列举的解题策略以后,感觉有许多问题值得我去思考,概括起来,有以下几方面:
曾经听过专家这样解释策略:“策略”指计策和谋略,是人们面对具体问题做出的基本判断。还有一位教材主编这样解读策略:“策略”比“方法”更上位,“方法”可以从外部输入,可以通过教师的讲解示范传授给孩子,而“策略”是一种思想意识,无法传授,需要孩子通过在具体问题解决的过程中去体验,去感悟。
所以,在我心里,对策略的定位为: 在解决问题的'教学中,孩子对数量关系的阐述可以不十分规范地表述,能够结合具体情境和自身经验描述出思考过程就可以,但需要我们有意识地引导孩子对各种方法进行比较,经过一定的数学思考,形成解决问题的策略。
思考孩子的知识起点很重要!因此在调整教案前,我首先思考了四年级孩子的知识起点,很欣喜地发现在他们一年级时已经学习了分与合,二三年级时能用数字组数,四年级上学期学会了“搭配的规律”。
原来,孩子们几乎每个学期都在用“一一列举”的策略解决着一些简单的问题,而且在不断的具体的应用过程中,孩子们已经体会着一一列举的基本思考方法,知道列举要注意有序,要不重复、不遗漏地进行思考,但我想,到现在为止,这只是一种无意识的解题行为。
如何让这样的思考更深入、更系统,便是我今天课堂上的任务了。
在导入时,我借助游戏让孩子们感性认识“一一列举”策略的特征——有序思考。接着出示例1,孩子们通过摆小棒、列表、画图等方法很顺利地解决了,而我侧重让孩子们在比较自己的探究成果与同伴探究成果中,加深“有序、不重复、不遗漏”这三个关键词,我有意识板书这三个关键词,强调学生要做好并注意这几个问题。
还有一点自我感觉有所改进的地方是:在整个教学过程中,每当孩子们用一一列举的方法解决问题之后,我都会有意识地引导他们对解决问题的过程进行回顾和反思,而且各有侧重。
解决问题的策略假设听课反思篇二
《用连乘解决问题》是三年级的一节数学解决问题课,学生在二年级学习时,已经会用表内乘、除法以及加、减法解决简单两步计算的实际问题。本单元提供的需要用两步计算解决的实际问题,选材范围扩大了,提供的信息数据范围扩大了。问题解决”从原来的计算、概念、应用题到现在新课程的“处处渗透”,从有形到无形,从典型问题到生活问题,进行了较大的改革。我有以下几点反思。
这一环节,我从学生熟悉的超市购物入手,通过让学生根据两个信息提出一个用乘法解决的问题,复习为什么要用乘法计算。接着出示一个问题,让学生来选择信息完成问题,进而揭示,要解决一个问题必须寻找两个与问题有直接联系的,有用的信息。
在探究新知之前,让学生复习解决问题的方法步骤,从而强调阅读也理解,分析与解答,回顾与反思这个三个解决问题的步骤做学生头脑里形成模型。
让学生自己根据卖保温壶的情景,自己动脑去分析解答。想一想第一步先求什么?第二步再求什么?要求学生独立思考,再全班交流,学生积极性很高,而且有利于学生对不同解法的理解。使学生深刻的领会数学与现实之间的联系:数学源于生活,最终应用于生活。教材里两种解法都采用综合法思路引导学生分析推理。然后依次用分步列式和综合算式解答。让学生用综合法思路来分析数量关系,有利于学生找出不同的中间问题,理解两种解法所表示的不同的数量关系,明确两种解题方法的区别,便于学生掌握分析和解答的方法。
教学中,重点让学生先应用综合法,根据从已知信息出发去分析解决问题,让学生通过算式说说想的过程,有条理地分析连乘问题的数量关系,找到中间问题,并让学生初步感知同一问题可以有不同的解决办法,拓宽了学生的解题思路。让学生初步掌握连乘问题的基本数量关系,培养学生分析解决问题的能力。
应用题教学理当重视数量关系的分析与解题思路的梳理。本节课在分析应用题时,让学生从情景中发现问题、提出问题并解决问题。提出问题和解决问题的过程是学生思维的过程,在课堂上给学生留有充足的时间和空间,让学生去探索,让学生上台讲解。这样教学不仅使学生的主体地位得到了充分的体现,也使学生的创新思维得到的发展。
6
教师成功的预设是课堂教学得以和谐展开的基础。单一的问题解决课教师稍有不慎就极易上成练习堆积课。老师通过知识层次的递进,一步步的让学生发现问题,解决问题,最后的练习也是水到渠成了。
在教完这节课后,我觉得大部分学生都能在老师的引导下自主地解决问题,并且能一题多解,思维能力得到了明显提高,但少数学生由于能力有限,所以自主学习对他们来说,还有点困难,还有些学生口头表达能力有待提高。
解决问题的策略假设听课反思篇三
《6、7解决问题(加法)》选自人教版一年级数学第五单元第三节。本节教学设计总的指导思想是:以新课标的基本理念为依据,改变传统的数学学习模式,根据学生的心理特点,引发学生学习数学的兴趣,从而提高数学学习能力。下面我就教材、教法、学法和教学过程等几个方面进行如下说明:
(一)说教材的地位和作用
本节课所讲的是小学数学人教版一年级上册第五章第三节的内容,这部分内容是学生在学习了《6、7的加减法》的基础上学习的,是对生活实际问题的应用及解决。通过本节课的学习,为学习应用题奠定了基础,又培养了学生学习数学的兴趣,因此本节课非常重要。
(二)说教学目标
根据学生已有的知识基础,以及本节课在教材中的地位和作用,特制定以下教学目标。
知识目标:通过学习,知道图上的大括号和问号的意思,会正确口述应用题的两个条件和一个问题,会正确地列式计算。
能力目标:进一步提高计算的正确率和速度;培养学生的观察和语言表达能力。
情感目标:将所学数学知识同生活实际紧密联系起来,在生活中发现并解决数学问题,感受数学的重要性。
(三)说教学重点与难点
教学重点:会计算6、7的加法,并会用6和7的加法解决生活中的计算问题。
教学难点:能根据情景图,提出用加法解决的问题,并能列式计算。
根据一年级学生活泼好动、具体形象思维占主要地位的心理特点,以及现有的认知水平,从而采用情境教学法,以引起学生一定的情境体验,从而帮助学生理解教材,并使学生的心理机能得到发展,采用自主探究和合作交流的教学方法,转变教师角色,给学生较大的空间。开展探究性学习,让他们在具体的操作活动中进行对数的概念、数的关系的独立思考,并与同伴交流,亲身经历问题提出、问题解决的过程、体验学习成功的乐趣。
解决问题的策略假设听课反思篇四
本节课的教学我主要设计了以下四个环节:
1.直观演示,激发寻求策略的内需。有效的数学学习是建立在学生合适的数学现实的基础之上的,但四年级学生的这种体验基本上处于无意识的状态,只有合理呈现学习素材,才能促使学生对转化策略形成清晰的认知。为此,在课的一开始,我便呈现了一个直观性和操作性极强的素材图“:你能知道这两个平面图形的面积是多少吗?说说你是怎么想的。”这样使学习内容鲜明生动,很快调动起学生积极的学习心向。
2.回顾整理,在复习旧知中感受转化策略。对转化策略的理解不能仅仅依赖直观的演示与形象的操作,更重要的是能让学生亲身经历策略的形成过程,尤其是思维不断发展的过程。因此,教学时,加强了对知识的学习进行系统分类,以逐步建构学生对转化策略的深层理解,让学生经历转化策略的形成过程:(1)图形面积、周长方面的应用;(2)数与计算方面的应用。通过唤醒经验——回顾整理——体会应用,分类让学生经历转化策略的形成过程,符合学生“感知——表象——抽象”的认知规律。
3.学以致用,体验运用策略的价值。在学生经历策略的形成过程后,精心设计一些富有变化的问题是必要的,这对于策略的理解、掌握和熟练运用起着“催化”的作用。在学生学习过程中,我针对性地设计了一些练习题,这些习题的练习,突出了教学的重点,分散了教学的难点,增强了教学的有效性。学以致用,学生对所学知识理解得会更加透彻,学生对策略的价值所在会感受得更加深刻,而且在运用策略的过程中,学生的实践能力也能够得到培养和提高。
4.注重反思,把握提升策略的契机。反思问题往往容易为人们所疏忽,但它是发展数学思维的一个重要方面,也是数学思维过程辩证性的一种体现,即一个思维活动的结束包含着另一个思维活动的开始。因此,在解决问题后应该及时引导学生回顾解决问题的策略,反思策略的运用过程,对具体采用的策略进行分析、加工、整合,从中提炼出应用范围广泛的一般方法,使解决问题的策略得到不断提升,并获得成功的情感体验。总结学习的收获,然后出示数学家的名言,让学生从今天学习转化策略的角度,谈谈自己的理解,力图增强数学学习的文化性、历史性,让学生在与数学家的对话中,充分感受转化价值的魅力所在。
解决问题的策略假设听课反思篇五
用比例解决问题这部分内容是在学过比例的意义和性质,成正、反比例的量的基础上进行教学的,这是比和比例知识的综合运用。教材首先说明应用正、反比例的知识可以解决一些实际问题。例1教学应用正比例的意义来解的基本应用题。为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。通过方框中的说明突出了怎样进行思考的过程,特别强调了要判断题目中两种相关联的量成什么比例关系,以及列出比例式所需的相等关系,即“总价和数量成正比例关系,所以总价和数量的比是相等的”然后再设未知数,列出等式解答,并在解答的基础上引导学生“想一想”,如果改变例1题目里的条件和问题该怎样解答。
成比例的量,在生活实际中应用很广,这里使学生学习用比例的知识来解答,在原有认识的基础上,再让学生用其他方法解答同一题目,概括出一般规律。通过解答使学生进一步熟练地判断成正比例的量,从而加深对正比例意义的理解。有利于沟通知识间的联系,也为中学的数学、物理、化学等学科中应用比例知识解决一些问题做较好的准备。同时,由于解答时是根据比例意义来列等式,又可以巩固和加深对所学的简易方程的认识。所以,在教学上要十分重视从旧知识引申出新知识,在这过程中,蕴涵了抽象概括的方法,运用这个概括对新的实际问题进行判断,这是数学学习所特有的能力。
由于把用比例解应用题归结为这样的四步,学生在解题时按照这样的四步也许是不会错的,但实际上用比例解应用题时,有的也不必一定要按照这样的四步,尽可能简单的列出算式,可以用多种方法列出比例式的题就出不来好效果了。学生的思维训练做不到灵活开放了。更不用说通过练习提高学生思维的灵活性品质了。
通过对这节课的总结,我意识到教师的教要以学生的发展为基准,把学生的学放到主要地位上来,真正的做到以学生为主体的教学模式。