在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。写范文的时候需要注意什么呢?有哪些格式需要注意呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。
函数自变量教学反思与评价篇一
本节课重点是,结合图象分析二次函数的有关性质,查缺补漏,进一步理解掌握二次函数的基础知识。要想灵活应用基础知识解答二次函数问题 ,关键要让学生掌握解题思路,把握题型,能利用数形结合思想进行分析,与生活实际密切联系,学生对生活中的“二次函数”感知颇浅,针对学生的认知特点,设计时做了如下思考:一、按知识发展与学生认知顺序,设计教学流程:首先通过复习本章的知识结构让学生从整体上掌握本章所学习的内容,从而才能在此基础上运用自如,如鱼得水;二、教学过程中注重引导学生对数学思想应用基础知识解答,然后小组进行交流讨论, 老师点评,起到很好的效果。这堂课老师教得轻松,学生学得愉快,每个学生都参与到活动中去,投入到学习中来,使学习的过程充满快乐和成功的体验,促使学生自主学习,勤于思考和于探究,形成良好的学习品质。
数学教学活动是师生积极参与、交往互动、共同发展的过程,从学生实际出发,创设有助于学生自主学习的问题情境,引导学生通过实践、思考、探索、交流,获得数学的基础知识、基本技能、基本思想和基本活动经验,促使学生主动地学习,不断提高发现提出问题、分析问题和解决问题的能力;设计教学方案、进行课堂教学活动时,应当经常考虑如下问题:
(1)如何使他们愿意学,喜欢学,对数学感兴趣
(2)如何让学生体验成功的喜悦,从而增强自信心
(4) 培养学生合作学习的互助精神和独立解决问题的能力。
函数自变量教学反思与评价篇二
对数函数的教学共分两个部分完成。第一部分为对数函数的定义,图像及性质;第二部分为对数函数的应用。对数函数是在学习对数概念的基础上学习对数函数的概念和性质,通过学习对数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数以及对数函数的应用作好准备。
在教学过程中,我类比指数函数图象和性质的研究,研究了对数函数图象和性质。同学们课堂上能积极主动参与获得性质的过程。我用了三节课就对数函数的图象和性质,图象和性质的应用进行讲解。但是从作业和课堂效果看来。同学们没有指数函数的性质和图象掌握的好。特反思如下:
1、学生对对数函数概念的理解及对数的运算不过关。学生在做这些运算时有时不能灵活运用公式例如换底公式,有时学生会想当然地自己“发明”公式。导致部分题目出现运算错误或不会。
2、在利用对数函数的单调性比较两个对数式的大小书写格式不规范,因此在解题的过程中就把真数和底数混乱了,这说明同学们用函数的观点解决问题的思想方法还没形成。
3、在解有关求定义域的问题时,学生不能很好的掌握底数a的取值范围以及真数必修大于0.
4、同学们对对数与指数的互化不是很熟练。导致有关指数与对数互化题目出现错误。尤其是解决有关对数和指数混合式子的有关计算时困难很大,问题最多。还有在解决有关对数型函数定义域问题时,更不会用对数函数的单调性去解决。
以上这些原因我通过认真的反思,同时参考学生提出的意见,决定讲两节习题课,针对学生存在的共性问题解决,找出他们的盲点,同时加强练习力度。从练习中发现问题,再通过系统讲解,直到绝大部分学生理解掌握为止。
函数自变量教学反思与评价篇三
对数函数与指数函数互为反函数,它们的定义域、值域、对应法则、图像之间有较为明显的关系。因此在教学过程中,我类比指数函数图象和性质的研究,研究了对数函数图象和性质。同学们课堂上能积极主动参与获得性质的过程。我用了三节课就对数函数的图象和性质,图象和性质的应用进行讲解。可从作业和课堂效果看来。同学们没有对指数函数的性质和图象掌握的好,分析有以下原因。
1、学生对对数函数概念的理解及对数的运算不过关。导致部分题目出现运算错误或不会。
2、利用对数函数的单调性比较俩个对数式的大小书写格式不规范。说明同学们用函数的观点解决问题的思想方法还没形成。
3、同学们对对数与指数的互化不是很熟练。导致有关指对互化题目出现错误。尤其是解决有关对数和指数混合式子的有关计算时困难很大,问题最多。还有在解决有关对数型函数定义域问题 ,更不会用对数函数的单调性去解决。
以上这些原因我通过认真的反思,同时参考学生提出的意见,决定讲俩节习题课,针对学生存在的共性问题解决,找出他们的盲点,同时加强练习力度。从练习中发现问题,再利用晚自习系统讲解,直到绝大部分学生理解掌握为止。
函数自变量教学反思与评价篇四
“对数函数”的教学共分两个部分完成。第一部分为对数函数的定义,图像及性质;第二部分为对数函数的应用。“对数函数”第一部分是在学习对数概念的基础上学习对数函数的概念和性质,通过学习对数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。
在讲解对数函数的定义前,复习有关指数函数知识及简单运算,然后由实例引入对数函数的概念,然后,让学生亲自动手画两个图象,我借助电脑手段,通过描点作图,引导学生说出图像特征及变化规律,并从而得出对数函数的性质,提高学生的形数结合的能力。作了以上分析之后,再分a1与0。
大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养学生的创新能力有帮助,学生易于接受易于掌握,而且利用表格,可以突破难点。
然后经行巩固训练,养学生利用所学知识解决实际问题的能力,通过这个环节学生可以加深对本节知识的理解和运用,并从讲解过程中找出所涉及的知识点,予以总结。充分体现“数形结合”和“分类讨论”的思想。通过反馈来看,大部分学生能够达到本节课的知识目标,并在一定程度上培养了学生主学习、综合归纳、数形结合的能力。最后经行归纳总结,引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。
本节课调动学生学习的积极性,使学生变被动学习为主动愉快的学习。教学中我引导学生从实例出发启发出指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在对数函数图像的画法上,我借助电脑,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性,充分体现了“教师为主导,学生为主体”的教学原则取得了较好的教学效果。
函数自变量教学反思与评价篇五
《一次函数》内容安排基本合理,通过生活中两个实例,学生在探究性的活动后,引入一次函数的概念,接着通过练习,辨别一次函数,再通过练习写解析式,最后是关于一个结合生活实例的例题和相关的两个练习,总结结束。
由于这节课的知识容量较大,而且内容较难,为了能更好地帮助学生消化理解该知识,突破难点,为此我准备了多媒体课件。在教学过程中,我采用让学生亲自动手、动脑画图的方式,通过教师的引导,学生的分组交流、归纳等环节较成功地完成了教学目标,收到了较好的效果。
值得反思的地方有:
1、最后的一个练习没有时间,总结的时间没有了。
2、要注意语速和声音音量的控制,不是声音越大越好,注意上课的语言。
3、怎样能最大限度的了解学生对知识掌握的情况?尤其是大班!由学生掌控,浪费时间。在时间很紧的情况下,怎样提高课堂讲课的效率,是今后努力的方向!
4、在教学水平的现在阶段,要提高学生的成绩,最好的捷径就是练习!
5、真正的要形成自己的教学风格,熟悉教材,熟悉学生。
6、课的内容容量较大,对于有些知识点,如“随着x值的增大,y的值分别如何化?”,本应给学生更多的时间练习、讨论,以帮助理解并消化该知识点,但由于时间紧,学生的这一活动开展的不充分,课堂气氛不够活跃,个别学生的主动性、积极性没有充分调动起来。
函数自变量教学反思与评价篇六
一堂好的数学课常常是由好的数学问题启发并激励学生学习的充实过程。因此,我把教学设计的主体“解决问题,总结性质”设计成由若干个有一定逻辑顺序的问题,并由这些问题组织师生的教学活动。那么,怎样设计好的问题呢?我认为,在完成教学任务并实现教学目的的“作用点”上,在知识形成过程的“关键点”上,在运用数学思想方法产生解决问题策略的“关节点”上,在数学知识之间联系的“联结点”上,在数学问题变式的“发散点”上,在学生思维的“最近发展区”内,提出恰当的、对学生数学思维有适度启发的问题就是好问题,这也是问题设计的基本原则。例如:本课在一开始就创设问题情境,引导学生思考,引入课题。给出几个一次函数的图像,让同学们合作学习进行探索一次函数的性质。又如,画一次函数图象只需描出图象上的“任意两点”的结论后,提问学生“你取的是哪两点”,找了四个同学回答出各自的两个点,既让学生知道如何去找图象上的两个点,也使学生理解了刚刚得出的结论。
适当地提出好问题,不仅可以引导学生的思考和探索活动,使他们经历观察实验、猜测发现、推理论证、交流反思等理性思维的基本过程,而且还给了学生提问的示范,使他们领悟发现和提出问题的艺术,引导他们更加主动、有兴趣地学,富有探索地学,逐步培养学生的问题意识,孕育创新精神。而“兴趣是最好的老师”,有良好的兴趣就有良好的学习动机,但不是每个学生都具有良好的学习数学的兴趣。“好奇”是学生的天性,他们对新颖的事物、知道而没有见过的事物都感兴趣,要激发学生的学习数学的积极性,就必须满足他们这些需求。
探索一次函数的性质时,给出几个关联问题,
问题2:在前面的直角坐标系中作一次函数 y=2x-1,y=2x,y=-1/2x的图象,并观察四条直线的位置关系。
设置的问题由浅入深,使得学生能进行理性的思考,并提升他们思维的深度。
学生是学习的主人。新课标强调,让学生在自主探索与合作交流中学会学习,提高数学素养。本节课充分体现了这一理念,学生有足够的自主探索时间,有与同学合作互动的空间,有与老师交流表达的机会。学生不是从老师那里获取知识,而是在数学活动的过程中发现规律、体验成功。
教师是课堂的主导。教师是学生数学学习的组织者、引导者和合作者。然而,组织、引导本身就强调了教师必须是一个特殊的“合作者”,而不是撒手不管的“非主导者”。教师的主导作用不是体现在“主宰”课堂,而应体现在为学生提供鲜活的学习素材,体现在对学习团体的严密组织,体现在对交流活动的精心策划,体现在处理反馈信息的及时有效。这不仅需要教师透彻领会教材实质,更需要教师准确把握学生个性。试想本节课,如果教师不是真正了解学生,就不能组成协调高效的学习小组,也不能在有限的时间内完成教学任务。
函数自变量教学反思与评价篇七
一次函数图像,是北师大八年级上册的内容。教学这一节时,我没有按照课本的讲解。我着这样安排的,先讲正比例函数的图像和性质,用一课时,今天我就是讲这一节。
先介绍函数的图像、画法。再画正比例函数的图像,引出正比例函数是经过原点的直线。接着介绍怎样作正比例函数的图像。用这种方法,作几个正比例函数的图像,总结规律。接着练习。
练习之后我备课时又有一个性质要介绍,由于时间的关系,没有讲解,就下课了!
反思:1、课堂中前段时间留给学生的时间长,没完成课前准备的教学任务。
2、本节课讲到第三个性质。
3、练习题要精而且少,难易适中。
4、注意课前准备,上课注意语言。函数教学反思反比例函数教学反思
函数自变量教学反思与评价篇八
1、 本节课首先从最简单的正比例函数入手.从正比例函数的定义、函数关系式、引入次函数的概念。
2、 八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习初、高中其它函数和高中解析几何中的直线方程的基础。
1、虽然这是一节全新的数学概念课,学生没有接触过。但是,孩子们已经具备了函数的一些知识,如正比例函数的概念及性质,这些都为学习本节内容做好了铺垫。
2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习其它函数的基础。
3、学生认知障碍点:根据问题信息写出一次函数的表达式。
1、 理解一次函数与正比例函数的概念以及它们的关系,在探索过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系。
2、 能根据问题信息写出一次函数的表达式。能利用一次函数解决简单的实际问题。
3、 经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力。
1、一次函数、正比例函数的概念及关系。
2、会根据已知信息写出一次函数的表达式。