无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。
线性规划问题课后反思篇一
本节课我一共设计了两个目标:
1、小组合作交流,会用自己的方法合理安排时间,会用流程图表示事情的安排顺序,并能计算出所用的时间。
2、经历探究解决问题的过程,认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识,并能根据实际情况合理安排时间。
我的教学过程是从以下三个方面来展开的:首先,创设情景。通过熊大熊二吃早饭听音乐引入,学生比较熟悉,让学生发现有的事情是可以同时做,这样可以节省时间。紧接着,借助情境,引导学生探索新知。通过熟悉的沏茶情景,让孩子在情景找到数学信息和要解决的问题。
然后,通过小组合作,自己动手摆一摆,写一写,算一算,让孩子们自己探索解决问题的方法。并能从多种方案里选出最优方案,体会优化思想。
最后是实践运用,拓展训练环节。在这一环节,我设计了四个不同类型的练习。第一个题目让学生练习画流程图。第二个练习是通过选择题的形式,学生可通过思考直接得出答案。第三个练习相对简单,判断那些事情可以同时做。第四个是以作业日志的形式呈现,并进一步计算时间,增加了一些难度。
以上是我的整个教学流程,总体感觉整节课的效果还是比较顺利的,但是也有几个地方处理的不够好。
先说目标的达成情况:第一个目标达成的不太好,部分孩子在做练习时,对于事情的先后顺序安排的不合理,这点老师没有讲解到位,老师应该在总结的时候强调先考虑事情的先后顺序,再想同时做的事情,这样孩子们在思考的时候应该会更顺利一些。另外对于第一个情景和第三个练习的处理,如果把他们两个融合一下应该会更好,把第三个练习换成“一边一边”的形式,对后边的教学应该能起到更好的作用。对于最后一个练习是以老师的角度呈现的,如果换成学生自己的日志,学生对那些事情会更加的熟悉更加了解,效果会更好。
线性规划问题课后反思篇二
一、遇到的问题:
《植树问题》是三年级第一学期教材数学广场中的教学资料,也是二期课改中数学拓展*的知识。是以往无数次被搬上舞台演绎出了许多经典课例。所以在教学准备阶段,我认真地研读了很多课例,发此刻诸多课例中,存在着这样一个共同的特点:任课教师都异常重视关于“植树问题”的三种不一样类型的区分,即所谓的“两端都种”“只种一端”与“两端都不种”。普遍采用了“学生*探究(或分组探究)、反馈交流、教师总结”的模式进行教学。并将“三种情景”的区分以及相应的计算法则(“加一”“不加不减”“减一”)看成一种“规律”要求学生牢固地掌握,从而能在应对新的类似问题时不假思索地直接加以应用。可是在这些课例的反思中,我又发现了一个共同的特点,很多学生能找到规律但不能熟练地运用规律,不能把植树问题的解决方法与生活中相似的现象进行知识链接。
二、第一次试教分析:
我根据教学资料的特点和学生的实际情景,在探究两端都植的规律时安排了动手*作,想经过引导学生进取参与,使学生在多种形式的教学活动中,加深对植树问题棵数和间隔数之间的关系的认识与理解。活动的设计是这样的:
出示一道开放*的题目:一条公路长()米,每隔5米植一棵(两端都要植),需要多少棵?让学生自我确定这条路的长度,从而探究出两端都要植树时的间隔数和棵数之间的关系,要求是这样的:设计:全长()米,每隔5米,有()个间隔,种()棵树让学生*思考,画线段图,填表,汇报。本以为自我设计的教案研究到了学生的生活经验,结合生活实际,重视了数学思维培养,方法的渗透,是可行的,学生们应当是能够掌握的。可是在实际的教学过程中,在“植树”时还是跃跃欲试的学生们到“探究规律”时一个个都像被打败公鸡,毫无斗志与反应。勉强参与的总是那几个平时成绩比较优秀的学生。看来这样的设计无法顾及全体学生的发展。没有了学生的主体参与,何来思维的培养,主题的建构呢?我开始反思:为什么学生不能找到简单植树问题的规律呢?为什么缺乏参与的进取*呢?学生一脸的茫然。经过反复的思考,我想到了我设计的探究活动有必须的问题,对于学生来说太抽象,太难了,自我确定长度时,要研究到平均分还要分完,只给学生一条线段,他们不明白从何下手。我请教有经验的教师们,自我又反复琢磨,调整了自我的教学过程,从简单入手的思想,使这节课主线更清晰明朗了,即从生活中抽取植树现象,并加以提炼,然后经过猜想,验*,建立数学模型,再将这一数学模型应用于生活实际。这样能灵活构建知识系统,注重教学资料的整体处理。
又能活用教材,对教材进行了整合和重构,让资源启迪探究。激发了学生探究的欲望。让学生比较系统地建立植树问题的三种情景,即两端都植;两端都不植;封闭情景下的植树问题(一头植和一头不植)。
三、第二次试教分析:
我把目标制定为:知识*目标:利用生活中的问题,经过动手*作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。过程*目标:进一步培养学生从生活实际问题中发现规律,应用规律解决问题的本事。
为了让学生掌握物体个数与间隔数的关系,课前我布置学生去数一数路灯排列有什么规律,初步感受物体个数与间隔数的关系,这样首先让学生在生活中学会有所观察,有所思索,有所实践。既能激起学生强烈的求知欲,做好课前准备,又能体会到数学知识在生活中的实际应用价值。在教学过程中,我创设情景聘请学生做环境设计师,说明学校南墙边有一段40米的小路,学校准备在路的一侧种树,按照每隔10米种一棵的要求设计一份植树方案,并说明设计理由,择优录用。我先请学生估计产生不一样的意见,此时需要验*,怎样验*,学生想出不一样的办法,给学生动手*作的时间和空间,让学生在*作中感悟,学生经过摆一摆,数一数,得出结果。学生的思绪一下打开了,最终出现了三种方案:第一种,两头都种,有5棵数。这样能够让学校有更多的绿*。第二种有3棵,头尾都不种。因为节俭成本。第三种有4棵。种头不种尾;或者相反;又或者研究树的实际生长空间不够,成本既不太高,绿*又不会太少。在这个环节,学生在实际*作中初步感受植树问题的特征,这个时候我利用模具加以归纳、总结,构成规律。学生靠自我主动、*地完成所学任务,发现规律,发现特点,找到窍门,感到十分高兴,记得牢固。
四、第三次试教分析:
首先,创设了情境,学生仅凭一次体验是不可能全部到达继续建构学习主题的水平。不仅仅需要向学生供给多次体验的机会,并且还需要创设能够激发学生共鸣的情境。在举例过程中,比如手指之间的点段,座位之间的位置关系,并且还利用了“一*两断”来说明锯木头的问题,让我惊喜不已。学生真正的生活经验是他们身边熟悉的事物,这时的学生才会真正感兴趣,才能够产生共鸣,才易激发探究的欲望,让活动化的数学学习有个坚实的基础。
其次,书上的例题直接给出了植树的图片,棵数、段数一目了然,不利于学生进行*的、深入地思考。如果在动手之前,再补充一句:根据题目要求,你想怎样种?有几种种法?画一画线段图或者用手边的东西代替树摆一摆。再出示3种植法的图片,学生*实自我的研究是全面的。这样的设计会使学生的印象更加深刻。借助数形结合将文字信息与学习基础结合,使得学习得以继续,使得学生思维发展有凭借,才能使得数学学习的思想方法真正得以渗透。
线性规划问题课后反思篇三
植树问题是新人教版五年级上册第七单元的内容。本节课我教学了课本117页例1内容,主要教学两端都栽的植树问题。反思本课教学过程,我觉得以下方面做得比较成功:
一、在教学中,我不忘让学生感受到了数学来源于生活,也应用于生活的道理。比如:最开始以谜语激趣,让学生猜到“手”。以每个人都具备的“手”开始,让学生感知棵数与间隔之间的关系。再用任意一组座位上的人与他们之间间隔的关系,引出课题“植树问题”。这样既有趣味性又贴近学生的生活。接着,例题又是校园植树问题,以及后面让学生思考植树问题的应用领域等等,都是来源于生活的例子。
二、在教学过程中,我注重了对数形结合意识的渗透。给出了例题,学生猜想之后,引导学生画图模拟实际栽树,通过线段图的演示,让学生充分理解“间隔数”与“植树棵树”之间的关系,就此向学生渗透复杂问题简单化的思想。其后,改变路长,让学生通过画图的方法再次验证,并完成表格,从而发现规律。
三、在教学过程中,我重视数学模型的建立。建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。所以,建立数学模型是十分关键的一步。因此,我在教学中设计了“理解信息—形成猜想—化繁为简—交流汇报—发现规律—应用规律”的教学流程,意在让学生经历“猜想—验证—建立数学模型—应用”这一过程,从而建立“植树问题”数学模型。
四、关注植树问题模型的拓展和应用。
植树问题的模型是现实世界中的事件,它源于生活,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解,我做了两方面的工作:一是加强归类,出示生活实例,告诉学生“这些现象的事物间都存在着间隔,把这类问题统称为植树问题”;二是进行变式练习。我设计了4道练习题,引导学生进一步体会,从而使学生感悟数学建模的重要意义。
这节课虽然不乏成功之处,但也有许多遗憾。
一、是操作的实际性。在学生画图探究不同路长情况下间隔数和棵数的规律时,还是有个别同学不知道如何画。可能是操作方法交待不够清楚,以致部分学生无从下手,影响操作效果。
二、是在黑板上板书的同学,虽然在屏幕上给出了标准答案,但缺乏在黑板上板书同学的评价。
三、没有对规律进行变式。比如:得出规律时,可以说说“间隔数=棵数-1,全长=间隔数×间隔长”等等。
一、课前一定要备学生,充分了解学情。
二、深钻教材,讲重点知识时,多预设几个答案。
三、寻求学生最能理解的教学方法去教学。
线性规划问题课后反思篇四
“烙饼问题”是人教版义务教育课程标准实验教科书,四年级上册p112“数学广角”的内容。和以往的教材相比,是新增加的内容。主要目的是通过一些简单的问题,向学生渗透一些优化的数学思想。教学目标是通过烙饼问题,使学生认识解决问题策略的多样性,形成寻找解决问题最优方案的意识,初步感受优化的数学思想方法。让学生体会数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。但是,“烙饼问题”学生是陌生的,而且“烙3个饼”的最佳方法与实际生活是有距离的,给学生的理解带来了困难。如何突破难点,让学生真正掌握,初步感受优化的数学思想方法呢?本节课我能做到以下几点:
很多老师在教学这个内容时,都是从烙一张饼、两张饼所需要的最短时间学起,这样设计比较接近学生的“最近发展区”,容易从1张饼、2张饼的方法得出烙3张饼所需最短的时间,但是这样设计也是将难点放低了,学生不需要进行太多的思考,学生的创新思维能力没有得到很好地发展。而我大胆的直接提出“烙3个饼至少要多少分钟”来教学,因为要想解决“烙3个饼至少要多少分钟”必须也要考虑烙1张饼和两张饼所需的最短的时间。我认为这样的设计很有魄力,让学生通过不断的探究、比较与讨论,终于使学生从中得出烙3张饼的最佳烙法,这种引导学生主动探索、大胆创新的教学,能更好地培养学生创造性思维的发展。
“把课堂还给学生,让课堂充满生命活力”,这是叶澜教授建立的“新基础教育”的核心理念。她主张“当前我国基础教育中课堂教学的价值需要从单一地传递教科书上的呈现的现成知识,转为培养能在当代社会中实现主动健康发展的一代新人”。这就要求教师应把“学习的基本权利”还给学生,使学习的主动权真正掌握在学生自己的手中。新课标也强调教师只是教学过程的组织者、引导者和参与者。在本节课,本人能始终把学生放在学习的第一位。本课以烙饼问题组织一系列的观察、思考、操作、交流等活动,使学生在解决问题中体会数学方法的应用价值,体会优化思想,而不是以老师的想法代替学生的思维。比如,“烙3张饼,怎样烙才能尽快让大家吃上饼”,让学生在观察、操作、对比的过程中掌握最佳烙法;又如,在总结“烙饼的总时间=烙饼个数×每面要烙的时间”这一规律时,老师没有简单的将结论给出,而是先让学生解决“烙4张、5张、6张、7张饼”最短需要几分钟,然后再提出“如果要烙100张饼最少需要几分钟”,促使学生积极主动地去寻求规律,让学生思维不断碰撞,最终生成“求最佳烙法所要的时间的方法”,上升到构建数学模型,形成数学理念的高度。整节课能使学生的主体地位落到实处,真正使学生成为学习的主人。
新课标提出:自主探索与合作交流是学生获取知道的学习方式之一。本节课在教学中本人立足学生的“数学现实”,先激活学生已有的知识与经验积淀。在此基础上,让学生通过观察、操作、归纳、猜想、交流等活动来激发学生的学习兴趣和发展思维能力。放手让学生讨论,并鼓励学生积极思考,始终让学生面对有意义的、富有挑战性的问题。在独立思考、自主探索的基础上,组织学生进行合作交流是重点环节。直至将“想法”与“发现”提炼、升华为一定的规律性认识。在交流过程中,教师与学生、学生与学生的思维相互碰撞,重现课堂开放、生动的本来面目。如为了寻求“烙3张饼,最少需要多少时间”的优化方法,让学生动手操作、自主探索、合作交流,学生在这一过程中充分发挥了各自的聪明才智,所获得的是知识与技能、过程与方法、情感态度与价值观的综合发展。学生的新的认识不是通过教师板着面孔的说教得到的,而是来自于发挥集体智慧的讨论,是学生自己“悟”出的,变“教”为“探”,环环相连,激活课堂。学生通过自己动手操作、自主探索,发现了优化思想在生活中的应用的妙处,体验到了成功的快乐。
一节课下来,也有几点值得深思,反思自身,在很多方面还需努力啊,主要罗列几点,提示自己:
1.课堂情绪调控有待加强,教师受学生的状态影响较大,不能很好的自我调节。
2.我对于课堂上学生的生成性问题,处理的不到位。
线性规划问题课后反思篇五
《烙饼问题》是人教版新课标新增的内容,主要是向学生渗透一些重要的数学思想方法,让学生从日常生活中的一些简单事例,尝试从优化的角度在解决问题的多种方案中寻找最优方案,初步体会运筹思想在实际生活中的应用以及策略论方法在解决问题中的运用。
在今天的教学过程中,我以“烙饼”为主题,以数学思想方法的学习为主线,围绕怎样烙饼,才能尽快吃上饼?展开教学,设计了烙1张、2张、3张----单张,双张饼的探究过程。以烙3张饼作为烙饼问题的突破口,形成了多种方案并从中寻找最佳方案的意识。教学中为学生提供了独立思考、动手操作、合作探究、展示交流的时间和空间。学生利用手中的圆片代替饼,经历了“提出问题——解决问题——发现规律——建构模型”的过程,整节课我着重渗透了以下理念:
《新标准》指出:学生的数学学习内容应当是现实的,有意义的,富有挑战性的。如,这节课我以小红家吃烙饼——正反面都要烙,(演示烙饼的过程)锅里一次可以同时烙2块饼引出问题:怎样才能尽快吃到饼。让学生操作、讨论、交流。进而研究3块、双数饼、单数饼……,并从中发现规律。
教学时我先设疑“锅里面每次只能烙两张饼,两面都要烙,烙熟一张饼的一面需要3分钟,怎样才能让一家三口尽快吃上饼?”以此来激发学生的兴趣。通过理解题意,有个别学生已经说出了9分钟这个答案,但是大部分学生说还是不明白的。这时我就顺势让学生拿出圆片代替饼,让学生先独立操作演示。然后让他们同桌演示,有困难的互相讲解帮助。这样,几乎全部学生都理解了这个优化过程。这一环节,紧密联系学生的生活实际,从学生的生活经验和原有的知识出发,创设了生动、现实的情境让学生在兴趣盎然的活动中感受到烙饼的策略。
要对学生进行情感、态度、价值观的教育。因此在本节课的教学中我除了进行数学思想方法的渗透以外,我还不失时机的进行情感、态度、价值观的教育。课的开始和结尾适时的对学生进行珍惜时间的教育,另外还对学生进行了数学史的教育,意在激发学生的民族自豪感。
线性规划问题课后反思篇六
本节课立足于培养学生良好的思维能力,从学生的生活经验和知识基础出发,创设问题情境。根据新课程标准,让学生借助学具操作,经历探索“烙饼”中数学知识的过程,逐步掌握烙饼的最佳方法,在解决问题中初步体会数学方法的应用价值,初步体会优化思想。
1、以生活经验出发,激发学生的学习兴趣。
在这节课的教学中,结合“‘客人到了,请客人吃东西’这常见的招待客人之礼”来导入,让学生有一种亲切感,激发了学生的学习兴趣。另外,让学生经历数学化的过程,让学生充分地感受到数学不是凭空而来的,它是生活的需要。
2、创造学习机会,体现“以人为本”。
一个个具体事例组织一系列的观察、思考、操作、交流等活动,使学生在解决问题中体会数学方法的应用价值,体会优化思想,而不是以老师的想法代替学生的思维。比如,为客人烙饼。如何用最短的时间完成烙饼这件事,让学生在观察、对比的过程中,为学生提供了充分从事数学活动的机会,不断说出自己的想法,在学生发表自己看法的过程中,发现合理安排时间的能力,使学生的主体地位落到实处,真正使学生成为学习的主人。
3、充分发挥引导作用,促进学生的发展。
注重体现数学教育面向全体学生的基本理念。在解决问题的过程中,特别注意运用不同的方式让每个学生了解解决问题的方法与结果,帮助学生理清思路、提升认识。
课堂上,我主要以组织者、引导者、合作者的角色出现,把学生推上学习的主体地位,让学生在自主探索、合作交流中体会运筹的数学思想方法,滋生优化意识,学生在自主探索、合作交流中积累从事数学活动的经验,提高解决问题的能力。学生在自主探索、合作交流中体验成功、感受数学的应用价值、感受数学的魅力,学生的知识、能力、情感得到了同步发展。
4、以生活事例为切入口,加强学生的思想教育。
在解决“怎样让三位顾客都能尽快吃上菜”这个问题时,有意识地对学生渗透“尊老爱幼”等方面的思想教育。
以上是我自己对本堂课教学之后的一些感想。当然,从中也有很多不足之处值得自己深思。例如:
(1)生活经验对数学学习有较好的帮助,但有时也有负作用。例如,在小组交流“三个饼如何烙,能尽快吃上饼?”时,有位小朋友竟这样问我:其中一个饼烙了一面后拿下,过了3分钟就要冷了,再烙另一面3分钟就不够了。实际情况是这样的,但若把它当成一个数学模型来研究时,这些就忽略不计了,这就是数学与生活的区别。所以对这种情况,我私下及时对他作出回应,并给予解释。
(2)数学是理性的,抽象的,更是严谨的。教学中如何把握课堂每一个细节,从而来培养学生思维的深刻性。例如,在提升烙饼的时间与所烙饼的个数的关系时,我应该及时提问:“烙2个饼需6分钟,烙3个饼需9分钟……,每个饼需3分钟,有没有不符合规律的?”而事实上是有特例的:当饼的个数是1个时,就不符合此规律。所以我觉得自己在这方面还有欠缺,应抓住时机拓展延伸,从而来引发学生的思维冲突,并通过辨析来修正此规律。
在解决“怎样让三位顾客都能尽快吃上菜”这个问题时,有意识地对学生渗透“尊老爱幼”等方面的思想教育。
以上是我自己对本堂课教学之后的一些感想。当然,从中也有很多不足之处值得自己深思。例如:
(1)生活经验对数学学习有较好的帮助,但有时也有负作用。例如,在小组交流“三个饼如何烙,能尽快吃上饼?”时,有位小朋友竟这样问我:其中一个饼烙了一面后拿下,过了3分钟就要冷了,再烙另一面3分钟就不够了。实际情况是这样的,但若把它当成一个数学模型来研究时,这些就忽略不计了,这就是数学与生活的区别。所以对这种情况,我私下及时对他作出回应,并给予解释。
(2)数学是理性的,抽象的,更是严谨的。教学中如何把握课堂每一个细节,从而来培养学生思维的深刻性。例如,在提升烙饼的时间与所烙饼的个数的关系时,我应该及时提问:“烙2个饼需6分钟,烙3个饼需9分钟……,每个饼需3分钟,有没有不符合规律的?”而事实上是有特例的:当饼的个数是1个时,就不符合此规律。所以我觉得自己在这方面还有欠缺,应抓住时机拓展延伸,从而来引发学生的思维冲突,并通过辨析来修正此规律。
线性规划问题课后反思篇七
本节课研究的只是两端都栽的植树问题。主要目标是向学生渗透一种思想,一种在数学上、在研究问题上都很重要的思想——化归思想。这种思想的渗透能很好地帮助学生理解寻求解决复杂问题的一般方法,那就是从简单问题、简单事例入手,寻求规律,通过规律的得出,最终解决问题。
教学上我采用“自主——互助”的策略,力求让学生依据自学提纲及要求,通过独立思考,把不明白的问题与他人交流合作,使学生在不断地操作和交流中,经历发现和感受的植树问题的过程。环节如下:
一、通过课前活动,以大家都熟悉的上操站队为素材,让学生初步认识间隔,感知间隔数。
二、以自研题为载体,实现全课教学重点及难点的突破。
为此我设计分别在15米、20米、25米、30米的公路一边植树的问题,先让学生明确自学要求,然后根据要求独立研究与自己编号对应的一题,重点让学生通过画图栽栽看,发现一棵一棵种树关键是要找准间隔数,在经历了从简单事例入手之后,各部分名称的实际意义已经得到了强化。
与此同时,植树问题的一般解法也已经得到了归纳。然后用找到的规律去解例1中的在100米绿化带上植树的问题,使学生获得真实的学习体验的同时,也培养学生学习数学的兴趣。在这几个过程中,学生学到了解决问题的方法,同时也获得了更深层次的情感体验。
三、多角度的应用练习,巩固学生对植树问题的理解,突出教学重点。
四、通过达标检测活动,了解学生学习情况,为改进自己的教学和跟踪辅导提供有利的保障。
五、评价总结,拓展延伸。
通过出示不同类型的植树问题,让学生近一步体会数学源于生活,数学就在我们身边,从而使学生深刻感受到数学的应用价值,激发学生学习数学的兴趣,也为下一节数学课做好铺垫。